Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research, Technology and Science Laboratory
University of New Mexico
Models and Architectures
Objectives

• Learn the basic design of a graphics system
• Introduce pipeline architecture
• Examine software components for an interactive graphics system
Image Formation Revisited

• Can we mimic the synthetic camera model to design graphics hardware software?
• Application Programmer Interface (API)
 - Need only specify
 • Objects
 • Materials
 • Viewer
 • Lights
• But how is the API implemented?
Physical Approaches

• **Ray tracing**: follow rays of light from center of projection until they either are absorbed by objects or go off to infinity
 - Can handle global effects
 - Multiple reflections
 - Translucent objects
 - Slow
 - Must have whole data base available at all times

• **Radiosity**: Energy based approach
 - Very slow
Practical Approach

- Process objects one at a time in the order they are generated by the application
 - Can consider only local lighting
- Pipeline architecture

 Vertices → Vertex processor → Clipper and primitive assembler → Rasterizer → Fragment processor → Pixels

- All steps can be implemented in hardware on the graphics card
Vertex Processing

- Much of the work in the pipeline is in converting object representations from one coordinate system to another
 - Object coordinates
 - Camera (eye) coordinates
 - Screen coordinates

- Every change of coordinates is equivalent to a matrix transformation

- Vertex processor also computes vertex colors
Projection

- *Projection* is the process that combines the 3D viewer with the 3D objects to produce the 2D image
 - Perspective projections: all projectors meet at the center of projection
 - Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection
Primitive Assembly

Vertices must be collected into geometric objects before clipping and rasterization can take place

- Line segments
- Polygons
- Curves and surfaces
Clipping

Just as a real camera cannot “see” the whole world, the virtual camera can only see part of the world or object space.

- Objects that are not within this volume are said to be clipped out of the scene.
Rasterization

- If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors
- Rasterizer produces a set of fragments for each object
- Fragments are “potential pixels”
 - Have a location in frame buffer
 - Color and depth attributes
- Vertex attributes are interpolated over objects by the rasterizer
Fragment Processing

- Fragments are processed to determine the color of the corresponding pixel in the frame buffer
- Colors can be determined by texture mapping or interpolation of vertex colors
- Fragments may be blocked by other fragments closer to the camera
 - Hidden-surface removal
The Programmer’s Interface

- Programmer sees the graphics system through a software interface: the Application Programmer Interface (API)
API Contents

• Functions that specify what we need to form an image
 - Objects
 - Viewer
 - Light Source(s)
 - Materials

• Other information
 - Input from devices such as mouse and keyboard
 - Capabilities of system
Object Specification

• Most APIs support a limited set of primitives including
 - Points (0D object)
 - Line segments (1D objects)
 - Polygons (2D objects)
 - Some curves and surfaces
 • Quadrics
 • Parametric polynomials

• All are defined through locations in space or *vertices*
Example (old style)

glBegin(GL_POLYGON)
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(0.0, 0.0, 1.0);
glEnd();
Example (GPU based)

• Put geometric data in an array
  ```javascript
  var points = [
    vec3(0.0, 0.0, 0.0),
    vec3(0.0, 1.0, 0.0),
    vec3(0.0, 0.0, 1.0),
  ];
  ```

• Send array to GPU
• Tell GPU to render as triangle
Camera Specification

- Six degrees of freedom
 - Position of center of lens
 - Orientation
- Lens
- Film size
- Orientation of film plane
Lights and Materials

- Types of lights
 - Point sources vs distributed sources
 - Spot lights
 - Near and far sources
 - Color properties

- Material properties
 - Absorption: color properties
 - Scattering
 - Diffuse
 - Specular