
CS 543:
Computer Graphics

Rasterization

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)	

R.W. Lindeman - WPI Dept. of Computer Science	
 2	

2D Graphics Pipeline
!  Simplified

 Object in
World Coordinates

Object
subset

window to
viewport
mapping

 Object in
Screen coordinates Rasterization Display

Apply
world window

Clipping

Simple 2D Drawing Pipeline

R.W. Lindeman - WPI Dept. of Computer Science	
 3	

Rasterization (Scan Conversion)
!  Convert high-level geometry description to pixel colors

in the frame buffer
!  Example: given vertex x, y coordinates, determine pixel

colors to draw line

!  Two ways to create an image
"  Scan existing photograph
"  Procedurally compute values (rendering)

Viewport
Transformation Rasterization

R.W. Lindeman - WPI Dept. of Computer Science	
 4	

Rasterization
! A fundamental computer graphics

function
! Determine the pixels' colors,

illuminations, textures, etc.
! Implemented by graphics hardware
! Rasterization algorithms

" Lines
" Circles
" Triangles
" Polygons

R.W. Lindeman - WPI Dept. of Computer Science	
 5	

Rasterization Operations
! Drawing lines on the screen
! Manipulating pixel maps (pixmaps):

copying, scaling, rotating, etc.
! Compositing images, defining and

modifying regions
! Drawing and filling polygons

" Previously gl.drawArrays()!

! Aliasing and antialiasing methods

R.W. Lindeman - WPI Dept. of Computer Science	
 6	

Compositing Example

R.W. Lindeman - WPI Dept. of Computer Science	
 7	

Line Drawing Algorithm
!  Programmer specifies (x, y) values of end pixels
! Need algorithm to figure out which intermediate

pixels are on line path
!  Pixel (x, y) values constrained to integer values
! Actual computed intermediate line values may be

floats
! Rounding may be required, e.g., computed point

(10.48, 20.51) rounded to (10, 21)
! Rounded pixel value is off actual line path (jaggy!!)
! Sloped lines end up having jaggies, but vertical,

horizontal lines don't

R.W. Lindeman - WPI Dept. of Computer Science	
 8	

Line Drawing Algorithm (cont.)

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1
0

?
Line: (3,2) -> (9,6)

Which intermediate
pixels should we light?

R.W. Lindeman - WPI Dept. of Computer Science	
 9	

Line Drawing Algorithm (cont.)
! Slope-intercept line equation

" y = mx + b
" Given two end points (x0, y0), (x1, y1), how

do we compute m and b?

(x0, y0)

(x1, y1)

dx

dy

€

m =
dy
dx

=
y1 − y0
x1 − x0

€

b = y0 −m * x0

R.W. Lindeman - WPI Dept. of Computer Science	
 10	

Line Drawing Algorithm (cont.)
! Numerical example of finding slope m:
! (Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

€

m =
By − Ay

Bx − Ax

=
96 − 41
125 − 23

=
55
102

= 0.5392

R.W. Lindeman - WPI Dept. of Computer Science	
 11	

Line Drawing Algorithm:
Digital Differential Analyzer (DDA)
!  Walk through the line, starting at (x0,y0)
!  Constrain x, y increments to values in [0,1] range
!  Case a: x is incrementing faster (m < 1)

"  Step in x=1 increments, compute and round y

!  Case b: y is incrementing faster (m > 1)
"  Step in y=1 increments, compute and round x

m<1

m>1

m=1

(x0, y0)

(x1, y1)

dx

dy

R.W. Lindeman - WPI Dept. of Computer Science	
 12	

DDA Line Drawing Algorithm
(Case a: m < 1)

(x0, y0)

x = x0 + 1 y = y0 + m

Illuminate pixel (x, round(y))

x = x + 1 y = y + m

Illuminate pixel (x, round(y))

