Viewing

Cliff Lindsay, Ph.D.
WPI
Building Virtual Camera Pipeline

- Used To View Virtual Scene
- First Half of Rendering Pipeline Related To Camera
- Takes Geometry From Application To Rasterization Stages
3D Viewing and View Volume

Previously: Lookat() to set camera position

Now: Set view volume
Different View Volume Shapes

- Different view volume => different look
- **Foreshortening?** Near objects bigger
View Volume Parameters

- Need to set view volume parameters
 - **Projection type:** perspective, orthographic, etc.
 - Field of view and aspect ratio
 - Near and far clipping planes
Field of View

- View volume parameter
- Determines how much of world in picture (vertically)
- Larger field of view = smaller the objects are drawn
Near and Far Clipping Planes

- Only objects between near and far planes drawn
Viewing Frustum

- Near plane + far plane + field of view = **Viewing Frustum**
- Objects outside the frustum are clipped
Setting up View Volume/Projection Type

- Previous OpenGL projection commands **deprecated**!!
 - Perspective view volume/projection:
 - `gluPerspective(fovy, aspect, near, far)` or `glFrustum(left, right, bottom, top, near, far)`
 - Orthographic:
 - `glOrtho(left, right, bottom, top, near, far)`
- Useful functions, so we implement similar in `mv.js`:
 - `Perspective(fovy, aspect, near, far)` or `Frustum(left, right, bottom, top, near, far)`
 - `Ortho(left, right, bottom, top, near, far)`
Perspective(fovy, aspect, near, far)

- Aspect ratio used to calculate window width

\[\text{Aspect} = \frac{w}{h} \]
Frustum(left, right, bottom, top, near, far)

- Can use \texttt{Frustum()} in place of \texttt{Perspective()}
- Same view volume shape, different arguments

\texttt{near} and \texttt{far} measured from camera
Ortho(left, right, bottom, top, near, far)

- For orthographic projection

near and far measured from camera
Example Usage:

Setting View Volume/Projection Type

```c
void display()
{
    // clear screen
    glClear(GL_COLOR_BUFFER_BIT);

    // Set up camera position
    LookAt(0,0,1,0,0,0,0,1,0);

    // set up perspective transformation
    Perspective(fovy, aspect, near, far);

    // draw something
    display_all();  // your display routine
}
```
Review

- Setting Up & Moving The Camera
- Look At Function
- View Volumes
- Near & Far Clipping Planes
Taxonomy of Planar Geometric Projections

- parallel
 - multiview
 - orthographic
- orthographic
- axonometric
- oblique
- isometric
- dimetric
- trimetric
- perspective
 - 1 point
 - 2 point
 - 3 point
Perspective Projection

- After setting view volume, then projection transform

Projection?
- **Classic:** Converts 3D object to corresponding 2D on screen
- How? Draw line from object to projection center
- Calculate where each cuts projection plane
Orthographic Projection

- How? Draw parallel lines from each object vertex
- The projection center is at infinite
- In short, use (x,y) coordinates, just drop z coordinates
Homogeneous Coordinate Representation

$x_p = x$
$y_p = y$
$z_p = 0$
$w_p = 1$

In practice, can let $\mathbf{M} = \mathbf{I}$, set the z term to zero later.

$$\mathbf{p}_p = \mathbf{M}\mathbf{p}$$

$\mathbf{M} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$

Default Projection Matrix
Default View Volume/Projection?

- What if you user does not set up projection?
- Default on most systems is orthogonal (Ortho());
- To project points within default view volume

\[x_p = x \]
\[y_p = y \]
\[z_p = 0 \]
The Problem with Classic Projection

- Keeps (x, y) coordinates for drawing, drops z
- We may need z. Why?
Normalization: Keeps z Value

- Most graphics systems use **view normalization**
- **Normalization**: convert all other projection types to orthogonal projections with the *default view volume*
Parallel Projection

- **normalization** \Rightarrow find 4x4 matrix to transform **user-specified view volume** to **canonical view volume** (cube)

For Example: `glOrtho(left, right, bottom, top, near, far)`
Parallel Projection: Ortho

- Parallel projection: 2 parts
 - **Translation:** centers view volume at origin
 - Thus translation factors:

 $$
 \begin{pmatrix}
 1 & 0 & 0 & -\frac{\text{right + left}}{2} \\
 0 & 1 & 0 & -\frac{\text{top + bottom}}{2} \\
 0 & 0 & 1 & -\frac{\text{far + near}}{2} \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 $$

 $$
 \text{(right,top,far)} \\
 \text{(left,bottom,near)}
 $$

 $$
 \text{(-1,-1,1)} \\
 \text{(1,1,-1)}
 $$
Parallel Projection: Ortho

2. **Scaling**: reduces user-selected cuboid to canonical cube (dimension 2, centered at origin)

