Computer Graphics (CS 543): 3D Clipping

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Liang-Barsky 3D Clipping

- **Goal:** Clip object edge-by-edge against Canonical View volume (CVV)

- **Problem:**
 - 2 end-points of edge: $A = (Ax, Ay, Az, Aw)$ and $C = (Cx, Cy, Cz, Cw)$
 - If edge intersects with CVV, compute intersection point $I = (Ix, Iy, Iz, Iw)$
Problem: Determine if point \((x,y,z)\) is inside or outside CVV?

Point \((x,y,z)\) is **inside CVV** if
- \((-1 \leq x \leq 1)\)
- \((-1 \leq y \leq 1)\)
- \((-1 \leq z \leq 1)\)

else point is **outside CVV**

- CVV == 6 infinite planes \((x=-1,1; \ y=-1,1; \ z=-1,1)\)
Determining if point is inside CVV

If point specified as \((x,y,z,w)\) - Test \((x/w, y/w, z/w)\)!

Point \((x/w, y/w, z/w)\) is inside CVV

\[
\begin{align*}
\text{if} & \quad (-1 \leq x/w \leq 1) \\
\text{AND} & \quad (-1 \leq y/w \leq 1) \\
\text{AND} & \quad (-1 \leq z/w \leq 1)
\end{align*}
\]

else point is outside CVV
Modify Inside/Outside Tests Slightly

Our test: \((-1 < \frac{x}{w} < 1)\)

Point \((x,y,z,w)\) inside plane \(x = 1\) if

\[
\frac{x}{w} < 1 \\
\Rightarrow w - x > 0
\]

Point \((x,y,z,w)\) inside plane \(x = -1\) if

\[
-1 < \frac{x}{w} \\
\Rightarrow w + x > 0
\]
Numerical Example: Inside/Outside CVV Test

- Point \((x, y, z, w)\) is
 - inside plane \(x = -1\) if \(w + x > 0\)
 - inside plane \(x = 1\) if \(w - x > 0\)

Example Point \((0.5, 0.2, 0.7)\) inside planes \((x = -1, 1)\) because \(-1 \leq 0.5 \leq 1\)

- If \(w = 10, \ (0.5, 0.2, 0.7) = (5, 2, 7, 10)\)
- Can either **divide by \(w\)** then test: \(-1 \leq 5/10 \leq 1\) OR
 - To test if inside \(x = -1, \ w + x = 10 + 5 = 15 > 0\)
 - To test if inside \(x = 1, \ w - x = 10 - 5 = 5 > 0\)
3D Clipping

- Do same for y, z to form boundary coordinates for 6 planes as:

<table>
<thead>
<tr>
<th>Boundary coordinate (BC)</th>
<th>Homogenous coordinate</th>
<th>Clip plane</th>
<th>Example (5,2,7,10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC0</td>
<td>w+x</td>
<td>x=-1</td>
<td>15</td>
</tr>
<tr>
<td>BC1</td>
<td>w-x</td>
<td>x=1</td>
<td>5</td>
</tr>
<tr>
<td>BC2</td>
<td>w+y</td>
<td>y=-1</td>
<td>12</td>
</tr>
<tr>
<td>BC3</td>
<td>w-y</td>
<td>y=1</td>
<td>8</td>
</tr>
<tr>
<td>BC4</td>
<td>w+z</td>
<td>z=-1</td>
<td>17</td>
</tr>
<tr>
<td>BC5</td>
<td>w-z</td>
<td>z=1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Consider line that goes from point A to C
 - **Trivial accept:** 12 BCs (6 for pt. A, 6 for pt. C) > 0
 - **Trivial reject:** Both endpoints outside (-ve) for same plane
Inside/outside?

- Test A, C against 6 walls \((x = -1,1; \ y = -1,1; \ z = -1,1)\)
- There is an intersection if BCs have opposite signs. i.e., if either
 - A is outside \((< 0)\), C is inside \((> 0)\) or
 - A inside \((> 0)\), C outside \((< 0)\)
- Edge intersects with plane at some \(t_{hit}\) between \([0,1]\)
Edges as Parametric Equations

- Implicit form
 \[F(x, y) = 0 \]

- Parametric forms:
 - points specified based on single parameter value
 - Typical parameter: time \(t \)
 \[P(t) = P_0 + (P_1 - P_0) \cdot t \quad 0 \leq t \leq 1 \]

- Some algorithms work in parametric form
 - Clipping: exclude line segment ranges
 - Animation: Interpolate between endpoints by varying \(t \)