…
Until x == x1

(x1, y1)
x = x0 y = y0

Illuminate pixel (x, round(y))

myy kk +=+1

R.W. Lindeman - WPI Dept. of Computer Science	
 13	

DDA Line Drawing Algorithm
(Case b: m > 1)

y = y0 + 1 x = x0 + 1/m

Illuminate pixel (round(x), y)

y = y + 1 x = x + 1/m

Illuminate pixel (round(x), y)

…
Until y == y1

x = x0 y = y0

Illuminate pixel (round(x), y)

(x1, y1)

(x0, y0)

m
xx kk

1
1 +=+

R.W. Lindeman - WPI Dept. of Computer Science	
 14	

DDA Line Drawing Algorithm
Pseudocode
compute m;
if m < 1
 float y = y0; // initial value
 for(int x = x0; x <= x1; x++, y += m)
 setPixel(x, round(y));
else // m > 1
 float x = x0; // initial value
 for(int y = y0; y <= y1; y++, x += 1/m)
 setPixel(round(x), y);

!  Note: setPixel(x, y) writes current color into pixel in
column x and row y in frame buffer

R.W. Lindeman - WPI Dept. of Computer Science	
 15	

Line Drawing Algorithm
Drawbacks
! DDA is the simplest line drawing algorithm

"  Not very efficient
"  Round operation is expensive

! Optimized algorithms typically used
"  Integer DDA

! e.g., Bresenham's algorithm (Hill, 9.4.1)

! Bresenham's algorithm
"  Incremental algorithm: current value uses previous

value
"  Integers only: avoid floating point arithmetic
"  Several versions of algorithm: we'll describe midpoint

version of algorithm

R.W. Lindeman - WPI Dept. of Computer Science	
 16	

Bresenham's Line-Drawing
Algorithm
! Problem

" Given endpoints (Ax, Ay) and (Bx, By) of a
line, want to determine best sequence of
intervening pixels

! First make two simplifying assumptions
(remove later):
" (Ax < Bx) and
" (0 < m < 1)

! Define
" Width W = Bx – Ax
" Height H = By - Ay

(Bx, By)

(Ax, Ay)

R.W. Lindeman - WPI Dept. of Computer Science	
 17	

Bresenham's Line-Drawing
Algorithm (cont.)
! Based on assumptions

" W, H are positive
" H < W

! As x steps in +1 increments, y incr/decr
by <= +/–1

! y value sometimes stays same,
sometimes increases by 1
" Midpoint algorithm determines which

happens

R.W. Lindeman - WPI Dept. of Computer Science	
 18	

Bresenham's Line-Drawing
Algorithm (cont.)

(x0, y0)

M = (x0 + 1, Y0 + ½)

Build equation of line through and compare
to midpoint

…

(x1, y1)
What Pixels do we need to turn on?

Consider pixel midpoint M(Mx, My)

If midpoint is above line, y stays same
If midpoint is below line, y increases + 1

R.W. Lindeman - WPI Dept. of Computer Science	
 19	

Bresenham's Line-Drawing
Algorithm (cont.)
!  To get a good line equation, use similar triangles

 H(x – Ax) = W(y – Ay)
 -W(y – Ay) + H(x – Ax) = 0

!  Above is ideal equation of line through (Ax, Ay) and (Bx, By)
!  Thus, any point (x, y) that lies on ideal line makes eqn = 0
!  Double expression (to avoid floats later), and give it a name,

 F(x, y) = -2W(y – Ay) + 2H(x – Ax)

W
H

Axx
Ayy

=
−

−
(Bx, By)

(Ax, Ay)

(x, y)

R.W. Lindeman - WPI Dept. of Computer Science	
 20	

Bresenham's Line-Drawing
Algorithm (cont.)
! So, F(x, y) = -2W(y – Ay) + 2H(x – Ax)
! Algorithm

