

CS-525V: Building Effective Virtual Worlds

Input Devices

Robert W. Lindeman

Worcester Polytechnic Institute
Department of Computer Science
gogo@wpi.edu

Motivation

- The mouse and keyboard are good for general desktop UI tasks
 - Text entry, selection, drag and drop, scrolling, rubber banding, ...
 - Fixed computing environment
 - 2D mouse for 2D windows
- □ How can we design effective techniques for 3D?
 - Use a 2D device?
 - Use multiple n-D devices?
 - Use new devices?
 - Use 2D interface widgets?
 - Need new interaction techniques!

Motivation (cont.)

- Gaming and Virtual Reality
 - Tight coupling between action and reaction
 - Need for precision
- VR can give real first-person experiences, not just views
 - Head-mounted Display
 - □ In order to look behind you, turn your head!
 - Selecting/manipulating an object
 - Reach your hand out and grab it!
 - Travel
 - □ Just walk (well, not quite)!
- Doing things that have no physical analog is more problematic

Common Desktop Input Devices

Mouse++

Keyboard

Joystick

TrackBall

TrackPoint

TouchPad

Tablet

Game Controllers

Atari 2600 (1977)

Intellivision (1980)

PlayStation2 (2000)

Xbox 360 (2005)

Wii Remote+ Nunchuk (2006)

Source: http://www.axess.com/twilight/console/

Prototypes of Controllers

WPI

Prototypes of Controllers (cont.)

Classification Schemes

- □ Relative vs. Absolute movement
- □ Integrated vs. Separable degrees of freedom
- □ Digital vs. Analog devices
- ☐ Isometric vs. Isotonic devices
- □ Rate control vs. Position control
- Special-purpose vs. General-purpose devices
- Direct vs. Indirect manipulation

More on Classifications

- □Relative vs. Absolute movement
 - Mouse vs. Tablet
- □Integrated vs. Separable degrees of freedom
 - Mouse has integrated X, Y control
 - Etch-a-sketch has separate X, Y control
 - Motions that are easy with one are hard with the other
- Analog devices allow more sensitivity
 - For example, analog game controllers

Isometric vs. Isotonic Input Devices (Zhai)

- No motion vs. No resistance
- Actually a continuum of elasticity
 - TrackPoint (mostly isometric) vs. mouse (mostly isotonic)
 - Many devices are re-centering (e.g., joysticks)

Rate Control vs. Position Control (Zhai)

- Mouse is normally used for position control
- Mouse scroll-wheel
 - Position control
 - Click-drag for rate controlled scrolling
- Trackballs typically use position control
- Joysticks: Control position (cross-hair), or Control velocity (aircraft)
- Rate control eliminates need for clutching/ratcheting
- □ Isotonic-rate control and isometric-position control tend to produce poor performance (Zhai)

Special-Purpose vs. General- WPI Purpose Input Devices (Buxton)

- □Game controllers are designed to support many types of games
 - Game developer decides on mapping
 - No "standard" mappings -> each game different
- □ Some special-purpose devices exist
 - Light guns
 - Steering wheels
 - RPG keyboard/joystick
 - Drum kits, dance pads, bongos, etc.

Direct vs. Indirect Manipulation

- □ Direct
 - Clutch and drag an icon with mouse or stylus
 - Touch screens, PDAs use direct manipulation
 - Works well for things that have a physical analog
- □ Indirect
 - Use some widget to indirectly change something
- Problems with direct manipulation
 - Some things do not have a physical analog
 - Precision may be lacking
 - Selection/de-selection may be messy

3D Input Devices

SpaceBall

SpaceMouse

Tracked Paddle for 2D Interaction

PHANTOM Omni Haptic Device

HMD with 3-DOF tracker

Motion-Capture/Tracking Systems

- Used heavily in movies and TV
 - Capture actual motion, and re-use
 - Example, Fox Sports NFL guy
- Can be done interactively, or offline
- Can capture three or more (six) Degrees of Freedom (DoF)
 - Position, Orientation, or Both
- Many technical approaches
- No really good, general approaches

