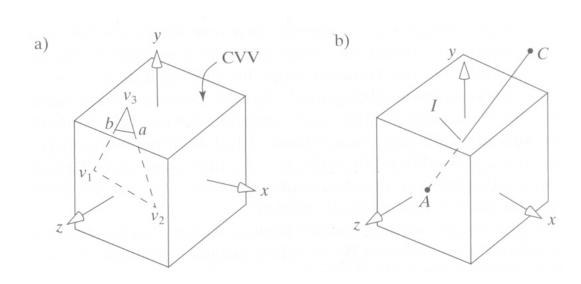
Computer Graphics (CS 543): 3D Clipping

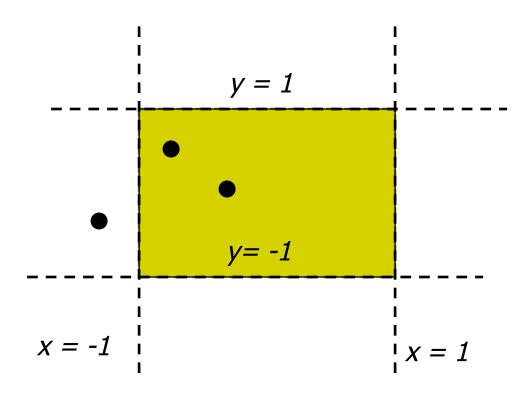
Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Liang-Barsky 3D Clipping

- Goal: Clip object edge-by-edge against Canonical View volume (CVV)
- Problem:
 - 2 end-points of edge: A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw)
 - If edge intersects with CVV, compute intersection point I =(Ix,Iy,Iz,Iw)





Problem: Determine if point (x,y,z) is inside or outside CVV?

Point (x,y,z) is **inside CVV if**

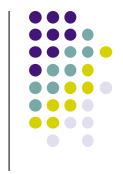
$$(-1 <= x <= 1)$$

AND
$$(-1 \le y \le 1)$$

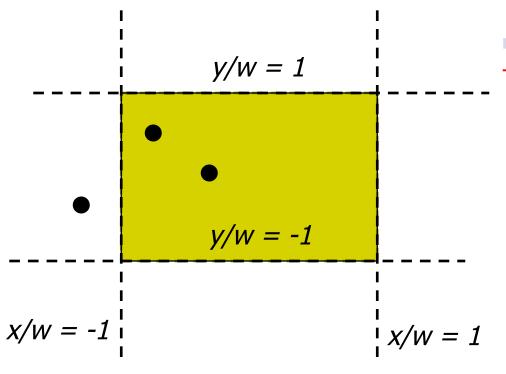
AND
$$(-1 \le z \le 1)$$

else point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)



Determining if point is inside CVV

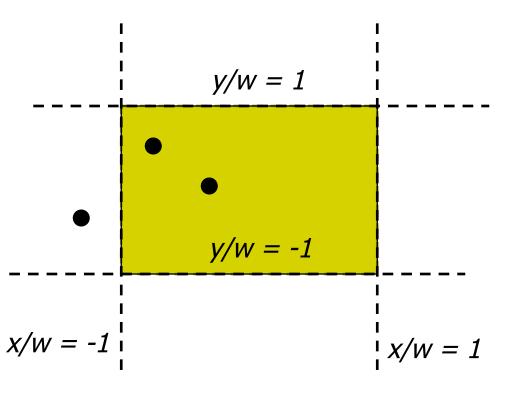


- If point specified as (x,y,z,w)
- Test (x/w, y/w, z/w)!

Point (x/w, y/w, z/w) is inside CVV

else point is outside CVV

Modify Inside/Outside Tests Slightly



Our test: (-1 < x/w < 1)

Point (x,y,z,w) inside plane x = 1 if

$$x/w < 1$$

$$=> w - x > 0$$

Point (x,y,z,w) inside plane x = -1 if

$$-1 < x/w$$

=> **w + x > 0**

Numerical Example: Inside/Outside CVV Test

- Point (x,y,z,w) is
 - inside plane x=-1 if w + x > 0
 - inside plane x=1 if w-x>0



- Example Point (0.5, 0.2, 0.7) inside planes (x = -1,1) because -1 <= 0.5 <= 1</p>
- If w = 10, (0.5, 0.2, 0.7) = (5, 2, 7, 10)
- Can either divide by w then test: -1 <= 5/10 <= 1 OR</p>