" If:
! F(x, y) < 0, (x, y) above line
! F(x, y) > 0, (x, y) below line

! Hint: F(x, y) = 0 is on line
! Increase y keeping x constant, F(x, y)

becomes more negative

R.W. Lindeman - WPI Dept. of Computer Science	
 21	

Bresenham's Line-Drawing
Algorithm (cont.)
! Example

"  To find line segment between (3, 7) and (9, 11)

 F(x,y) = -2W(y – Ay) + 2H(x – Ax)
 = (-12)(y – 7) + (8)(x – 3)

! For points on line, e.g., (7, 29/3), F(x, y) = 0
! A = (4, 4) lies below line since F = 44 (> 0)
! B = (5, 9) lies above line since F = -8 (< 0)

R.W. Lindeman - WPI Dept. of Computer Science	
 22	

Bresenham's Line-Drawing
Algorithm (cont.)

(x0, y0)

M = (x0 + 1, Y0 + ½)

If F(Mx, My) < 0, M lies above line,
 shade lower pixel (same y as before)

…

(x1, y1)
What Pixels do we need to turn on?

Consider pixel midpoint M(Mx, My)

If F(Mx, My) > 0, M lies below line,
 shade upper pixel (y = y + 1)

R.W. Lindeman - WPI Dept. of Computer Science	
 23	

Bresenham's Line-Drawing
Algorithm (cont.)
! We can compute F(x, y)

incrementally
" Initially, midpoint M = (Ax + 1, Ay + ½)

! F(Mx, My) = -2W(y – Ay) + 2H(x – Ax)
 = 2H – W

" Can compute F(x, y) for next midpoint
incrementally

" If we increment x + 1, y stays same
 F(Mx, My) += 2H
" If we increment x +1, y + 1
 F(Mx, My) += 2(W – H)

R.W. Lindeman - WPI Dept. of Computer Science	
 24	

Bresenham's Line-Drawing
Algorithm (cont.)
Bresenham(IntPoint a, IntPoint b) {
 // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x – a.x, H = b.y – a.y;
 int F = 2 * H – W; // current error term
 for(int x = a.x; x <= b.x; x++) {
 setPixel at (x, y); // to desired color value
 if F < 0
 F += 2H;
 else {
 y++;
 F += 2(H – W)
 }
 }
}

! Recall: F is the equation of a line

R.W. Lindeman - WPI Dept. of Computer Science	
 25	

Bresenham's Line-Drawing
Algorithm (cont.)
! Final words: we developed algorithm with

restrictions
 0 < m < 1 and Ax < Bx

! Can add code to remove restrictions
"  To get the same line when Ax > Bx (swap and draw)
"  Lines having m > 1 (interchange x with y)
"  Lines with m < 0 (step x++, decrement y not incr)
"  Horizontal and vertical lines (pretest a.x = b.x and

skip other tests)

R.W. Lindeman - WPI Dept. of Computer Science	
 26	

Rasterization So Far...
! Raster graphics

" Line-drawing algorithms (DDA, Bresenham's)

! Now
" Defining and filling Regions
" Polygon drawing and filling
" Antialiasing

R.W. Lindeman - WPI Dept. of Computer Science	
 27	

Defining and Filling Regions
of Pixels
! First, understand how to define and fill

any defined regions
! Next, how to fill regions bounded by a

polygon

R.W. Lindeman - WPI Dept. of Computer Science	
 28	

Methods of Defining Regions
! Pixel-defined

" Specifies pixels in color or geometric range

! Symbolic
" Provides property that pixels in region must

have

! Examples of symbolic regions
! Closeness to some pixel
! Within circle of radius R
! Within a specified polygon

R.W. Lindeman - WPI Dept. of Computer Science	
 29	

Pixel-Defined Regions
! Definition: Region R is the set of all pixels

having color C that are connected to a given
pixel S

! 4-adjacent: Pixels that lie next to each other
horizontally or vertically, NOT diagonally

