CS 543 - Computer Graphics:
Hidden Surface Removal

by
Robert W. Lindeman
gogo@wpi.edu

(with help from Emmanuel Agu ;-)

WPI

Hidden Surface Removal

0 Drawing polygonal faces on screen consumes CPU cycles
0 We cannot see every surface in scene
OO To save time, draw only surfaces we see

0 Surfaces we cannot see, and their elimination methods
B Occluded surfaces: hidden surface removal (visibility)

m Back faces: back face culling
B Faces outside view volume: viewing frustum culling

[0 Object-space techniques
m Applied before vertices are mapped to pixels

0 Image-space techniques
m Applied after vertices have been rasterized

R.W. Lindeman - WPI Dept. of Computer Science 2

Visibility WPI

Hidden Surface Removal

[1 A correct rendering requires correct visibility

calculations

B When multiple opaque polygons cover the same
screen space, only the closest one is visible (remove
the other hidden surfaces)

Wrong visibility Correct visibility

R.W. Lindeman - WPI Dept. of Computer Science 3

Visibility WPI

Hidden Surface Removal (cont.)

http://www .worldofescher.com/

R.W. Lindeman - WPI Dept. of Computer Science 4

Visibility WPI

Hidden Surface Removal (cont)

R.W. Lindeman - WPI Dept. of Computer Science 5

Visibility WPI

Hidden Surface Removal (cont.)
Goal

m Determine which objects are visible to the
eye

m Determine what colors to use to paint the
pixels

Active area of research
m Lots of algorithms have been proposed in the
past (and is still a hot topic)

R.W. Lindeman - WPI Dept. of Computer Science 6

Visibility WPI

Hidden Surface Removal (cont.)
Where is visibility performed in the graphics

pipeline?
vl, ml
modeling and Per-vertex oiection
viewing lighting projectio
v2, m2 v3, m3 l

Rasterization
texturing
Shading

visibility

- viewp_ort interpolate clipping
mapping vertex colors

Display

Note: Map (x,y) values to screen (draw) and use z
value for depth testing

R.W. Lindeman - WPI Dept. of Computer Science 7

WPI

OpenGL: Image-Space Approach

Determine which of the n objects is
visible to each pixel on the image plane

for(each pixel in the image) {
determine the object closest to the pixel
draw the pixel using the object's color

}

R.W. Lindeman - WPI Dept. of Computer Science 8

Image Space Approach WPI

Z-buffer

0 Method used in most of graphics hardware (and thus
OpenGL)
m Z-buffer (or depth buffer) algorithm

[0 Requires lots of memory

0 Recall
m After projection transformation, in viewport transformation
[0 X,y used to draw screen image, mapped to viewport
[0 z component is mapped to pseudo-depth with range [0,1]

0 Objects/polygons are made up of vertices
0 Hence, we know depth z at polygon vertices

[0 Point on object seen through pixel may be between
vertices

0 Need to interpolate to find z

R.W. Lindeman - WPI Dept. of Computer Science 9

Image Space Approach WPI

/Z-buffer (cont.)

Basic Z-buffer idea

m Rasterize every input polygon

m For every pixel in the polygon interior,
calculate its corresponding z value (by
interpolation)

® Track depth values of closest polygon
(smallest z) so far

® Paint the pixel with the color of the polygon
whose z value is the closest to the eye

R.W. Lindeman - WPI Dept. of Computer Science 10

WPI

/Z (Depth) Buffer Algorithm

[0 How do we choose the polygon that has the
closet Z for a given pixel?

0 Example: eye at Z = 0O, farther objects have
increasingly positive values, between 0 and 1
1. Initialize (clear) every pixel in the Z buffer to 1.0
2. Track polygon Zs

3. As we rasterize polygons, check to see if polygon’s Z
through this pixel is less than current minimum Z
through this pixel

4. Run the following loop:

R.W. Lindeman - WPI Dept. of Computer Science 11

Z (Depth) Buffer Algorithm WPI

(cont.)

foreach polygon in scene {
foreach pixel (x,y) inside the polygon projection {
if(z polygon pixel(x, y) < z buffer(x, y)) {
z buffer(x, y) = z polygon pixel(x, y)~
color buffer(x, y) = polygon color at (x, y)
}
}
}

Note: We know the depths at the vertices.
Interpolate for interior z_polygon_pixel(x, y)
depths

R.W. Lindeman - WPI Dept. of Computer Science 12

WPI

/Z-Buffer Example

Correct Final image Top View

I Z

0.5

eye

R.W. Lindeman - WPI Dept. of Computer Science 13

WPI

Z-Buffer Example (cont.)
Step 1: Initialize the depth buffer

1.0 10 1.0 1.0 1,0 |— —
10/1.0/1.0 1.0 1.0 —
10 1.0 1.0 1.0 1.0
10 1.0 1.0 1.0 1.0

eye

R.W. Lindeman - WPI Dept. of Computer Science 14

WPI

Z-Buffer Example (cont.)