To test if inside
$$x = -1$$
, $w + x = 10 + 5 = 15 > 0$

To test if inside
$$x = 1$$
, $w - x = 10 - 5 = 5 > 0$

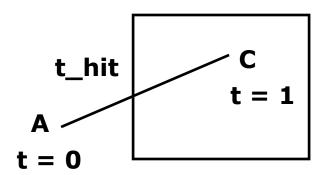
Do same for y, z to form boundary coordinates for 6 planes as:

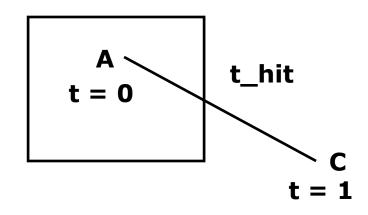
Boundary coordinate (BC)	Homogenous coordinate	Clip plane	Example (5,2,7,10)
BC0	w+x	x=-1	15
BC1	w-x	x=1	5
BC2	w+y	y=-1	12
BC3	w-y	y=1	8
BC4	w+z	z=-1	17
BC5	W-Z	z=1	3

Consider line that goes from point A to C

- Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0
- Trivial reject: Both endpoints outside (-ve) for same plane

- Test A, C against 6 walls (x = -1,1; y = -1,1; z = -1,1)
- There is an intersection if BCs have opposite signs. i.e., if either
 - A is outside (< 0), C is inside (> 0) or
 - A inside (> 0) , C outside (< 0)
- Edge intersects with plane at some t_hit between [0,1]





Edges as Parametric Equations

- Implicit form F(x, y) = 0
- Parametric forms:
 - points specified based on single parameter value
 - Typical parameter: time *t*

$$P(t) = P_0 + (P_1 - P_0) * t 0 \le t \le 1$$

- Some algorithms work in parametric form
 - Clipping: exclude line segment ranges
 - Animation: Interpolate between endpoints by varying t
- Represent each edge parametrically as A + (C − A)t
 - at time t=0, point at A
 - at time t=1, point at C

- How to calculate t_hit?
- Represent an edge t as:

$$Edge(t) = ((Ax + (Cx - Ax)t, (Ay + (Cy - Ay)t, (Az + (Cz - Az)t, (Aw + (Cw - Aw)t))))$$

E.g., If
$$x = 1$$
,
$$\frac{Ax + (Cx - Ax)t}{Aw + (Cw - Aw)t} = 1$$

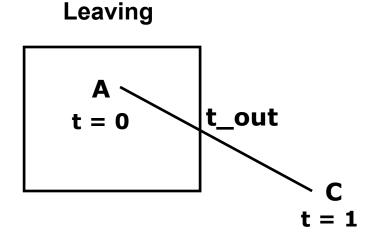
Solving for t above,

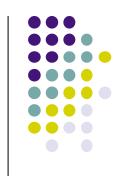
$$t = \frac{Aw - Ax}{(Aw - Ax) - (Cw - Cx)}$$



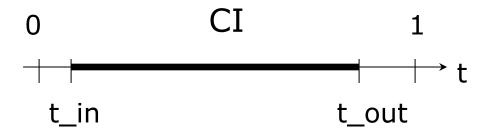
- t_hit can be "entering (t_in)" or "leaving (t_out)"
- Define: "entering" if A outside, C inside
 - Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)
- Define "leaving" if A inside, C outside
 - Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)

Entering t_in t = 1



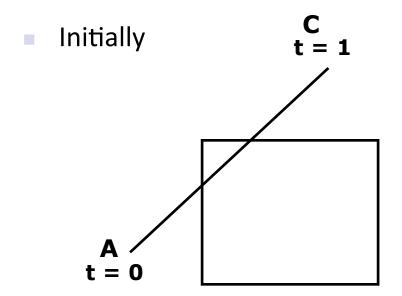


- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e., CI = t_in to t_out
- Initialize Cl to [0, 1]
- For each of 6 planes, calculate t_in or t_out, shrink CI



Conversely: values of t outside CI = edge is outside CVV

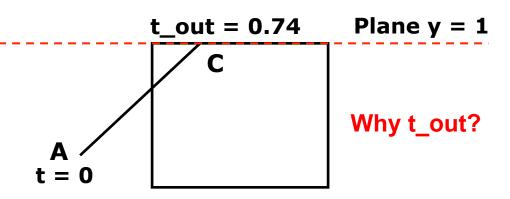
Chop Step by Step against 6 planes



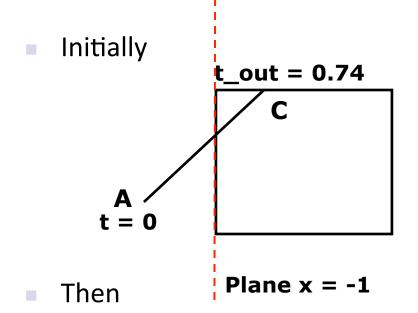
t_in = 0, t_out = 1 Candidate Interval (CI) = [0 to 1]

