CS 543 - Computer Graphics:
Transformations & The Synthetic
Camera

by
Robert W. Lindeman
gogo@wpi.edu

(with help from Emmanuel Agu ;-)

WPI
Introduction to Transformations

O A transformation changes an object's
m Size (scaling)
m Position (translation)
® Orientation (rotation)
®m Shape (shear)

O We will introduce first in 2D or (x,y), build
intuition
[0 Later, talk about 3D and 4D?

O Transform object by applying sequence of
matrix multiplications to object vertices

R.W. Lindeman - WPI Dept. of Computer Science 2

WPI
Why Matrices?

OAll transformations can be performed
using matrix/vector multiplication

OAllows pre-multiplication of all matrices

ONote: point (X, y) needs to be
represented as (x, y, 1), also called
homogeneous coordinates

R.W. Lindeman - WPI Dept. of Computer Science 3

WPI
Point Representation

OWe use a column matrix (2x1 matrix) to
represent a 2D point

=
O General form of transformation of a point
(x, y) to (x’, y’) can be written as:

x'=ax+by+c E—fa—h—cpr
: or yi=|d e fI*|ly
y'=dx+ey+ f o o 1)

R.W. Lindeman - WPI Dept. of Computer Science 4

WPI

Translation

OTo reposition a point along a straight line

OGiven point (x, y) and translation
distance (t,, t,)

OThe new point: (x/, y’)

x,y)
X' =x+t, *
y'=y+t, (wu//
or

x' X t
P=P+T where — P'= ' P= T=|"
y y Z,

R.W. Lindeman - WPI Dept. of Computer Science

WPI
3x3 2D Translation Matrix

X =x+t, (x') e
y'=y+t, V' y t
1 use 3x1 vector

X 1 0 ¢ X
yi = |01 ¢ | * y
1 0 0 1 1

Note: it becomes a matrix-vector multiplication

R.W. Lindeman - WPI Dept. of Computer Science

WPI

Translation of Objects

COHow to translate an object with
multiple vertices?

[— (pr-mmmee © /
I:I Translate individual & &

vertices

R.W. Lindeman - WPI Dept. of Computer Science 7

WPI
2D Scaling

(0Scale: Alter object size by scaling
factor (sx, sy). i.e.,

s - (5)

y'=y*Sy

(44)

(2,2) Sx=2,Sy=2
[—— 2,2)
(1,1)

I s I s

R.W. Lindeman - WPI Dept. of Computer Science 8

WPI
3x3 2D Scaling Matrix

X '=x *Sx x' Sx 0\/x
/= * '=
y'=yrsy)0 Syly

!

x' Sx 0 0\ (x
Y =10 Sy Of*ly
1 0 0 1 1
R.W. Lindeman - WPI Dept. of Computer Science 9

WPI1
Shearing

Y coordinates are unaffected, but x
coordinates are translated linearly with y

OThat is

xX'=x+y*h
y'=y
m h is fraction of y to be added to x

A

ool

—_ = =

- |

L4

R.W. Lindeman - WPI Dept. of Computer Science 10

WPI
2D Rotation

CODefault rotation center is origin (0,0)

K]
/

///, - L] -
9\ 0> 0 : Rotate counter clockwise

v

K]
/

9\’ = 8< 0 : Rotate clockwise

v

R.W. Lindeman - WPI Dept. of Computer Science 11

WPI1
2D Rotation (cont.)

(X,y) -> Rotate about the origin by 6

A

y)
- (X’, y,) 0 o xV)
r

¢

How to compute (x’, y') ?

X = r*cos(¢) x' = r*cos(¢ +0)
y = r*sin(¢) y' = r*sin(¢ +06)

R.W. Lindeman - WPI Dept. of Computer Science 12

2D Rotation (cont.)
OUsing trig. identities

cos(0 +¢) = cosf cos¢ —sinf sin¢g 4

")
sin(0 +¢) = sinO cos¢ + cosf sin ¢
0 o (xv)
x" = xcos(6) -y sin(6) L)
y’ = xsin(6) + y cos(6) R
Matrix form?
x' cos(f) —sin(0))\/x
y' - sin(@) cos(@))\ y
R.W. Lindeman - WPI Dept. of Computer Science 13

WPI
3x3 2D Rotation Matrix

x' = cos(@) -sin(0))\/x)
(y') R (sin(@) cos(6))(y)
6 0 (xy)
l ¢
| >
x' cos(@) =sin(@) O\/x
y'I=|sin(@) cos(@) O}y
1 0 0 L1

R.W. Lindeman - WPI Dept. of Computer Science 14

WPI
2D Rotation

O How to rotate an object with multiple
vertices?

e
Rotate individual

Vertices

>

R.W. Lindeman - WPI Dept. of Computer Science 15

WPI
Arbitrary Rotation Center

O To rotate about arbitrary point P = (Px, Py) by
0.
®m Translate object by T(-Px, -Py) so that P coincides
with origin
®m Rotate the object by R(6)
® Translate object back: T(Px, Py)
O In matrix form
m T(Px,Py) R(6) T(-Px,-Py) * P
x' 1 0 Px\(cos(@) -sin(@) 0\/1 0 -Px\/x
Yy =10 1 Py|sin(@) cos(@) 0|0 I —-Pyly
1 00 1 0 0 O 0 1 1

O Similar for arbitrary scaling anchor

R.W. Lindeman - WPI Dept. of Computer Science 16

WPI
Composing Transformations

0 Composing transformations
®m Applying several transforms in succession to form
one overall transformation

O Example
mM1 X M2 X M3 X P
where M1, M2, M3 are transform matrices applied to P

O Be careful with the order!

