

CS-525V: Building Effective Virtual Worlds

Output Devices

Robert W. Lindeman

Worcester Polytechnic Institute
Department of Computer Science
gogo@wpi.edu

Overview

☐ Here we are concerned with technology for stimulating the senses

Motivation

- We need to display the state of the world to the user
 - Display: a method of presenting information to any of the senses
- We need to display the user to the user (maybe)
- We need to feed each sense appropriately
- We need to feed multiple senses in concert
 - Display for one sense shouldn't get in the way of display for another sense
- □ May need to quickly don/doff displays

Some Things to Remember

- Humans are animals, and hence, have evolved over time.
- Evolutionary forces have guided the development of our senses.
- Displays that leverage this fact have a better shot of being effective.

General Types of Displays

- □ The senses
 - Visual
 - Auditory
 - Haptic
 - Olfactory
 - Gustatory
- Display anchoring
 - World-fixed displays
 - Body-worn displays
 - Hand-held displays

Visual Display Types

- World-fixed displays
 - Fishtank VR
 - Projection VR
- Body-worn displays
 - Opaque HMDs
 - Transparent HMDs
- □ Hand-held displays
 - Palm VR
 - Boom-mounted screens

Visual Displays

CAVEs

Visual Displays (cont.)

CAVE

Visual Cues

- Depth is the main thing added by VR to more-traditional displays
 - How do we perceive depth?
- Monoscopic cues
- □ Stereoscopic cues
- Motion-depth cues
- □ Physiological cues

Monoscopic Cues

- □ Overlap (Interposition)
- □ Shading & shadows
- **□**Size
- □ Linear perspective
- □ Texture gradient
- ☐ Height in the image
- □ Atmospheric effects
- Brightness

Stereoscopic Cues

- This is based on the parallax objects appearing in two images.
- □ Camera 1 / camera 2 effect
- Only good within about 5 meters of viewer

Motion Depth Cues

- Changind relative position of head and objects
- Can be use and/or object moving
 - Train leaving a station
 - Use proprioception to disambiguate

http://www.youtube.com/watch?v=1AZAbSXmeoI

Motion Depth Cues (cont.)

☐ Head movement

Physiological Cues

- The eye changes during viewing
- Accommodation
 - Muscular changes of the eye
- Convergence
 - Movements to bring images to same location on both retinas

Properties of Visual Displays

- Color
- Spatial resolution
- Contrast
- Brightness
- Number of channels
- □ Focal distance
- Opacity
- Masking
- □ Field of view
- □ Field of Regard

- Head position info
- □ Graphics latency
- □ Frame rate

Number of Display Channels

- Spatial multiplexing
 - Different image in front of each eye
- Temporal multiplexing (time interlacing)
 - Use shutter glasses
- Polarization multiplexing
 - Use polarized glasses
- Spectral multiplexing
 - Red/blue left-eye/right-eye images
- Binocular monoscopic
- Stereo takes twice the resources!

Masking

- How physical objects block virtual ones
- □ CAVE: Hands can break effect
- □ HMD: Not at all
- □ Fishtank: Display edges/bezel can break effect

http://www.youtube.com/watch?v=Jd3-eiid-Uw

Field of View vs. Field of Regard

- ☐ Field of view (FOV)
 - How much of the scene (in degrees) is visible at any given time
- □ Field of regard (FOR)
 - Amount of space (in percent) of the virtual world currently surrounding the user
- Examples
 - CAVE: 200° FOV facing forward, 75% FOR
 - HMD: 100° FOV, 100% FOR

Hand-Held VR

- PDAs are becoming more powerful
 - Can track a tablet PC, and use as VR display
- Call phones have cameras
 - Can do AR