Chop against each of 6 planes

t_in = 0, t_out = 0.74 Candidate Interval (CI) = [0 to 0.74]



Chop Step by Step against 6 planes



 $t_in = 0$, $t_out = 0.74$ Candidate Interval (CI) = [0 to 0.74]

t_in = 0.36, t_out = 0.74 Candidate Interval (CI) CI = [0.36 to 0.74]

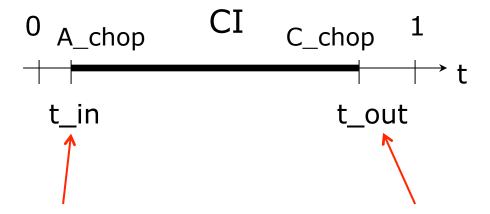
Algorithm:

- Test for trivial accept/reject (stop if either occurs)
- Set CI to [0,1]
- For each of 6 planes:
 - Find hit time t_hit
 - If t_in, new t_in = max(t_in,t_hit)
 - If t_out, new t_out = min(t_out, t_hit)
 - If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

Calculate choppped A and C

- If valid t_in, t_out, calculate adjusted edge endpoints A, C as
- A_chop = A + t_in (C A) (calculate for Ax,Ay,Az)
- C_chop = A + t_out (C A) (calculate for Cx,Cy,Cz)

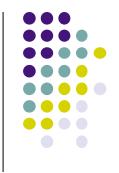


- Function clipEdge()
- Input: two points A and C (in homogenous coordinates)
- Output:
 - 0, if AC lies complete outside CVV
 - 1, complete inside CVV
 - Returns clipped A and C otherwise
- Calculate 6 BCs for A, 6 for C

- Use outcodes to track in/out
 - Number walls x = +1, -1; y = +1, -1, and z = +1, -1 as 0 to 5
 - Bit i of A's outcode = 1 if A is outside ith wall
 - 1 otherwise
- **Example:** outcode for point outside walls 1, 2, 5

Wall no. OutCode

0	1	2	3	4	5
0	1	1	0	0	1



Trivial Accept/Reject Using Outcodes

• Trivial accept: inside (not outside) any walls

Wall no.
A Outcode
C OutCode

0	1	2	3	4	5
0	0	0	0	0	0
0	0	0	0	0	0

Logical bitwise test: $A \mid C == 0$

• Trivial reject: point outside same wall. Example Both A and C outside wall 1

 Wall no.
 0
 1
 2
 3
 4
 5

 A Outcode
 0
 1
 0
 0
 1
 0

 C OutCode
 0
 1
 1
 0
 0
 0

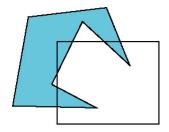
Logical bitwise test: A & C != 0

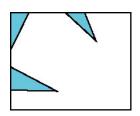
3D Clipping Implementation

- Compute BCs for A, C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
 - Compute tHit
 - Update t_in, t_out
 - If t_in > t_out, early exit

Polygon Clipping

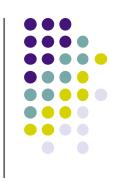
- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a polygon can yield multiple polygons



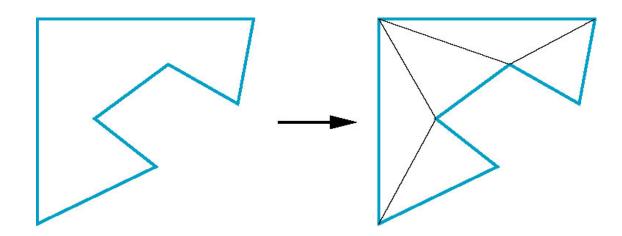


Clipping a convex polygon can yield at most one other polygon

- Need more sophisticated algorithms to handle polygons:
 - Sutherland-Hodgman: any a given polygon against a convex clip polygon (or window)
 - Weiler-Atherton: Both subject polygon and clip polygon can be concave



- One strategy is to replace nonconvex (concave)
 polygons with a set of triangular polygons (a
 tessellation)
- Also makes fill easier



References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition