1.2.3

o

Vertex Connectivity

l Colored
Fragments Fragments

Primitive Fragment Rast
3 M) Assembly and| P Texturing and | P 0 ait?r -y
Rasterizatio Coloring perater

Vertices Transformed Pixel
Vertices ' Updates
Pixel Positions

Figure 1-3. The Graphics Hardware Pipeline

The Graphics Hardware Pipeline

A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage
receives its input from the prior stage and sends its output to the subsequent stage.
Like an assembly line where dozens of automobiles are manufactured at the same
time, with each automobile at a different stage of the line, a conventional graphics
hardware pipeline processes a multitude of vertices, geometric primitives, and frag-
ments in a pipelined fashion.

Figure 1-3 shows the graphics hardware pipeline used by today’s GPUs. The 3D appli-
cation sends the GPU a sequence of vertices batched into geometric primitives: typi-
cally polygons, lines, and points. As shown in Figure 1-4, there are many ways to
specify geometric primitives.

Every vertex has a position but also usually has several other attributes such as a color,
a secondary (or specular) color, one or multiple texture coordinate sets, and a normal
vector. The normal vector indicates what direction the surface faces at the vertex, and
is typically used in lighting calculations.

Vertex Transformation

Vertex transformation is the first processing stage in the graphics hardware pipeline.
Vertex transformation performs a sequence of math operations on each vertex. These
operations include transforming the vertex position into a screen position for use by
the rasterizer, generating texture coordinates for texturing, and lighting the vertex to
determine its color. We will explain many of these tasks in subsequent chapters.

13
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

14

Points Independent Lines Line Loop

Triangle Strip Triangle Fan

Independent Quads Quad Strip Polygon

Figure 1-4. Types of Geometric Primitives

Primitive Assembly and Rasterization

The transformed vertices flow in sequence to the next stage, called primitive assembly
and rasterization. First, the primitive assembly step assembles vertices into geometric
primitives based on the geometric primitive batching information that accompanies
the sequence of vertices. This results in a sequence of triangles, lines, or points. These
primitives may require clipping to the view frustum (the view’s visible region of 3D
space), as well as any enabled application-specified clip planes. The rasterizer may also
discard polygons based on whether they face forward or backward. This process is
known as culling.

Polygons that survive these clipping and culling steps must be rasterized. Rasterization
is the process of determining the set of pixels covered by a geometric primitive. Poly-
gons, lines, and points are each rasterized according to the rules specified for each type

Chapter 1: Introduction

—p—

o

of primitive. The results of rasterization are a set of pixel locations as well as a set of
fragments. There is no relationship between the number of vertices a primitive has and
the number of fragments that are generated when it is rasterized. For example, a trian-
gle made up of just three vertices could take up the entire screen, and therefore gener-
ate millions of fragments!

Earlier, we told you to think of a fragment as a pixel if you did not know precisely
what a fragment was. At this point, however, the distinction between a fragment and a
pixel becomes important. The term pixel is short for “picture element.” A pixel repre-
sents the contents of the frame buffer at a specific location, such as the color, depth,
and any other values associated with that location. A fragment is the state required
potentially to update a particular pixel.

The term “fragment” is used because rasterization breaks up each geometric primitive,
such as a triangle, into pixel-sized fragments for each pixel that the primitive covers. A
fragment has an associated pixel location, a depth value, and a set of interpolated pa-
rameters such as a color, a secondary (specular) color, and one or more texture coordi-
nate sets. These various interpolated parameters are derived from the transformed
vertices that make up the particular geometric primitive used to generate the
fragments. You can think of a fragment as a “potential pixel.” If a fragment passes the
various rasterization tests (in the raster operations stage, which is described shortly),
the fragment updates a pixel in the frame buffer.

Interpolation, Texturing, and Coloring

Once a primitive is rasterized into a collection of zero or more fragments, the interpo-
lation, texturing, and coloring stage interpolates the fragment parameters as necessary,
performs a sequence of texturing and math operations, and determines a final color
for each fragment. In addition to determining the fragment’s final color, this stage
may also determine a new depth or may even discard the fragment to avoid updating
the frame buffer’s corresponding pixel. Allowing for the possibility that the stage may
discard a fragment, this stage emits one or zero colored fragments for every input frag-
ment it receives.

