
CS 4732: 
Computer Animation 

 

Scene Acceleration Structures 

Robert W. Lindeman 
Associate Professor 

Interactive Media & Game Development 
Department of Computer Science 
Worcester Polytechnic Institute 

gogo@wpi.edu 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


2	


I Want More, More, More! 
 Users want ever-increasing 

 Realism 
 Graphical 
 Behavioral 
 Lighting 

 Interactivity with environments 
 Numbers of characters 

 Hardware is always getting better 
 But never fast enough!!! 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


3	


I Want More, More, More! (cont.) 
 Hardware will always lag behind needs 
 Stated otherwise: 

 Needs always expand to fill a performance 
vacuum! 

 Need to better manage things 
 Visibility calculation 
 Texture (and other) mapping 
 Can fake shadows 
 Can pre-compute some reflections 
 Lots of other tricks!!!! 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


4	


Bottom Line 
 Graphics cards can render a lot, very fast 

 But never as much, or as fast as we'd like! 

 Intelligent scene management allows us 
to squeeze more out of our limited 
resources 
 Scene graphs 
 Scene partitioning 
 Visibility calculations 
 Level of detail control 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


5	


Scene Graphs 
 A specification of object and attribute 

relationships 
 Spatial 
 Hierarchical 
 Material properties 

 Transformations 
 Geometry 
 Easy to attach objects together 

 Riding a vehicle 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


6	


Scene Graphs (cont.) 
 Can use instances to save resources 

 Geometry handles instead of geometry 
 Texture handles 

 To take advantage of GPUs, reducing the 
amount of shader (cg) and texture 
switching is preferred 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


7	


Geometry Sorting and Culling 
 Keys to scene management 

 Render only what can be seen 
 Render at a satisfactory, perceivable fidelity 
 Pre-process what you can 
 Use GPU as efficiently as you can 

 First-level 
 View-frustum culling 
 Back-face culling 
 Bounding volumes 

 One or more acceleration structures 
can be used 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


8	


Acceleration Structures 
 Many structures exist 

 Appropriateness depends on the scene, and 
the game (e.g., dynamic objects) 

 Geometry partitioning 
 Bounding boxes/spheres/capsules 

 Space partitioning 
 Uniform Grid 
 Quad/Oct Tree 
 Binary-Space Partitioning (BSP) trees 
 k-d trees 

 Speed up of 10x, 100x, or more! 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


9	


Acceleration Structures (cont.) 
 Hierarchical bounding structures 

 Test if parent is visible 
 If not, then none of its children are 
 If so, then recursively check the children 

 Could use information about your 
application to optimize approach 
 Many interior levels have cells and portals 
 No need to solve the general problem, just 

the specific one 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


10	


Acceleration Structures - 
Geometry Partitioning 
 Bounding boxes/spheres/capsules 
 Axis-Aligned Bounding Boxes (AABB) 
 Oriented Bounding Boxes (OBB) 
 Discrete Oriented Polytope (DOP) 

 Polytope: 2D = polygon, 3D = polyhedron 
 k-DOP: k planes in a DOP 
 Common: 6-DOP (AABB), 10-DOP, 18-DOP, 

24-DOP 

 Bounding-Volume Hierarchies (BVHs) 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


11	


Acceleration Structures - 
Space Partitioning 
 Uniform Grids 

 Split space up into equal sized (or an equal 
number of) cells 

 Quad (Oct) Trees 
 Recursively split space into 4 (8) equal-sized 

regions 

 Binary-Space Partitioning (BSP) trees 
 Recursively divide space along a single, 

arbitrary plane 

 k-dimensional trees (k-d trees) 
 Recursively split along axes 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


12	


Bounding Volumes 
 Objects could have fairly complex shapes 
 Wrap complex objects in simple ones 

 Boxes (axis-aligned, or oriented) 
 Spheres 
 Capsules 
 Finite intersections or unions of above 

 Do bounding volumes collide? 
 No = do nothing 
 Yes = Calculate intersection points, forces, 

etc. 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


13	


Selection of Bounding Volumes 
 Effectiveness depends on 

 Probability that bounding volume is 
contacted, but not enclosed object (tight fit is 
better) 

