CS 543:
Computer Graphics

Shading II

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

WPI

Recall: Setting Light Properties

Define colors and position a light

var light ambient[] = { 0.0, 0.0, 0.0, 1.0 };
var light diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; ¢— Colors
var light specular[] = { 1.0, 1.0, 1.0, 1.0 };
var light position[] = { 0.0, 0.0, 1.0, 1.0 }; «—— Position

R.W. Lindeman - WPI Dept. of Computer Science 2

WPI

Recall: Setting Material Properties

Define ambient/diffuse/specular
reflection and shininess

Var mat _amb diff[] 0, 0.5, 0.8, 1.0 }; Ref

Var mat specular|] o, 1.0, 1.0, 1.0 }; T__coeﬁ.
Var shininess[] = { 5.0 }; €—Range: dull 0 - very shiny 128

{ 1.
{ 1.

Pass values to shader..see book code

R.W. Lindeman - WPI Dept. of Computer Science 3

Recall: Calculating Color at WPI
Vertices

O Illumination from a light
Illum = ambient + diffuse + specular
=K, xI+ K;XxIXxcos(6)+ K, xIXxcos(¢)

O If there are N lights
Total illumination for a point P = X (Illum)

O Sometimes lights or surfaces are colored

O Treat R, G, and B components separately

m j.e., can specify different RGB values for either light or
material

Ilum, = K, x I, + K, x I, x cos(8) + K, x I, x cosf(¢)
Ilum = K,, x I, + Ky, X I, x cos(0) + K, x I, x cosf(¢)
Ilum,= K,, x I, + K,, x I, x cos(6) + K, x I, x cos’(¢)

R.W. Lindeman - WPI Dept. of Computer Science 4

Recall: Calculating Color at WPI
Vertices (cont.)

Illum = ambient + diffuse + specular
=K, xI+ K;xIXxcos(0)+ K, xIXxcosf(¢)

cos(0) and cosf(¢) are calculated as dot
products of Light vector L, Normal N, and
Mirror-direction vector R

w2
L Nl 9~R
1To give [Jé

Ilum =K, xI + Ky;xIx(N.L)+ K, xIXx(R.V)

R.W. Lindeman - WPI Dept. of Computer Science 5

WPI

Importance of Surface Normals

0 Correct normals are essential for correct
lighting
1 Associate a normal with each vertex

normalsArray.push(u, v, n);

pointsArray.push(x, y, 2z);

O All normals must be specified in unit length
m Do in shader: vec4 NN = vec4(vNormal, 0);

R.W. Lindeman - WPI Dept. of Computer Science 6

WPI
Lighting Revisited

O Light calculation so far is at vertices
O Pixel may not fall right on vertex

O Shading
m Calculates color of interior pixels

O Where are lighting & shading performed in the pipeline?

vl, ml
i Modeling and | Per-vertex -
viewing lighting Projection
v2, m2 v3, m3
Viewport nterpolate CIipvping
“— | mapping vertex colors

Display

Rasterization
texturing
shading

A 4

R.W. Lindeman - WPI Dept. of Computer Science 7

WPI

Example Shading Function

for(int y = VYpoe7 ¥ <= Yieps ¥YH+) |
find x,.¢. and x,; .

for(int x = X ¢/ X < Xpygpes XH+) |
find the color ¢ for this pixel

put c into the pixel at (x, y)

} + color;
} Ytop
color

color,
Ys B
Yoot [~

|__color, | .

Xeft Xright

O Scans pixels, row by row, calculating color for each pixel

R.W. Lindeman - WPI Dept. of Computer Science 8

WPI

Polygon Shading Models
Flat shading

® Compute lighting once and assign the color
to the whole polygon (or mesh)

R.W. Lindeman - WPI Dept. of Computer Science 9

WPI
Flat Shading

Only use one vertex normal and material
property to compute the color for the
polygon
Benefit: fast to compute
Used when
m Polygon is small enough

m Light source is far away (why?)
mEye is very far away (why?)

R.W. Lindeman - WPI Dept. of Computer Science 10

WPI
Mach-Band Effect

Flat shading suffers from "mach banding”
B Human eyes accentuate discontinuities at
boundaries

Perceived intensity

Side view of a polygonal surface

R.W. Lindeman - WPI Dept. of Computer Science 11

WPI

Smooth Shading

Fix the mach banding
B Remove edge discontinuities

Compute lighting for more points on each

o

Flat shading Smooth shading

R.W. Lindeman - WPI Dept. of Computer Science 12

WPI

Smooth Shading (cont.)

wo popular methods
B Gouraud shading (used by OpenGL)

® Phong shading (better specular highlight, not
in OpenGL)

Gouraud

R.W. Lindeman - WPI Dept. of Computer Science 13

WPI
Gouraud Shading

O Lighting is calculated for each of the polygon vertices
0 Colors are interpolated for interior pixels

R.W. Lindeman - WPI Dept. of Computer Science 14

WPI
Gouraud Shading (cont.)

Per-vertex lighting calculation
Normal is nheeded for each vertex

Per-vertex normal can be computed by
averaging the adjacent face normals

n= (ny+n,+n3+n,) /4.0

R.W. Lindeman - WPI Dept. of Computer Science 15

WPI
Gouraud Shading (cont.)

Compute vertex illumination (color)
before the projection transformation

Shade interior pixels: color interpolation

(normals are not needed for interior)
C,

for all scanlines

C, =lerp(Cy, Cy) Cb = lerp(Cy, C3)

G, Cs
—— Lerp(C,, C)

* lerp: linear interpolation

R.W. Lindeman - WPI Dept. of Computer Science 16

WPI

Gouraud Shading (cont.)

O Linear interpolation

. O . x= b/ (a+b) * vl + a/(a+b) * v2
—— a i b I
Vy X Vv,

O Interpolate triangle color: use y distance to
interpolate the two end points in the scanline, and
use X distance to interpolate interior pixel colors

l

R.W. Lindeman - WPI Dept. of Computer Science 17

Gouraud Shading Function

WPI

// for each scan line
for(int ¥ = Vot ¥ <= Yieops ¥YH+) |

find x,.. and x,;4,

find color,. and color,; ;.

color;, . = (color - color,) /

right
(xright - xleft)
for(int x = Xieft, © T color; ¢/
X < X5 X++, ¢ += color;,)

put c into the pixel at (x, y)

}

R.W. Lindeman - WPI Dept. of Computer Science

18

WPI
Gouraud Shading Problem

Lighting in the polygon interior can be
Inaccurate

Gouraud Gouraud

R.W. Lindeman - WPI Dept. of Computer Science 19

WPI
Phong Shading

Instead of interpolation, we calculate

lighting for each pixel inside the polygon
(per-pixel lighting)

Need normals for all the pixels
m Not provided by user!

Phong shading algorithm
m Interpolate the normals across polygon

m Compute lighting during rasterization

[0 Need to map the normal back to world or eye space
though

R.W. Lindeman - WPI Dept. of Computer Science 20

WPI

Phong Shading (cont.)

OO0 Normal interpolation

O Slow
® Not supported by OpenGL, but now graphics cards
have pixel shaders that can be used to do this quickly

R.W. Lindeman - WPI Dept. of Computer Science 21