 - Scaling factors: \(\frac{2}{\text{right} - \text{left}}, \frac{2}{\text{top} - \text{bottom}}, \frac{2}{\text{far} - \text{near}}\)

\[
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Parallel Projection: Ortho

Concatenating **Translation x Scaling**, we get Ortho Projection matrix

\[
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & \frac{-\text{(right + left)}}{2} \\
0 & 1 & 0 & \frac{-\text{(top + bottom)}}{2} \\
0 & 0 & 1 & \frac{-\text{(far + near)}}{2} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
P = ST =
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & \frac{-\text{right} - \text{left}}{\text{top} - \text{bottom}} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & \frac{-\text{top} - \text{bottom}}{\text{far} - \text{near}} \\
0 & 0 & \frac{2}{\text{near} - \text{far}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Final Ortho Projection

* Set $z = 0$
* Equivalent to the homogeneous coordinate transformation

$$
\mathbf{M}_{\text{orth}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

* Hence, general orthogonal projection in 4D is

$$
\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{ST}
$$
Perspective Projection

- Projection – map the object from 3D space to 2D screen

Perspective()

Frustrum()
Perspective Projection

Based on similar triangles:

\[
\frac{y'}{y} = \frac{N}{-z}
\]

\[\Rightarrow y' = y \times \frac{N}{-z}\]
Perspective Projection

- So \((x^*, y^*)\) projection of point, \((x, y, z)\) unto near plane \(N\) is given as:
 \[
 (x^*, y^*) = \left(x \frac{N}{-z}, y \frac{N}{-z} \right)
 \]

- Numerical example:
 Q. Where on the viewplane does \(P = (1, 0.5, -1.5)\) lie for a near plane at \(N = 1\)?

\[
(x^*, y^*) = \left(1 \times \frac{1}{1.5}, 0.5 \times \frac{1}{1.5} \right) = (0.666, 0.333)
\]
Pseudodepth

- Classical perspective projection projects \((x, y)\) coordinates to \((x^*, y^*)\), drops \(z\) coordinates

But we need \(z\) to find closest object (depth testing)!!!
Perspective Transformation

- **Perspective transformation** maps actual z distance of perspective view volume to range $[-1 \text{ to } 1]$ (Pseudodepth) for canonical view volume.

We want perspective Transformation and **NOT** classical projection!!

Set scaling z

$$\text{Pseudodepth} = az + b$$

Next solve for a and b
Perspective Transformation using Pseudodepth

\[
(x^*, y^*, z^*) = \left(\frac{x}{-z}, \frac{y}{-z}, \frac{az + b}{-z} \right)
\]

- Choose \(a, b\) so as \(z\) varies from **Near** to **Far**, pseudodepth \(z^*\) varies from \(-1\) to \(1\) (canonical cube)

- Boundary conditions
 - \(z^* = -1\) when \(z = -N\)
 - \(z^* = 1\) when \(z = -F\)
Transformation of z: Solve for a and b

- Solving:
 \[z^* = \frac{az + b}{-z} \]

- Use boundary conditions
 - $z^* = -1$ when $z = -N$........(1)
 - $z^* = 1$ when $z = -F$...........(2)

- Set up simultaneous equations

\[-1 = \frac{-aN + b}{N} \Rightarrow -N = -aN + b........(1) \]
\[1 = \frac{-aF + b}{F} \Rightarrow F = -aF + b........(2) \]
Transformation of \(z \): Solve for \(a \) and \(b \)

\[-N = -aN + b \quad \text{(1)}\]
\[F = -aN + b \quad \text{(2)}\]

- Multiply both sides of (1) by -1

\[N = aN - b \quad \text{(3)}\]

- Add eqns (2) and (3)

\[F + N = aN - aF\]

\[\Rightarrow a = \frac{F + N}{N - F} = \frac{-(F + N)}{F - N} \quad \text{(4)}\]

- Now put (4) back into (3)
Transformation of z: Solve for a and b

- Put solution for a back into eqn (3)

$$N = aN - b \quad \text{......(3)}$$

$$\Rightarrow N = \frac{-N(F + N)}{F - N} - b$$

$$\Rightarrow b = -N - \frac{-N(F + N)}{F - N}$$

$$\Rightarrow b = \frac{-N(F - N) - N(F + N)}{F - N} = \frac{-NF - N^2 - NF + N^2}{F - N} = \frac{-2NF}{F - N}$$

- So

$$a = \frac{-(F + N)}{F - N}$$

$$b = \frac{-2FN}{F - N}$$
What does this mean?