! 8-adjacent: 4-adjacent, plus diagonals
! 4-connected: If there is unbroken path of 4-

adjacent pixels

! 8-connected: Unbroken path of 8-adjacent
pixels

R.W. Lindeman - WPI Dept. of Computer Science	
 30	

Recursive Flood-Fill Algorithm
! Recursive algorithm
! Starts from initial pixel of color initColor
! Recursively set 4-connected neighbors to
newColor

! Flood-Fill: floods region with newColor
! Basic idea:

"  Start at "seed" pixel (x, y)
"  If (x, y) has color initColor, change it to newColor
" Do same recursively for all 4 neighbors

R.W. Lindeman - WPI Dept. of Computer Science	
 31	

Recursive Flood-Fill Algorithm
(cont.)
void floodFill(short x, short y,
 short initColor) {
 if(getPixel(x, y) == initColor) {
 setPixel(x, y);
 floodFill(x – 1, y, initColor); // left
 floodFill(x + 1, y, initColor); // right
 floodFill(x, y + 1, initColor); // up
 floodFill(x, y – 1, initColor); // down
 }
}

! Note: getPixel(x,y) used to interrogate pixel
color at (x, y)

R.W. Lindeman - WPI Dept. of Computer Science	
 32	

Recursive Flood-Fill Algorithm
(cont.)
! Okay, now you try it.

R.W. Lindeman - WPI Dept. of Computer Science	
 33	

Recursive Flood-Fill Algorithm
(cont.)
!  This version defines region using initColor
!  Can also have version defining region by boundary
!  Recursive flood-fill is somewhat blind

"  Some pixels may be retested several times before
algorithm terminates

!  Region coherence is likelihood that an interior pixel will
be adjacent to another interior pixel

!  Coherence can be used to improve algorithm
performance

!  A run is a group of adjacent pixels lying on same scan
line

!  Exploit runs of pixels

R.W. Lindeman - WPI Dept. of Computer Science	
 34	

Region Filling Using Coherence
! Start at

seed s

R.W. Lindeman - WPI Dept. of Computer Science	
 35	

Region Filling Using
Coherence Pseudocode

Push address of seed pixel onto stack
while(stack is not empty) {

 Pop the stack to provide next seed
 Fill in the run defined by the seed

 In the row above, find the reachable interior runs
 Push the address of their rightmost pixels

 Do the same for row below current run
}

Note: Most efficient if there is span coherence (pixels on scan
line have same value) and scan-line coherence (consecutive
scan lines are similar)

R.W. Lindeman - WPI Dept. of Computer Science	
 36	

Filling Polygon-Defined Regions
! Problem: Region defined by Polygon P

with vertices Pi = (Xi, Yi), for i = 1…N,
specifying sequence of P's vertices

P1

P7

P6

P5

P4

P3

P2

R.W. Lindeman - WPI Dept. of Computer Science	
 37	

Filling Polygon-Defined
Regions (cont.)
! Solution: Progress through frame buffer,

scan line by scan line, filling in
appropriate portions of each line

! Filled portions defined by intersection of
scan line and polygon edges

! Runs lying between edges inside P are
filled

R.W. Lindeman - WPI Dept. of Computer Science	
 38	

Filling Polygon-Defined
Regions Pseudocode
for(each scan Line L) {

 Find intersections of L with all
edges of P

 Sort the intersections by
increasing x-value

 Fill pixel runs between all pairs
of intersections

}

R.W. Lindeman - WPI Dept. of Computer Science	
 39	

Filling Polygon-Defined
Regions (cont.)
!  Example: scan line y = 3 intersects 4 edges e3, e4, e5, e6
!  Sort x values of intersections and fill runs in pairs
!  Note: At each intersection, use inside-outside (parity), or vice

versa
P1

P7

P6

P5

P4

P3

P2

e6

e5 e4

e3

3

e2

e1

e7

R.W. Lindeman - WPI Dept. of Computer Science	
 40	

Filling Polygon-Defined
Regions (cont.)
! What if two polygons A, B share an edge?
! Algorithm behavior could result in

