
1

Introduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Programming with WebGL
Part 3: Shaders

Ed Angel
Professor of Emeritus of Computer Science

University of New Mexico

2Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Data Types

• C types: int, float, bool
• Vectors:

-  float vec2, vec3, vec4
- Also int (ivec) and boolean (bvec)

• Matrices: mat2, mat3, mat4
- Stored by columns
- Standard referencing m[row][column]

• C++ style constructors
- vec3 a =vec3(1.0, 2.0, 3.0)
- vec2 b = vec2(a)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

No Pointers

• There are no pointers in GLSL
• We can use C structs which
 can be copied back from functions
• Because matrices and vectors are basic
types they can be passed into and output
from GLSL functions, e.g.

 mat3 func(mat3 a)
• variables passed by copying

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Qualifiers

• GLSL has many of the same qualifiers such as
const as C/C++

• Need others due to the nature of the execution
model

• Variables can change
- Once per primitive
- Once per vertex
- Once per fragment
-  At any time in the application

• Vertex attributes are interpolated by the
rasterizer into fragment attributes

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Attribute Qualifier

• Attribute-qualified variables can change at
most once per vertex

• There are a few built in variables such as
gl_Position but most have been deprecated

• User defined (in application program)
- attribute float temperature
- attribute vec3 velocity
- recent versions of GLSL use in and out
qualifiers to get to and from shaders

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Uniform Qualified

• Variables that are constant for an entire
primitive

• Can be changed in application and sent to
shaders

• Cannot be changed in shader
• Used to pass information to shader such
as the time or a bounding box of a
primitive or transformation matrices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Varying Qualified

• Variables that are passed from vertex shader
to fragment shader

• Automatically interpolated by the rasterizer
• With WebGL, GLSL uses the varying qualifier
in both shaders
varying vec4 color;

• More recent versions of WebGL use out in
vertex shader and in in the fragment shader
out vec4 color; //vertex shader
in vec4 color; // fragment shader

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Our Naming Convention

• Attributes passed to vertex shader have names
beginning with v (vPosition, vColor) in both the
application and the shader

- Note that these are different entities with the same
name

• Fragment variables begin with f (fColor) in both
shaders

- must have same name
• Uniform variables are unadorned and can have
the same name in application and shaders

9Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
0

Example: Vertex Shader

attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
void main()
{
 gl_Position = vPosition;
 fColor = vColor;
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
1

Corresponding Fragment
Shader

precision mediump float;
varying vec4 fColor;
void main()
{
 gl_FragColor = fColor;
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending Colors from
Application

1
2

var cBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, cBuffer);
gl.bufferData(gl.ARRAY_BUFFER, flatten(colors),
 gl.STATIC_DRAW);

var vColor = gl.getAttribLocation(program, "vColor");
gl.vertexAttribPointer(vColor, 4, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vColor);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Sending a Uniform Variable

1
3

 // in application

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);
colorLoc = gl.getUniformLocation(program, ”color");
gl.uniform4f(colorLoc, color);

// in fragment shader (similar in vertex shader)

uniform vec4 color;

void main()
{
 gl_FragColor = color;
}

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
4

Operators and Functions

• Standard C functions
- Trigonometric
- Arithmetic
- Normalize, reflect, length

• Overloading of vector and matrix types
mat4 a;
vec4 b, c, d;
c = b*a; // a column vector stored as a 1d array
d = a*b; // a row vector stored as a 1d array

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