- Original point z in original view volume, transformed into z^* in canonical view volume

$$z^* = \frac{az + b}{-z}$$

where

$$a = \frac{-(F + N)}{F - N}$$
$$b = \frac{-2FN}{F - N}$$
Homogenous Coordinates

- Want to express projection transform as 4x4 matrix
- Previously, homogeneous coordinates of $P = (Px, Py, Pz)$ => $(Px, Py, Pz, 1)$
- Introduce arbitrary scaling factor, w, so that $P = (wPx, wPy, wPz, w)$ \textbf{(Note: w is non-zero)}
- For example, the point $P = (2, 4, 6)$ can be expressed as
 - $(2, 4, 6, 1)$
 - or $(4, 8, 12, 2)$ where $w=2$
 - or $(6, 12, 18, 3)$ where $w = 3$, or….
- To convert from homogeneous back to ordinary coordinates, first divide all four terms by w and discard 4th term
Perspective Projection Matrix

- Recall Perspective Transform

\[
(x^*, y^*, z^*) = \left(\frac{xN}{-z}, \frac{yN}{-z}, \frac{az + b}{-z} \right)
\]

- We have:

\[
x^* = x \frac{N}{-z} \quad y^* = y \frac{N}{-z} \quad z^* = \frac{az + b}{-z}
\]

- In matrix form:

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
w x \\
w y \\
w z \\
w \end{pmatrix}
=
\begin{pmatrix}
w Nx \\
w Ny \\
w(az + b) \\
-wz \\
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x \frac{N}{-z} \\
y \frac{N}{-z} \\
az + b \\
-z \\
1 \\
\end{pmatrix}
\]

Transformed Vertex after dividing by 4th term
Perspective Projection Matrix

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
wP_x \\
wP_y \\
wP_z \\
w
\end{pmatrix} =
\begin{pmatrix}
wNP_x \\
wNP_y \\
w(aP_z + b) \\
-wP_z
\end{pmatrix} \Rightarrow
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]

- In perspective transform matrix, already solved for \(a\) and \(b\):
- So, we have transform matrix to transform \(z\) values
Perspective Projection

- Not done yet!! Can now transform z!
- Also need to transform the \(x = (\text{left}, \text{right}) \) and \(y = (\text{bottom}, \text{top}) \) ranges of viewing frustum to \([-1, 1]\)
- Similar to Orthographic, we need to translate and scale previous matrix along x and y to get final projection transform matrix

 - we translate by
 - \(-(\text{right} + \text{left})/2\) in x
 - \(-(\text{top} + \text{bottom})/2\) in y
 - Scale by:
 - \(2/(\text{right} – \text{left})\) in x
 - \(2/(\text{top} – \text{bottom})\) in y
Perspective Projection

- Translate along x and y to line up center with origin of CVV
 - $(\text{right + left})/2$ in x
 - $(\text{top + bottom})/2$ in y

- Multiply by translation matrix:

$$
\begin{pmatrix}
1 & 0 & 0 & -\frac{\text{right + left}}{2} \\
0 & 1 & 0 & -\frac{\text{top + bottom}}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

Line up centers Along x and y
Perspective Projection

- To bring view volume size down to size of CVV, scale by
 - $2/(\text{right – left})$ in x
 - $2/(\text{top – bottom})$ in y

- Multiply by scale matrix:

$$
\begin{pmatrix}
\frac{2}{\text{right – left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top – bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

Scale size down along x and y
Perspective Projection Matrix

\[
\begin{pmatrix}
\frac{2}{right - left} & 0 & 0 \\
0 & \frac{2}{top - bottom} & 0 \\
0 & 0 & 1
\end{pmatrix}
\times
\begin{pmatrix}
1 & 0 & 0 & -(right + left)/2 \\
0 & 1 & 0 & -(top + bottom)/2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\times
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

\[
glFrustum(left, right, bottom, top, N, F) \quad N = \text{near plane, } F = \text{far plane}
\]

Final Perspective Transform Matrix
Normalization Transformation

original clipping volume
original object
new clipping volume

Top View of before & after normalization

distorted object projects correctly

$z = -x$
$z = -\text{near}$
$z = -\text{far}$

$z = 1$
$x = 1$
$z = -1$
Implementation

- Set modelview and projection matrices in application program
- Pass matrices to shader

```c
void display()
{
    ...... // define and use your variables
    model_view = LookAt(eye, at, up);
    projection = Ortho(left, right, bottom, top, near, far);

    // pass model_view and projection matrices to shader
    glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view);
    glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);
    ...... // continue with your code
}
```
Implementation

- And the corresponding shader

```cpp
in vec4 vPosition;
in vec4 vColor;
Out vec4 color;
uniform mat4 model_view;
Uniform mat4 projection;

void main( )
{
    gl_Position = projection*model_view*vPosition;
    color = vColor;
}
```
Recap

Perspective projection (P)

Orthographic projection (O)
Recap

Perspective projection (P)

Orthographic projection (O)