Step 2: Draw the blue polygon,
assuming the program draws blue
polygon first (the order does not affect
the final result anyway)

1.0/1.0 1.0 1.0 1,0 "— 2=0s
1.0 1.0 1.0|1.0| 1.0 203

RN 1.0 1.0 1.0
EMEN 1.0 1.0 1.0 =

R.W. Lindeman - WPI Dept. of Computer Science 15

WPI

Z-Buffer Example (cont.)

Step 3: Draw the yellow polygon
m Z-buffer drawback: wastes resources by
rendering a face, and then drawing over it

1.0/1.0 1.0 1.0 1,0 "— 2=0s
1.0 0.3]0.3/0.3 1.0 203

03[03[03]1.0
1.0 1.0 | 1.0 =S

R.W. Lindeman - WPI Dept. of Computer Science 16

Combined Z-buffer and WPI
Gouraud Shading

// for each scan line
for(int ¥ = Vior7 ¥ <= Yieops Y+t) |
foreach polygon ({
find X, and Xx,;g,
find depth,.., depth,;,;. and depth, .
find color,., color,;,;. and color;, .
for(int x = X,_4., ¢ = color, ., d = depth, .’
X < X.;4e; ¥t+, ¢ += color;, ., d += depth;, .) {
if(d < d[x]ly]l) {

put ¢ into the pixel at (x, y) L= CO|OI"3
// update closest depth ytop
d[x][y] = 4; color
}
} color,
} Ve =
} I
ybot
|__color, | >
Xleft Xrighf

R.W. Lindeman - WPI Dept. of Computer Science 17

WPI

/Z-Buffer Depth Compression

[0 Recall that we chose parameters a and b to map z from range
[near, far] to pseudodepth range[0,1]

O This mapping is almost linear close to the eye, but is non-
linear further from the eye, approaches asymptote

0 Also, limited humber of bits

0 Thus, two z values close to far plane may map to same
pseudodepth: Errors!!

A
Actual z aPz+b a=-—Lt"
-Pz
———2FW
1 b=- F-N
N
| | >
F -Pz
-1

R.W. Lindeman - WPI Dept. of Computer Science 18

OpenGL Hidden-Surface WPI

Removal (HSR) Commands

Primarily three commands to do HSR
m Instruct OpenGL to create a depth buffer

glutInitDisplayMode (GLUT DEPTH | GLUT RGB)

®m Enable depth testing
glEnable (GL DEPTH TEST)

m Initialize the depth buffer every time we
draw a new picture
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

R.W. Lindeman - WPI Dept. of Computer Science 19

WPI

Back Face Culling
Back faces: faces of an opaque object which
are "pointing away" from the viewer

Back face culling
B Remove back faces (supported by OpenGL)

Back face @
==

How can we detect back faces?

R.W. Lindeman - WPI Dept. of Computer Science 20

WPI

Back Face Culling (cont.)

O If we find a back face, do not draw
® Save rendering resources!

® There must be other forward face(s) closer to eye
0 F is face of object we want to test if back face
0 PisapointonF
O Form view vector, V as (eye - P)
0 N is normal to face F

gk ©

0 Back face test: F is back face if N.V < O

R.W. Lindeman - WPI Dept. of Computer Science 21

Back Face Culling: WPI

Draw Front Faces of a Mesh

void Mesh: :drawFrontFaces(void) {
for(int £ = 0; £ < numFaces; f++) {

if(isBackFace(£, ...) continue;
glBegin(GL POLYGON) ;
int in = face[f].vert[v].normIndex;

int iv = face[v].vert[v].vertIndex;

glNormal3f(norm[in] .x, norm[in].y, norm[in].z);

glVertex3f(pt[iv] .x, pt[iv].y, ptliv].z);
glEnd()

Refer to: Case 7.3, p. 375 in Hill

R.W. Lindeman - WPI Dept. of Computer Science 22

WPI

View-Frustum Culling

[JRemove objects that are outside the
viewing frustum

[0Done by 3D clipping algorithm (e.g.,
Liang-Barsky)

R.W. Lindeman - WPI Dept. of Computer Science 23

WPI

Ray Tracing

Ray tracing is another example of image
space method

Ray tracing
m Cast a ray from eye through each pixel to the
world

Answers the question:
m What does eye see in direction looking
through a given pixel?

R.W. Lindeman - WPI Dept. of Computer Science 24

WPI

Painter's Algorithm

0 A depth-sorting method

1 Surfaces are sorted in the order of decreasing
depth

[0 Surfaces are drawn in the sorted order, and
overwrite the pixels in the frame buffer

[0 Subtle difference from depth buffer approach
®m Entire face drawn

[0 Two problems
m It can be nontrivial to sort the surfaces

® There can be no solution for the sorting order

R.W. Lindeman - WPI Dept. of Computer Science 25

WPI

Painter's Algorithm (cont.)

X [/0 |

e
2% L

R.W. Lindeman - WPI Dept. of Computer Science 26

