Statistical Methods

by
Robert W. Lindeman
WPI, Dept. of Computer Science
gogo@wpi.edu
Descriptive Methods

- Frequency distributions
 - How many people were similar in the sense that according to the dependent variable, they ended up in the same bin
 - Table
 - histogram (vs. bar graph)
 - Frequency polygon
 - Pie chart
Descriptive Methods (cont.)

- Distributional shape
 - Normal distribution (bell curve)
 - Skewed distribution
 - Positively skewed (pointing high)
 - Negatively skewed (pointing low)
 - Multimodal (bimodal)
 - Rectangular
- Kurtosis
 - High peak/thin tails (leptokurtic)
 - Low peak/thick tails (platykurtic)
Descriptive Methods (cont.)

− Central tendency
 ▪ Mode
 □ Most frequent score
 ▪ Median
 □ Divides the scores into two, equally sized parts
 ▪ Mean
 □ Sum of the scores divided by the number of scores
 ▪ Normal distribution: mode ≈ median ≈ mean
 ▪ Positive skew: mode < median < mean
 ▪ Negative skew: mean < median < mode
Descriptive Methods (cont.)

- Measures of variability
 - Dispersion (level of *sameness*)
 - Homogeneous vs. heterogeneous
 - Range
 - \(\text{max} - \text{min} \) of all the scores
 - Interquartile range
 - \(\text{max} - \text{min} \) of the middle 50% of scores
 - Box-and-whisker plot
 - Standard deviation (\(SD, s, \sigma, \) or \(\sigma \))
 - Good estimate of range: \(4 \times SD \)
 - Variance (\(s^2 \) or \(\sigma^2 \))
Descriptive Methods (cont.)

- **Standard scores**
 - How many SDs a score is from the mean
 - **z-score**: mean = 0, each SD = +/-1
 - z-score of +2.0 means the score is 2 SDs above the mean
 - **T-score**: mean = 50, each SD = +/-10
 - T-score of 70 means the score is 2 SDs above the mean
Bivariate Correlation

- Discover whether a relationship exists
- Determine the strength of the relationship
- Types of relationship
 - High-high, low-low
 - High-low, low-high
 - Little systematic tendency
Bivariate Correlation (cont.)

- Scatter plot
- Correlation coefficient: r

<table>
<thead>
<tr>
<th>Score</th>
<th>High</th>
<th>Low</th>
<th>Strong</th>
<th>Weak</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
<td></td>
<td></td>
<td>Strong</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Negatively correlated
- Inverse relationship
- High-low, low-high

- Positively correlated
- Direct relationship
- High-high, low-low
Bivariate Correlation (cont.)

- **Quantitative variables**
 - Measurable aspects that vary in terms of intensity
 - **Rank; Ordinal scale**: Each subject can be put into a single bin among a set of ordered bins
 - **Raw score**: Actual value for a given subject. Could be a composite score from several measured variables

- **Qualitative variables**
 - Which categorical group does one belong to?
 - E.g., I prefer the Grand Canyon over Mount Rushmore
 - **Nominal**: Unordered bins
 - **Dichotomy**: Two groups (e.g., infielders vs. outfielders)
Reliability and Validity

- Reliability
 - To what extent can we say that the data are consistent?

- Validity
 - A measuring instrument is valid to the extent that it measures what it purports to measure.
Inferential Statistics

- Definition: To make statements beyond description
 - Generalize

- A **sample** is extracted from a **population**

- Measurement is done on this sample

- Analysis is done

- An educated guess is made about how the results apply to the population as a whole
Motivation

- Actual testing of the whole population is too costly (time/money)
 - "Tangible population"

- Population extends into the future
 - "Abstract population"

- Four questions
 - What is/are the relevant populations?
 - How will the sample be extracted?
 - What characteristic of those sampled will serve as the measurement target?
 - What will be the study's statistical focus?
Statistical Focus

- What statistical tools should be used?
 - Even if we want the "average," which measure of average should we use?
Estimation

- Sampling error
 - The amount a sample value differs from the population value
 - This does not mean there was an error in the method of sampling, but is rather part of the natural behavior of samples
 - They seldom turn out to exactly mirror the population
 - Sampling distribution
 - The distribution of results of several samplings of the population
 - Standard error
 - SD of the sampling distribution
Analyses of Variance (ANOVA)

- Determine whether the means of two (or more) samples are different
 - *If we've been careful, we can say that the treatment is the source of the differences*
 - Need to make sure we have controlled everything else!
 - Treatment order
 - Sample creation
 - Normal distribution of the sample
 - Equal variance of the groups
Types of ANOVAs

- **Simple (one-way) ANOVA**
 - One independent variable
 - One dependent variable
 - Between-subjects design

- **Two-way ANOVA**
 - Two independent variables, and/or
 - Two dependent variables
 - Between-subjects design
Types of ANOVAs (cont.)

- One-way repeated-measures ANOVA
 - One independent variable
 - One dependent variable
 - Within-subjects design

- Two-way repeated-measures ANOVA
 - Two independent variables, and/or
 - Two dependent variables
 - Within-subjects design
Types of ANOVAs (cont.)

- Main effects vs. interaction effect
 - Main effects present in conjunction with other effects

- Post-hoc tests
 - Tukey's HSD test
 - Equal sample sizes
 - Scheffé test
 - Unequal sample sizes
Types of ANOVAs (cont.)

- Mixed ANOVA

- 2 x 3
 - Time of day
 - Real Walking / Walking in-place / Joystick
References