

CS 543 - Computer Graphics: Transformations & The Synthetic Camera

by
Robert W. Lindeman
gogo@wpi.edu
(with help from Emmanuel Agu ;-)

Introduction to Transformations

- □ A transformation changes an object's
 - Size (scaling)
 - Position (translation)
 - Orientation (rotation)
 - Shape (shear)
- \square We will introduce first in 2D or (x,y), build intuition
- □ Later, talk about 3D and 4D?
- □ Transform object by applying sequence of matrix multiplications to object vertices

R.W. Lindeman - WPI Dept. of Computer Science

Why Matrices?

- □ All transformations can be performed using matrix/vector multiplication
- □ Allows pre-multiplication of all matrices
- □Note: point (x, y) needs to be represented as (x, y, 1), also called **homogeneous coordinates**

R.W. Lindeman - WPI Dept. of Computer Science

3

Point Representation

■We use a column matrix (2x1 matrix) to represent a 2D point

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

□General form of transformation of a point (x, y) to (x', y') can be written as:

$$x' = ax + by + c$$

$$y' = dx + ey + f$$
or
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

Translation

- □To reposition a point along a straight line
- ☐ Given point (x, y) and translation distance (t_x, t_y)
- \square The new point: (x', y')

$$x' = x + t_x$$
$$y' = y + t_y$$

or

$$P' = P + T$$

vhere

$$P' = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

 $P = \begin{pmatrix} x \\ y \end{pmatrix}$

(x',y')

$$T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

5

WPI

3x3 2D Translation Matrix

$$x' = x + t_{x}$$
$$y' = y + t_{y}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

use 3x1 vector

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Note: it becomes a matrix-vector multiplication

R.W. Lindeman - WPI Dept. of Computer Science

3x3 2D Scaling Matrix

$$x' = x * Sx y' = y * Sy$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Sx & 0 \\ 0 & Sy \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

9

WPI

Shearing

- ☐ Y coordinates are unaffected, but x coordinates are translated linearly with y
- □ That is

$$x' = x + y*h$$
$$y' = y$$

h is fraction of y to be added to x

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

2D Rotation

 \square Default rotation center is origin (0,0)

 θ > 0: Rotate counter clockwise

 θ < 0 : Rotate clockwise

R.W. Lindeman - WPI Dept. of Computer Science

11

2D Rotation (cont.)

WPI

(x,y) -> Rotate about the origin by θ

How to compute (x', y')?

$$x = r*cos(\phi)$$
 $x' = r*cos(\phi + \theta)$
 $y = r*sin(\phi)$ $y' = r*sin(\phi + \theta)$

R.W. Lindeman - WPI Dept. of Computer Science

2D Rotation (cont.)

□Using trig. identities

 $\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$ $\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

Matrix form?

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

13

3x3 2D Rotation Matrix

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

R.W. Lindeman - WPI Dept. of Computer Science

WPI

Arbitrary Rotation Center

- □ To rotate about arbitrary point P = (Px, Py) by θ :
 - Translate object by T(-Px, -Py) so that P coincides with origin
 - Rotate the object by $R(\theta)$
 - Translate object back: T(Px, Py)
- □ In matrix form
 - T(Px,Py) R(θ) T(-Px,-Py) * P

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & Px \\ 0 & 1 & Py \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -Px \\ 0 & 1 & -Py \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

☐ Similar for arbitrary scaling anchor

R.W. Lindeman - WPI Dept. of Computer Science

Composing Transformations

- □ Composing transformations
 - Applying several transforms in succession to form one overall transformation
- Example
 - M1 X M2 X M3 X P

where M1, M2, M3 are transform matrices applied to P

- Be careful with the order!
- □ For example
 - Translate by (5, 0), then rotate 60 degrees is NOT same as
 - Rotate by 60 degrees, then translate by (5, 0)

R.W. Lindeman - WPI Dept. of Computer Science

17

OpenGL Transformations

- □ Designed for 3D
- \square For 2D, simply ignore z dimension
- □ Translation:
 - glTranslated(tx, ty, tz)
 - glTranslated(tx, ty, 0) => for 2D
- Rotation:
 - glRotated(angle, Vx, Vy, Vz)
 - glRotated(angle, 0, 0, 1) => for 2D
- Scaling:
 - glScaled(sx, sy, sz)
 - glScaled(sx, sy, 0) => for 2D

R.W. Lindeman - WPI Dept. of Computer Science

3D Transformations

- Affine transformations
 - Mappings of points to new points that retain certain relationships
 - Lines remain lines
 - Several transformations can be combined into a single matrix
- □ Two ways to think about transformations
 - Object transformations
 - □ All points of an object are transformed
 - Coordinate transformations
 - ☐ The coordinate system is transformed, and models remain defined relative to this

R.W. Lindeman - WPI Dept. of Computer Science

19

3D Transformations (cont.)

- □ Scale
 - glscaled(sx, sy, sz): Scale object by (sx, sy, sz)
- □ Translate
 - glTranslated(dx, dy, dz): Translate object by (dx, dy, dz)
- □ Rotate
 - glRotated(angle, ux, uy, uz): Rotate by angle about an axis passing through origin and (ux, uy, uz)
- OpenGL
 - Creates a matrix for each transformation
 - Multiplies matrices together to form a single, combined matrix
 - Transformation matrix is called modelview matrix

R.W. Lindeman - WPI Dept. of Computer Science

R.W. Lindeman - WPI Dept. of Computer Science

OpenGL Matrices and the Pipeline OpenGL matrix operations are 4x4 matrices Graphics card Fast 4x4 multiplier -> tremendous speedup

Types of Projections

- □ Different types of projections?
 - Different view volume shapes
 - Different visual effects
- Example projections
 - Parallel (a.k.a. orthographic)
 - Perspective
- □ Parallel is simple
- □Will use this for intro, expand later

R.W. Lindeman - WPI Dept. of Computer Science

OpenGL Matrices and the Pipeline

- □ Projection matrix
 - Scales and shifts each vertex in a particular way
 - View volume lies inside cube of -1 to 1
 - Reverses sense of z
 - \square increasing z = increasing depth
 - Effectively squishes view volume down to cube centered at 1
- □ Clipping in 3D then eliminates portions outside view frustum
- Viewport matrix:
 - Maps surviving portion of block (cube) into a 3D viewport
 - Retains a measure of the depth of a point

R.W. Lindeman - WPI Dept. of Computer Science

27

Lighting and Shading

- □Light components:
 - Diffuse, ambient, specular
 - OpenGL
 - □glLightfv(), glLightf()
- Materials
 - OpenGL
 - □ glMaterialfv(), glMaterialf()

R.W. Lindeman - WPI Dept. of Computer Science

A Synthetic Camera

- □ Define:
 - Eye position
 - "LookAt" point
 - "Up" vector (if spinning: confusing)
- □ Programmer knows scene, chooses:
 - eye
 - lookAt
- \square *Up* direction usually set to (0, 1, 0)
- OpenGL:

R.W. Lindeman - WPI Dept. of Computer Science

29

A Synthetic Camera (cont.)

R.W. Lindeman - WPI Dept. of Computer Science