Tracking Technologies

- Mechanical
- ■Magnetic
- □Ultrasonic
- □ Inertial
- Optical
- □Hybrid

Mechanical Tracking

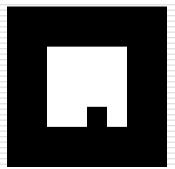
- Rigid linkage, potentiometers at joints
- □ Pros:
 - High accuracy
 - High resolution
- □Cons:
 - Limited range of motion
 - Cumbersome

Magnetic Tracking

- Transmitter creates a magnetic field
 - Transmitter is the origin
- Receivers are tracked using changes in magnetic field
- □ Pros:
 - Fairly lightweight
 - Six DoF
- □Cons:
 - Very noisy near ferrous metal
 - Limited working range

Ultrasonic Tracking

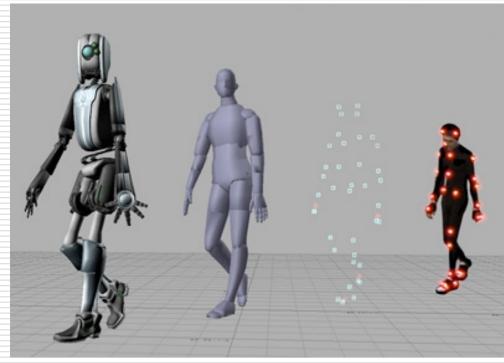
- Transmitter sends pulses
- □ Receivers hear tones
- Distance is computed
- Can use "costellations" for orienation
- □ Pros:
 - High accuracy
 - High resolution
- □Cons:
 - Requires line-of-sight (hearing)


Inertial Tracking

- □ Accelerometers
 - Tilt
 - Acceleration
- □ Gyroscopes
 - Measure movement
- □ Pros:
 - Not anchored to a place in space
- □Cons:
 - Accumulated error can cause drift
 - Only moderate accuracy

Optical Tracking

- Multiple fixed cameras capture markers
- Known camera parameters (FOV, focal length, position, orientation)
- Use equations to compute position in 3-D space
- Markers can be simple points, or glyphs



Optical Tracking (cont.)

□ Active vs. Passive Markers

Hybrid Tracking Techniques

- Compensate negative characteristics of one approach with another
 - Inertial and Magnetic
 - Inertial and Optical

Other Options

- Some alternatives
 - Speech
 - Gestures: pointing to fly
 - Device actions (e.g., buttons, joysticks)
 - Head/gaze directed
- Hybrid
 - Speech and gesture (e.g., "Put that, there.")

Special-Purpose Input Devices

- Some applications are more "real" with a device that matches the real action
 - Steering wheel
 - Light gun
 - Flight-simulator motion platform
 - Snowboard/surfboard
 - Pod racer
 - Motor cycle
- Today, since sensors are cheap, we can turn almost anything into an input device

Mapping Devices to Actions

- For each (user, task, environment)
 - For the four basic VR tasks
 - □ For each device DOF
 - Choose a mapping to an action

We also need to easily switch between actions!

Placing Devices in Context

□Table?

Device	Rel/Abs	Int/Sep	Dig/Ana	Isom/Isot	Rate/Pos	Spec/Gen	Dir/Ind
Mouse	Relative	Integrated	Digital	Isotonic	Position	General	Both
Glove	Absolute	Integrated		Isotonic			

Verification and Comparison

- □ Framework for user studies
- Interesting to fill in the empty spaces
 - Isotonic position control for rotation?
 - Other novel combinations?
- Very active field right now
 - ACM CHI, IEEE VR, 3DUI Symposium, ACM SIGGRAPH

More Info

- □ Shumin Zhai at IBM Almaden
- □ Bill Buxton at U. of Toronto (Alias|Wavefront)