CS 543: Computer Graphics

Meshes

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

Polygonal Meshes

- Modeling with basic shapes (cube, cylinder, sphere, etc.) is too primitive
- Difficult to approach realism
- Polygonal meshes
 - Collection of polygons, or faces, that form "skin" of object
 - Offer more flexibility
 - Model complex surfaces better
- Examples
 - Human face
 - Animal structures
 - Arbitrary curves, etc.
Polygonal Meshes (cont.)

- Have become standard in CG
- WebGL
 - Good at drawing polygons
 - Mesh = sequence of polygons
- Simple meshes are exact (e.g., barn)
- Complex meshes are approximate (e.g., human face)
- Later
 - Use shading technique to smoothen the appearance
Non-Solid Objects

- Examples: box, face
- Visualize as infinitely thin *skin*
- Meshes to approximate complex objects
- Shading used later to smoothen
- Non-trivial: creating mesh for complex objects (CAD)
What is a Polygonal Mesh?

- Polygonal mesh defined by
 - List of polygons
 - Normal of each polygon
 - Normal vectors used in shading
 - Normal & light vectors determine shading
Vertex Normals

- Use vertex normal instead of face normal
- See advantages later
 - Facilitates clipping / culling
 - Shading of smoothly curved shapes
 - Flat surfaces
 - All vertices associated with same \(\mathbf{n} \)
 - Smoothly curved surfaces
 - \(V_1, V_2 \) with common edge share \(\mathbf{n} \)
Defining a Polygonal Mesh

Barn example
Defining a Polygonal Mesh

- Three lists:
 - Vertex list
 - Distinct vertices (vertex number, \(V_x, V_y, V_z\))
 - Normal list
 - Normals to faces (normalized \(n_x, n_y, n_z\))
 - Face list
 - Indices into vertex and normal lists. i.e., vertices and normals associated with each face

- Face list convention
 - Traverse vertices \textit{counter-clockwise}
 - Interior on left, exterior on right
3D Simplification Example

Original: 424,000 triangles
60,000 triangles (14%)
1000 triangles (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)