"  Setting edge first in one color and then another
" Drawing edge twice too bright

! Make Rule: When two polygons share edge,
each polygon owns its left and bottom edges

! E.g., below draw shared edge with color of
polygon B

A
B

R.W. Lindeman - WPI Dept. of Computer Science	
 41	

Filling Polygon-Defined
Regions (cont.)
! How do we handle cases where scan line

intersects with polygon endpoints?
! Solution: Discard intersections with horizontal

edges, and with upper endpoint of any edge

R.W. Lindeman - WPI Dept. of Computer Science	
 42	

Antialiasing
! Raster displays have pixels as rectangles
! Aliasing: Discrete nature of pixels

introduces "jaggies"

R.W. Lindeman - WPI Dept. of Computer Science	
 43	

Antialiasing (cont.)
! Aliasing effects

" Distant objects may disappear entirely
" Objects can blink on and off in animations

! Antialiasing techniques involve some
form of blurring to reduce contrast,
smooth image

! Three main antialiasing techniques
" Prefiltering
" Supersampling
" Postfiltering

R.W. Lindeman - WPI Dept. of Computer Science	
 44	

Prefiltering
! Basic idea

" Compute area of polygon coverage
" Use proportional intensity value

! Example: if polygon covers 1/2 of the
pixel
" use 1/2 polygon color
" add it to 1/2 of adjacent region color

! Cons: computing pixel coverage can be
time consuming

R.W. Lindeman - WPI Dept. of Computer Science	
 45	

Supersampling
!  Useful if we can compute color of any (x,y) value on the

screen
!  Increase frequency of sampling
!  Instead of (x,y) samples in increments of 1, sample (x,y) in

fractional (e.g., 1/2) increments
!  Find average of samples
!  Example: Triple sampling = increments of 1/2 = 9 color

values averaged for each pixel

Average 9 (x, y) values
to find pixel color

R.W. Lindeman - WPI Dept. of Computer Science	
 46	

Postfiltering
! Supersampling uses average
! Gives all samples equal importance
! Postfiltering: use weighting (different levels of

importance)
"  Compute pixel value as weighted average
"  Samples close to pixel center given more weight

1/2

1/16 1/16

1/16

1/16 1/16 1/16

1/16

1/16

Sample weighting

R.W. Lindeman - WPI Dept. of Computer Science	
 47	

Antialiasing in OpenGL
! Many alternatives
! Simplest: Accumulation buffer

" Extra storage, similar to frame buffer

! Samples are accumulated
! When all slightly perturbed samples are

done, copy results to frame buffer and
draw

R.W. Lindeman - WPI Dept. of Computer Science	
 48	

Antialiasing in OpenGL (cont.)
! First initialize

glutInitDisplayMode(GLUT_SINGLE |
GLUT_RGB | GLUT_ACCUM | GLUT_DEPTH);

! Zero out accumulation buffer
" glClear(GLUT_ACCUM_BUFFER_BIT);

! Add samples to accumulation buffer
using glAccum()

R.W. Lindeman - WPI Dept. of Computer Science	
 49	

OpenGL Antialiasing Sample Code
glClear(GL_ACCUM_BUFFER_BIT);
for(int i = 0; i < 8; i++) {

 cam.slide(f*jitter[i].x, f*jitter[i].y, 0);

 display();

 glAccum(GL_ACCUM, 1/8.0);

}

glAccum(GL_RETURN, 1.0);

! jitter[] stores randomized slight
displacements of camera,

! Factor, f controls amount of overall sliding

jitter.h

-0.3348, 0.4353

0.2864, -0.3934

...

R.W. Lindeman - WPI Dept. of Computer Science	
 50	

Antialiasing Example

R.W. Lindeman - WPI Dept. of Computer Science	
 51	

Antialiasing Example