Raster Operations

The raster operations stage performs a final sequence of per-fragment operations imme-
diately before updating the frame buffer. These operations are a standard part of
OpenGL and Direct3D. During this stage, hidden surfaces are eliminated through a

15
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

16

o

Fragment & Pixel Sclesa Alpha
Associated . Ownership . Test ‘ Test
Data Test ‘
Depth Stencil
Test l— Test
E L
Depth : : Stencil :
Buffer - T Buffer T
’ . . . Color
Blendin Ditherin Logic O .
g \ » g | gic Op > Buffer
I

Figure 1-5. Standard OpenGL and Direct3D Raster Operations

process known as depth testing. Other effects, such as blending and stencil-based shad-
owing, also occur during this stage.

The raster operations stage checks each fragment based on a number of tests, includ-
ing the scissor, alpha, stencil, and depth tests. These tests involve the fragment’s final
color or depth, the pixel location, and per-pixel values such as the depth value and
stencil value of the pixel. If any test fails, this stage discards the fragment without up-
dating the pixel’s color value (though a stencil write operation may occur). Passing the
depth test may replace the pixel’s depth value with the fragment’s depth. After the
tests, a blending operation combines the final color of the fragment with the corre-
sponding pixel’s color value. Finally, a frame buffer write operation replaces the pixel’s
color with the blended color. Figure 1-5 shows this sequence of operations.

Figure 1-5 shows that the raster operations stage is actually itself a series of pipeline
stages. In fact, all of the previously described stages can be broken down into substages
as well.

Visualizing the Graphics Pipeline
Figure 1-6 depicts the stages of the graphics pipeline. In the figure, two triangles are

rasterized. The process starts with the transformation and coloring of vertices. Next,
the primitive assembly step creates triangles from the vertices, as the dotted lines indi-

Chapter 1: Introduction

—p—

1.2.4

0 & - °
- e - - . ‘e -
L] [+] .':—-——-——-——-—--‘:‘-G
Colored Vertices After Interpolation, Texturing,

Primitive Assembly Rasterization

Vertex Transformation and Coloring

Figure 1-6. Visualizing the Graphics Pipeline

cate. After this, the rasterizer “fills in” the triangles with fragments. Finally, the register
values from the vertices are interpolated and used for texturing and coloring. Notice
that many fragments are generated from just a few vertices.

The Programmable Graphics Pipeline

The dominant trend in graphics hardware design today is the effort to expose more
programmability within the GPU. Figure 1-7 shows the vertex processing and frag-
ment processing stages in the pipeline of a programmable GPU.

Figure 1-7 shows more detail than Figure 1-3, but more important, it shows the vertex
and fragment processing broken out into programmable units. The programmable

o
Application
or Game
o APl
Coammands
3D APl
OpenGL
or Dir
CPU - GPU Boundary
GPU
Command &
Data Stream Assembled Pixal .
Vartex Index Palygons, Lines Location Pixel
Stream & Points Stream Updates
GPU I oy | Primitive | ooy Rosterization & | s Raster | ey
Front Assa Interpolation Operati Frome Bullsy
Pretransformed Transfarmed Rasterized Transfarmed
Vertices Vertices Pratransformed Fragments
Fragmenis
Programmable o Programmable
Vertex P::!mmt

Figure 1-7. The Programmable Graphics Pipeline

17

1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

o

. , 1
vertex processor is the hardware unit that runs your Cg vertex programs, whereas the
programmable fragment processor is the unit that runs your Cg fragment programs.

As explained in Section 1.2.2, GPU designs have evolved, and the vertex and fragment
processors within the GPU have transitioned from being configurable to being pro-
grammable. The descriptions in the next two sections present the critical functional
features of programmable vertex and fragment processors.

The Programmable Vertex Processor

Figure 1-8 shows a flow chart for a typical programmable vertex processor. The data-
flow model for vertex processing begins by loading each vertex’s attributes (such as

r Copy Vertex
,:::'" mmp Attributes to
Input Regi

i

Vertex
Program Fetch & Decode
Instruction === Next Instru
Memory

Input Registers | I ---------- AT > T::;J::El::'aﬂﬂ.'ﬂ |

i

dfprzssssssnannas

Verrex
Program
Inseruction
Laop

i

L]

i

L]

'

H Map Input Values:
' Swizzle, Negate,
:

1]

L]

1]

