

CS-525V: Building Effective Virtual Worlds

What Makes Good VR?

Robert W. Lindeman

Worcester Polytechnic Institute
Department of Computer Science
gogo@wpi.edu

Plan for Tonight

- ☐ Effective VR
- □ Talk about Project Ideas

What Makes Good VR?

- Physical immersion
 - VR world presented based on user location and orientation
 - Sensory stimuli in response to user actions
 - Synchronized video, audio, etc.
 - Not so easy!
 - User-movement tracking
- Mental immersion
 - The level of *engagement* of the user

Two Schools of Thought

- Experience must be extremely realistic
 - No "point to fly" abilities
 - Excludes anything that demonstrates you are not in the real world
- Experience may contain "magical" properties
 - Can actually increase presence
 - Also, in realistic systems, breaks in realism can kill presence

Components of Immersion

- □User is immersed to the point of suspension of disbelief
- Key elements
 - Personal meaningfulness
 - Interactivity
 - Sufficient resolution
 - □ Spatial resolution
 - Units vary by sensory modality
 - □ Temporal resolution
 - Update-rate varies by sensory modality
 - System latency/lag
 - □ Each component introduces latency

What do we Actually Need to do?

A typical "render loop" might look something like this:

```
for(;;) {
   GetInput();
   UpdateScene();
   RenderScene();
}
```

What does UpdateScene look WPI like?

Contains everything that needs to be done at each frame, like: UpdateScene() { DoAI(); DoPhysics();

- What order should these be done in?
- □ How will they be synchronized?

What does RenderScene look WPI like?

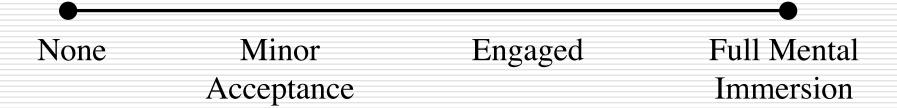
Must trigger output for each sensory modality, like:

```
RenderScene() {
  RenderGraphics();
  RenderAudio();
```

- But these run at different update rates, so what should we do?
 - Wait for the slowest one?
 - Use shared memory with last "good" state?
 - Double buffer?

Good Rules to Follow

- □ Relax dependencies as much as possible
 - If using mutex, keep the window small
- Design for multi-core processing as much as possible
 - This is the future!
- Get away from the linear-nature of the preceding example render loop
 - Just set things up at the beginning, and only communicate to synchronize



Transference of Permanence

- □ If some objects are of high fidelity, users will assume all are
 - Physical object registered with a virtual one

Levels of Immersion

- Some people have sensory dominance
 - Visual
 - Audio
 - Haptically
- User study on user descriptions
- □ Physiological measures

Points of View

- ☐ First person
 - Pretty common
- ■Second person
 - Gives more context
- Third person
 - Like a movie
- □ Inside-out vs. outside-in
 - User can switch to give focus+context

Rules in the VR World: Physics

- Static-world physics
- □ Cartoon physics
- Newtonian physics
- Choreographed physics
- Do all objects need to follow the same laws?
 - Drop something
- □ Do *you* need to follow the same laws?
 - How can you fly?

Rules in the VR World (cont.)

What should happen when I push on a virtual wall?