- Represent each edge parametrically as \(A + (C - A)t \)
 - at time \(t=0 \), point at \(A \)
 - at time \(t=1 \), point at \(C \)
Calculating hit time (t_hit)

- How to calculate t_hit?
- Represent an edge t as:

\[\text{Edge}(t) = ((Ax + (Cx - Ax)t, (Ay + (Cy - Ay)t, (Az + (Cz - Az)t, (Aw + (Cw - Aw)t) \]

- E.g., If x = 1,

\[\frac{Ax + (Cx - Ax)t}{Aw + (Cw - Aw)t} = 1 \]

- Solving for t above,

\[t = \frac{Aw - Ax}{(Aw - Ax) - (Cw - Cx)} \]
Inside/outside?

- t_{hit} can be “entering (t_{in})” or ”leaving (t_{out})”
- Define: “entering” if A outside, C inside
 - Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)
- Define “leaving” if A inside, C outside
 - Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)
Candidate Interval

- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e., CI = t_in to t_out
- Initialize CI to [0, 1]
- For each of 6 planes, calculate t_in or t_out, shrink CI

Conversely: values of t outside CI = edge is outside CVV
Chop Step by Step against 6 planes

- Initially

 \[C \]

 \[t = 1 \]

 \[t_{\text{in}} = 0, \quad t_{\text{out}} = 1 \]

 Candidate Interval (CI) = [0 to 1]

- Chop against each of 6 planes

 \[A \]

 \[t = 0 \]

 \[t_{\text{in}} = 0, \quad t_{\text{out}} = 0.74 \]

 Candidate Interval (CI) = [0 to 0.74]

 Plane \(y = 1 \)

 Why \(t_{\text{out}} \)?
Chop Step by Step against 6 planes

- Initially

 t_out = 0.74

 Plane x = -1

 t_in = 0, t_out = 0.74
 Candidate Interval (CI) = [0 to 0.74]

- Then

 t_out = 0.74

 t_in = 0.36, t_out = 0.74
 Candidate Interval (CI) CI = [0.36 to 0.74]

Why t_in?
Shortening Candidate Interval

Algorithm:
- Test for trivial accept/reject (stop if either occurs)
- Set CI to [0,1]
- For each of 6 planes:
 - Find hit time t_{hit}
 - If t_{in}, new $t_{in} = \max(t_{in}, t_{hit})$
 - If t_{out}, new $t_{out} = \min(t_{out}, t_{hit})$
 - If $t_{in} > t_{out}$ => exit (no valid intersections)

Note: seeking smallest valid CI without t_{in} crossing t_{out}
Calculate chopped A and C

- If valid t_{in}, t_{out}, calculate adjusted edge endpoints A, C as

- $A_{\text{chop}} = A + t_{in} (C - A)$ (calculate for Ax,Ay,Az)
- $C_{\text{chop}} = A + t_{out} (C - A)$ (calculate for Cx,Cy,Cz)
3D Clipping Implementation

- Function `clipEdge()`
- Input: two points A and C (in homogenous coordinates)
- Output:
 - 0, if AC lies *complete outside* CVV
 - 1, *complete inside* CVV
 - Returns clipped A and C otherwise
- Calculate 6 BCs for A, 6 for C
Store BCs as Outcodes

- Use outcodes to track in/out
 - Number walls $x = +1, -1; y = +1, -1,$ and $z = +1, -1$ as 0 to 5
 - Bit i of A’s outcode = 1 if A is outside ith wall
 - 1 otherwise
- Example: outcode for point outside walls 1, 2, 5

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutCode</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Trivial Accept/Reject Using Outcodes

- **Trivial accept**: inside (not outside) any walls

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Outcode</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C OutCode</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

 Logical bitwise test: \(A \mid C = 0 \)

- **Trivial reject**: point outside **same** wall. Example Both A and C outside wall 1

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Outcode</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C OutCode</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

 Logical bitwise test: \(A \& C \neq 0 \)
3D Clipping Implementation

- Compute BCs for A, C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
 - Compute tHit
 - Update t_in, t_out
 - If t_in > t_out, early exit
Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a polygon can yield multiple polygons

- Clipping a convex polygon can yield at most one other polygon
Clipping Polygons

- Need more sophisticated algorithms to handle polygons:
 - **Sutherland-Hodgman**: any a given polygon against a convex clip polygon (or window)
 - **Weiler-Atherton**: Both subject polygon and clip polygon can be concave
Tessellation and Convexity

- One strategy is to replace nonconvex (*concave*) polygons with a set of triangular polygons (a *tessellation*)
- Also makes fill easier
References