L]

i

Temporary
Registers

Emit Output
Registers As - \
Transformed

Vertex

Output
Registers l I """"""""""""" >

Figure 1-8. Programmable Vertex Processor Flow Chart

Chapter 1: Introduction

1. Cgis Nvidia's GPU programming language. Cg is short for "C for
graphics. In class we will talk about OpenGL's GPU programming
language called GLSL. Cg & GISL overlap significantly

\V

cliff
Text Box
1: Cg is Nvidia's GPU programming language. Cg is short for "C for graphics. In class we will talk about OpenGL's GPU programming language called GLSL. Cg & GlSL overlap significantly

cliff
Text Box
1

o

position, color, texture coordinates, and so on) into the vertex processor. The vertex
processor then repeatedly fetches the next instruction and executes it until the vertex
program terminates. Instructions access several distinct sets of registers banks that
contain vector values, such as position, normal, or color. The vertex attribute registers
are read-only and contain the application-specified set of attributes for the vertex. The
temporary registers can be read and written and are used for computing intermediate
results. The output result registers are write-only. The program is responsible for writ-
ing its results to these registers. When the vertex program terminates, the output result
registers contain the newly transformed vertex. After triangle setup and rasterization,
the interpolated values for each register are passed to the fragment processor.

Most vertex processing uses a limited palette of operations. Vector math operations on
floating-point vectors of two, three, or four components are necessary. These opera-
tions include add, multiply, multiply-add, dot product, minimum, and maximum.
Hardware support for vector negation and component-wise swizzling (the ability to
reorder vector components arbitrarily) generalizes these vector math instructions to
provide negation, subtraction, and cross products. Component-wise write masking
controls the output of all instructions. Combining reciprocal and reciprocal square
root operations with vector multiplication and dot products, respectively, enables
vector-by-scalar division and vector normalization. Exponential, logarithmic, and
trigonometric approximations facilitate lighting, fog, and geometric computations.
Specialized instructions can make lighting and attenuation functions easier to compute.

Further functionality, such as relative addressing of constants and flow-control support
for branching and looping, is also available in more recent programmable vertex
processors.

The Programmable Fragment Processor

Programmable fragment processors require many of the same math operations as pro-
grammable vertex processors do, but they also support texturing operations. Texturing
operations enable the processor to access a texture image using a set of texture coordi-
nates and then to return a filtered sample of the texture image.

Newer GPUs offer full support for floating-point values; older GPUs have more lim-
ited fixed-point data types. Even when floating-point operations are available, frag-
ment operations are often more efficient when using lower-precision data types. GPUs
must process so many fragments at once that arbitrary branching is not available in
current GPU generations, but this is likely to change over time as hardware evolves.

19
1.2 Vertices, Fragments, and the Graphics Pipeline

—p—

20

Temporary
Registers

: Filter
femmmmmmmees P fexels Iﬁ

Write Temporary

Fragment
Primitive Program | | p Fetch &Decode
Interpalants Instruction Next Instructi
Memory
H
"
........ :.--_,_.,__,__“_“_“_“_“_.' Read Interpolants and/or
Temporary Reglsters
A
H
H Map Input Values: .
: Swizzle, Negate, Fragment
: Pragram
E Inseruction
: . Laap
: Compute Taxture Texture
H [PRp—— Address & Level-of Fetch
; - & Fetch Texels Yes Instruction?
H
" L
| Texture L
1 Images |
H o - Perform Instruction
i - Math/Operati
:
H
'
H
'
H
'

....... or Output Register

: with Masking
3
v
Qutput Emit Final End
Depth & Color | f===============mmemen > Fraomell = { Fragmen
utputs

Figure 1-9. Programmable Fragment Processor Flow Chart

Cg still allows you to write fragment programs that branch and iterate by simulating
such constructs with conditional assignment operations or loop unrolling.

Figure 1-9 shows the flow chart for a current programmable fragment processor. As
with a programmable vertex processor, the data flow involves executing a sequence of
instructions until the program terminates. Again, there is a set of input registers. How-
ever, rather than vertex attributes, the fragment processor’s read-only input registers
contain interpolated per-fragment parameters derived from the per-vertex parameters
of the fragment’s primitive. Read/write temporary registers store intermediate values.
Write operations to write-only output registers become the color and optionally the
new depth of the fragment. Fragment program instructions include texture fetches.

Chapter 1: Introduction

—p—