O For example
®m Translate by (5, 0), then rotate 60 degrees is NOT
same as
®m Rotate by 60 degrees, then translate by (5, 0)

R.W. Lindeman - WPI Dept. of Computer Science 17

WPI
OpenGL Transformations

O Designed for 3D
O For 2D, simply ignore z dimension

O Translation:
B glTranslated(tx, ty, tz)

M glTranslated(tx, ty, 0) => for 2D
J Rotation:

B glRotated(angle, Vx, Vy, Vz)

B glRotated(angle, 0, 0, 1) => for2D

O Scaling:
B glScaled(sx, sy, sz)
B glScaled(sx, sy, 0) => for 2D

R.W. Lindeman - WPI Dept. of Computer Science 18

WPI
3D Transformations

O Affine transformations
® Mappings of points to new points that retain certain
relationships
B Lines remain lines
m Several transformations can be combined into a
single matrix

O Two ways to think about transformations
®m Object transformations
OO0 All points of an object are transformed
m Coordinate transformations
O The coordinate system is transformed, and models
remain defined relative to this

R.W. Lindeman - WPI Dept. of Computer Science 19

WPI
3D Transformations (cont.)

0 Scale
® glscaled(sx, sy, sz). Scale object by (sx, sy, sz)

O Translate
m glTranslated(dx, dy, dz): Translate object by (dx,
dy, dz)

[0 Rotate
® glRotated(angle, ux, uy, uz): Rotate by angle
about an axis passing through origin and (ux, uy, uz)

0 OpenGL
B Creates a matrix for each transformation

m Multiplies matrices together to form a single,
combined matrix
B Transformation matrix is called modelview matrix

R.W. Lindeman - WPI Dept. of Computer Science 20

10

WPI
Example: Translation

OThe vertices of an object are mapped to

new points
m Similarly for scaling and rotation

a) b)
y r w0
e , |
-/' 0 PubPye CT 0,0, ... P o L ol/
P ¥
((display
g &
7

Py o

al x
R.W. Lindeman - WPI Dept. of Computer Science o

WPI
OpenGL Matrices

O Graphics pipeline takes all vertices
through a series of operations

projection

/ matrix

P > clip » »D

—>» VM > > \%
\ /’
modelview viewport
matrix matrix
R.W. Lindeman - WPI Dept. of Computer Science 22

11

WPI
OpenGL Matrices and the Pipeline

O OpenGL uses three matrices for geometry
® Modelview matrix
m Projection matrix
m Viewport matrix

0 Modelview matrix
m Combination of modeling matrix M and camera transforms V

O Other OpenGL matrices include texture and color
matrices

0 glMatrixMode command selects matrix mode

O glMatrixMode parameters
B GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE, efc.

O May initialize matrices with glLoadIdentity()

R.W. Lindeman - WPI Dept. of Computer Science 23

WPI
OpenGL Matrices and the Pipeline

O0OpenGL matrix operations are 4x4
matrices

O Graphics card
m Fast 4x4 multiplier -> tremendous speedup

R.W. Lindeman - WPI Dept. of Computer Science 24

12

WPI
View Frustum

O Side walls determined by window borders

O Other walls are programmer defined
®m Near clipping plane
m Far clipping plane

O Transform 3D models to 2D
®m Project points/vertices inside view volume onto view
window using parallel lines along z-axis

near plane window YA far plane

viewport

3)

o B o N — %

R.W. Lindeman - WPI Dept. of Computer Science 25

WPI

Types of Projections

O Different types of projections?
m Different view volume shapes
m Different visual effects

O Example projections
m Parallel (a.k.a. orthographic)
m Perspective

O Parallel is simple
OWill use this for intro, expand later

R.W. Lindeman - WPI Dept. of Computer Science 26

13

WPI
OpenGL Matrices and the Pipeline

O Projection matrix
m Scales and shifts each vertex in a particular way
®m View volume lies inside cube of -1 to 1
®m Reverses sense of z
O increasing z = increasing depth
m Effectively squishes view volume down to cube
centered at 1

O Clipping in 3D then eliminates portions outside
view frustum

O Viewport matrix:
®m Maps surviving portion of block (cube) into a 3D
viewport
m Retains a measure of the depth of a point

R.W. Lindeman - WPI Dept. of Computer Science 27

WPI
Lighting and Shading

O Light components:
m Diffuse, ambient, specular

®m OpenGL
O glLightfv(), glLightf()

OO Materials
m OpenGL
OglMaterialfv(), glMaterialf()

R.W. Lindeman - WPI Dept. of Computer Science 28

14

WPI

A Synthetic Camera

O Define:
m Eye position
= "LookAt" point
m "Up" vector (if spinning: confusing)
O Programmer knows scene, chooses:
meye
® /ookAt

O Up direction usually set to (0, 1, 0)
0O OpenGL:

B gluLookAt (eye.pos[X], eye.pos[Y¥], eye.pos[Z],
look.pos[X], look.pos[¥], look.pos[Z],
up.vec[X], up.vec[Y], up.vec[Z]);

R.W. Lindeman - WPI Dept. of Computer Science 29

WPI1
A Synthetic Camera (cont.)

up

look

R.W. Lindeman - WPI Dept. of Computer Science 30

15