 Expense to calculate intersections with 
bounding volumes and enclosed objects 

Good	


Bad	




R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


14	


Hierarchical Bounding Volumes 
 Simple bounding volume testing can 

require O(n) intersection tests 
 Use a tree structure instead 

 Larger bounding volumes contain smaller 
ones 

 Sometimes naturally available (e.g., human 
figure) 

 Sometimes difficult to compute 

 Often reduces complexity to O(log(n)) 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


15	


Object Collision Algorithm 
 Recursively descend tree 
 If no intersection with bounding volume, 

no collision 
 If intersection with bounding volume, 

recurse with enclosed volumes and 
objects 

 Maintain near and far bounds to prune 
further 

 Overall effectiveness depends on model 
and constructed hierarchy 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


16	


Spatial Subdivision 
 Bounding volumes enclose objects 

recursively 
 Why not divide the space instead? 
 For each segment of space, keep list of 

intersecting surfaces or objects 
 Basic technique 

 Regular grids 
 Octrees (axis-aligned, non-uniform partition) 
 BSP trees (recursive Binary Space Partitions) 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


17	


Regular Grids 
 3D array of voxels, list of surfaces 

intersecting cell 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


18	


Assessment of Grids 
 Poor choice when world is non-

homogeneous 
 Size of grid? 

 Too small: too many surfaces per cell 
 Too large: too many empty cells to traverse 

 Non-uniform spatial subdivision more 
flexible 
 Can adjust to objects that are present 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


19	


Quadtrees 
 Generalization of binary trees in 2D 

  Node (cell) is a square 
  Recursively split into 4 equal sub-squares 
  Stop subdivision based on number of objects 

 More difficult to step to next cell 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


20	


Octrees 
 Generalization of quadtree in 3D 
 Each cell may be split into 8 equal sub-

cells 
 Internal nodes store pointers to children 
 Leaf nodes store list of surfaces 
 Adapts well to non-homogeneous scenes 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


21	


Assessment for Collision 
Detection 
 Grids 

  Easy to implement 
  Require a lot of memory 
  Poor results for non-homogeneous scenes 

 Octrees 
  Better on most scenes (more adaptive) 

 Alternative: nested grids 
 Spatial subdivision expensive for animations 
 Hierarchical bounding volumes 

  Natural for hierarchical objects 
  Better for dynamic scenes 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


22	


Other Spatial-Subdivision 
Techniques 
 Relax rules for quadtrees and octrees 
 K-Dimensional tree (K-D Tree) 

  Split at arbitrary interior point 
  Split one dimension at a time (Horiz./Vert.) 

 Binary space partitioning tree (BSP Tree) 
  In two dimensions, split with any line 
  In K dimensions, split with K-1-dimensional hyperplane 
  Particularly useful for painter’s algorithm 
  Can also be used for ray tracing 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


23	


BSP Trees 
 Inherent spatial ordering given viewpoint 

 Left subtree: in front, right subtree: behind 

 Problem: finding good space partitions 
 Proper ordering for balanced tree 

 http://symbolcraft.com/graphics/bsp/ 
 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


24	


Cell-Portal Visibility 
 Keep track of which cell the object is in 
 Somehow enumerate all reachable regions 
 Cell-based 

  Preprocess to identify the potentially visible set for 
each cell 



R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


25	


Putting it all Together 
 The "best" solution will be a combination 

 Static things 
 Oct-tree for terrain 
 Cells and portals for interior structures 

 Dynamic things 
 Quick reject using bounding spheres 
 BVHs for objects 

 Balance between pre-computation and 
run-time computation 



Reduce, Reuse, Recycle! 
 These approaches can be used all over 

the place in graphics and animation 
 Ray tracing (e.g., intersections) 
 Collision detection 
 Visibility calculation 
 Behavioral animation 

R.W. Lindeman - WPI Dept. of Computer Science                                                                                             
 Interactive Media & Game Development 	


26	




R.W. Lindeman - WPI Dept. of Computer Science                                                                                            
 Interactive Media & Game Development	


27	


References 
  http://www.cs.wisc.edu/graphics/Courses/679-f2003/ 


