CS 543: Computer Graphics

Camera Control

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

Modelview Matrix

- Recall the graphics pipeline
 - Modelview matrix is composed of the scene transformations, M, and the camera transformations, V
 - Here we will focus on V
3D Viewing

- Similar to taking a photograph
- Control the "lens" of the camera
- Project the object from 3D world to 2D screen
Viewing Transformation

- Recall, setting up the Camera
 \[\text{gl.lookAt(eye, at, up)} \]
 - The view up vector is usually \((0, 1, 0)\)

- Modelview matrix
 - Combination of modeling matrix \(M\) and Camera transforms \(V\)

- `lookAt()` returns \(V\) part of modelview matrix

- What does `lookAt()` do with parameters \((\text{eye, at, up})\) you provide?
Viewing Transformation (cont.)

- OpenGL Code

```c
void display( ) {
  glClear( GL_COLOR_BUFFER_BIT );
  glMatrixMode( GL_MODELVIEW);
  glLoadIdentity( );
  gluLookAt( 1, 1, 1, 0, 0, 0, 0, 1, 0 );
  display_all( );  // your display routine
}
```
Viewing Transformation (cont.)

- Control the "lens" of the camera
- Important camera parameters to specify
 - Camera (eye) position \((e_x, e_y, e_z)\) in world coordinate system
 - Center-of-interest point \((c_x, c_y, c_z)\)
 - Orientation (which way is up?): Up vector \((Up_x, Up_y, Up_z)\)
Viewing Transformation (cont.)

- **Transformation?**
 - Form a camera (eye) coordinate frame
 - Transform objects from world to eye space

- **Eye space?**
 - Transforming to eye space can simplify many downstream operations (such as projection) in the pipeline
Viewing Transformation (cont.)

- `lookAt()` call transforms the object from world to eye space by
 - Constructing eye coordinate frame \((u, v, n)\)
 - Composing matrix to perform coordinate transformation
 - Loading this matrix into the V part of modelview matrix

- Allows flexible camera control
Sample Cameras
Computing LookAt

- How do we construct \(\mathbf{u}, \mathbf{v}, \mathbf{n} \)?

- Known
 - eye position
 - Center of interest (look)
 - Up vector (just a hint)

- Need to find
 - New origin
 - Three basis vectors (axes)
Eye Coordinate Frame

- Origin = eye position (that was easy!)

- Three basis vectors
 - Should be orthogonal and normalized
 - \(\mathbf{n} = \frac{\text{eye} - \text{look}}{|\text{eye} - \text{look}|} \)
Eye Coordinate Frame (cont.)

- How about \mathbf{u} and \mathbf{v}?
 - $\mathbf{u} = \frac{\mathbf{Up} \times \mathbf{n}}{|\mathbf{Up} \times \mathbf{n}|}$
 - How come this works?
Eye Coordinate Frame (cont.)

- How about \mathbf{v}?
 - $\mathbf{v} = \mathbf{n} \times \mathbf{u}$
 - Why is this already normalized?
Putting It All Together

- **Eye space**
 - Origin = \((\text{eye}_x, \text{eye}_y, \text{eye}_z)\)
 - \(\mathbf{n} = (\text{eye} - \text{look}) / |\text{eye} - \text{look}|\)
 - \(\mathbf{u} = (\mathbf{Up} \times \mathbf{n}) / |\mathbf{Up} \times \mathbf{n}|\)
 - \(\mathbf{v} = \mathbf{n} \times \mathbf{u}\)
World to Eye Transformation

- Next, use \(u, v, n \) to compose \(V \) part of modelview matrix

- Transformation matrix \((M_{w2e}) \)?
 \[
P' = M_{w2e} \times P
 \]

1. Come up with the transformation sequence to move the eye coordinate frame to the world coordinate frame

2. Apply this sequence to the point \(P \) in reverse order
World to Eye Transformation (cont.)

- Rotate the eye frame to "align" it with the world frame
- Translate \((-e_x, -e_y, -e_z)\)
World to Eye Transformation (cont.)

- Transformation order
 - Apply the transformation to the object in reverse order - translate first, and then rotate

\[
M_{w2e} = \begin{bmatrix}
 u_x & u_y & u_z & 0 & 1 & 0 & 0 & -e_x \\
 v_x & v_y & v_z & 0 & 0 & 1 & 0 & -e_y \\
 n_x & n_y & n_z & 0 & 0 & 0 & 1 & -e_z \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 u_x & u_y & u_z & -e \cdot u \\
 v_x & v_y & v_z & -e \cdot v \\
 n_x & n_y & n_z & -e \cdot n \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Note: \(e \cdot u = e_x u_x + e_y u_y + e_z u_z \)
Flexible Camera Control

- May create a **Camera** class

```cpp
class Camera
{
    private:
        Point3 eye;
        Vector3 u, v, n; // etc.
}
```

- Let user specify roll, pitch, yaw to change camera

- Example

```cpp
cam.slide( -1, 0, -2 ); // move camera forward and left
cam.roll( 30 ); // roll camera through 30 degrees
cam.yaw( 40 ); // yaw it through 40 degrees
cam.pitch( 20 ); // pitch it through 20 degrees
```
Flexible Camera Control (cont.)

- `lookAt()` does not let you control roll, pitch & yaw

- Main idea behind flexible camera control
 - User supplies θ, ϕ or roll angle
 - Constantly maintain the vector (u, v, n) by yourself
 - Calculate new u', v', n' after roll, pitch, slide, or yaw
 - Compose new V part of modelview matrix yourself
 - Get the new modelview matrix and pass it down to the shaders
Loading Modelview Matrix directly

Pseudo-code:

```c
getModelViewMatrix( ) {  
    // load modelview matrix with existing camera values
    mat4 m[16];
    vec3 eVec( eye.x, eye.y, eye.z );// eye as vector
    m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -eVec.dot(u);
    m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -eVec.dot(n);
    return( m );
}

- slide() changes eVec, roll(), pitch(), yaw(), change u, v, n
```
Camera Slide

- User changes eye by delU, delV or delN
- eye = eye + changes
- Note: function below combines all slides into one

```c
slide( float delU,
      float delV,
      float delN ) {
    eye.x += delU*u.x + delV*v.x + delN*n.x;
    eye.y += delU*u.y + delV*v.y + delN*n.y;
    eye.z += delU*u.z + delV*v.z + delN*n.z;
    return( getModelViewMatrix( ) );
}
```
Camera Roll

roll(float angle) {
 // roll the camera through angle degrees
 float cs = cos(M_PI/180 * angle);
 float sn = sin(M_PI/180 * angle);
 Vector3 t = u; // remember old u
 u.set(cs*t.x - sn*v.x,
 cs*t.y - sn*v.y,
 cs*t.z - sn*v.z);
 v.set(sn*t.x - cs*v.x,
 sn*t.y - cs*v.y,
 sn*t.z - cs*v.z);
 return(getModelViewMatrix());
}

\[
\begin{align*}
\mathbf{u}' &= \cos(\alpha)\mathbf{u} + \sin(\alpha)\mathbf{v} \\
\mathbf{v}' &= -\sin(\alpha)\mathbf{u} + \cos(\alpha)\mathbf{v}
\end{align*}
\]