

CS-525H: Immersive HCI

Statistical Methods

Robert W. Lindeman

Worcester Polytechnic Institute
Department of Computer Science
gogo@wpi.edu

- How many people were similar in the sense that according to the dependent variable, they ended up in the same bin
- □Table
- □ Histogram (vs. Bar Graph)
- □ Frequency Polygon (Line Graph)
- □ Pie Chart

Descriptive Methods: Distributional Shape

- Normal distribution (bell curve)
- Skewed distribution
 - Positively skewed (pointing high)
 - Negatively skewed (pointing low)
- Multimodal (bimodal)
- Rectangular
- □ Kurtosis
 - High peak/thin tails (leptokurtic)
 - Low peak/thick tails (platykurtic)

Descriptive Methods: Central Tendency

- Mode (*Mo*)
 - Most frequently occurring score
- Median (*Mdn*)
 - Divides the scores into two, equally sized parts
- \square Mean (M, \overline{X}, μ)
 - Sum of the scores divided by the number of scores
- □ Example: 6, 2, 5, 1, 2, 9, 3, 6, 2
- □ Normal distribution: mode ≈ median ≈ mean
- □ Positive skew: mode < median < mean</p>
- □ Negative skew: mean < median < mode</p>
- What do these look like in graph form?

Descriptive Methods: Measures of Variability

- □ Dispersion (level of sameness)
- □ Homogeneous vs. heterogeneous
- □ Range
 - max min of all the scores
- □ Interquartile range
 - max min of the middle 50% of scores
- Box-and-whisker plot
- \square Standard deviation (*SD*, *s*, σ , or *sigma*)
 - Good estimate of range: 4 * SD
- \square Variance (s^2 or σ^2)

Descriptive Methods: Standard Scores

- □ How many SDs a score is from the mean
- $\square z$ -score: mean = 0, each SD = +/-1
 - z-score of +2.0 means the score is 2 SDs above the mean
- $\square T$ -score: mean = 50, each SD = \pm /-10
 - *T*-score of 70 means the score is 2 SDs above the mean

Bivariate Correlation

- Discover whether a relationship exists
- Determine the strength of the relationship
- Types of relationship
 - High-high, low-low
 - High-low, low-high
 - Little systematic tendency

Bivariate Correlation (cont.)

- Scatter plot
- □ Correlation coefficient: r

- Negatively correlated
- •Inverse relationship
- •High-low, low-high
- Positively correlated
- Direct relationship
- •High-high, low-low

High Low High
Strong Weak Strong

Bivariate Correlation (cont.)

- Quantitative variables
 - Measurable aspects that vary in terms of intensity
 - □ Rank; Ordinal scale: Each subject can be put into a single bin among a set of ordered bins
 - Raw score: Actual value for a given subject. Could be a composite score from several measured variables
- Qualitative variables
 - Which categorical group does one belong to?
 - □ E.g., I prefer the Grand Canyon over Mount Rushmore
 - Nominal: Unordered bins
 - Dichotomy: Two groups (e.g., infielders vs. outfielders)

Reliability and Validity

- Reliability
 - To what extent can we say that the data are consistent?
- Validity
 - A measuring instrument is valid to the extent that it measures what it purports to measure.

Inferential Statistics

- Definition: To make statements beyond description
 - Generalize
- A sample is extracted from a population
- Measurement is done on this sample
- ■Analysis is done
- An educated guess is made about how the results apply to the population as a whole

Motivation

- Actual testing of the whole population is too costly (time/money)
 - "Tangible population"
- Population extends into the future
 - "Abstract population"
- □ Four questions
 - What is/are the relevant populations?
 - How will the sample be extracted?
 - What characteristic of those sampled will serve as the measurement target?
 - What will be the study's statistical focus?

Statistical Focus

- What statistical tools should be used?
 - Even if we want the "average," which measure of average should we use?

Estimation

- Sampling error
 - The amount a sample value differs from the population value
 - This does not mean there was an error in the method of sampling, but is rather part of the natural behavior of samples
 - They seldom turn out to exactly mirror the population
 - Sampling distribution
 - The distribution of results of several samplings of the population
 - Standard error
 - SD of the sampling distribution

- Determine whether the means of two (or more) samples are different
 - If we've been careful, we can say that the treatment is the source of the differences
 - Need to make sure we have controlled everything else!
 - □ Treatment order
 - □ Sample creation
 - Normal distribution of the sample
 - □ Equal variance of the groups

Types of ANOVAs

- □Simple (one-way) ANOVA
 - One independent variable
 - One dependent variable
 - Between-subjects design
- ■Two-way ANOVA
 - Two independent variables, and/or
 - Two dependent variables
 - Between-subjects design

Types of ANOVAs (cont.)

- One-way repeated-measures ANOVA
 - One independent variable
 - One dependent variable
 - Within-subjects design
- □ Two-way repeated-measures ANOVA
 - Two independent variables, and/or
 - Two dependent variables
 - Within-subjects design

Types of ANOVAs (cont.)

- Main effects vs. interaction effect
 - Main effects present in conjunction with other effects
- □ Post-hoc tests
 - Tukey's HSD test
 - □ Equal sample sizes
 - Scheffé test
 - Unequal sample sizes

Types of ANOVAs (cont.)

- Mixed ANOVA
- □2 x 3
 - Time of day
 - Real Walking / Walking in-place / Joystick

References

- □ Schuyler W. Huck *Reading Statistics and Research*, Fifth Edition, Pearson Education Inc., 2007.
 - http://www.readingstats.com/
- □ Amazon:
 - http://www.amazon.com/gp/product/0205510671/