

CS 4732: Computer Animation

Physically Based Modeling

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

Physics-Based Animation

□ Golden Rule of animation (or CG for that matter)

- If it looks good enough, it is good enough.
- Physically plausible or physically realistic
- Forces may or may not reflect actual physics
 Directing a ball toward a bat
- This section is about applying forces to control the motion of objects to achieve a desired effect

Physically Based Modeling

- So, why do we call this modeling if this course is about animation?
 - We are modeling a system of forces
- We need to decide on the level of the process to model
 - Could model the folds in a piece of cloth, or model the forces on each piece of thread, giving rise to wrinkles
 - Tradeoff between physical correctness and computational/ expressive complexity
 - E.g., let the animator manipulate the overall shape of the cloth, and the computer will add wrinkles.
 - Classic control vs. automation balance

Newton is your Friend!

□To animate:

Describe all the forces in the system

- Consider each object in turn
- Calculate its linear acceleration (ignore rotational dynamics for now) using:

$$f = ma$$
 $a = \frac{f}{m}$

From the object's current velocity, v, and position, p, compute the new velocity, v', and position, p': $p + \frac{1}{2}(v + v')\Delta t$

$$= v + a\Delta t \qquad p' =$$

Use the Force(s)!

- □ A variety of forces can be used
 - Position and velocity are very useful
 - Can do gravity too, if need be, given the masses involved
 - Springs are also common for flexible objects
 Cloth, jell-o
 - **Dampers** can come in handy too
 - Viscosity is good for resistance through a medium
 - Conserving momentum can also be useful for realism

Rotation

Angular velocity and angular acceleration can be used to control object spin

The moment of inertia, similar to mass, is the measure of resistance to change in rotation

WPI

Spring-Damper Pair

A useful "tool" in animation for realism

L_r & L_c are the rest and current spring lengths, respectively
 k_s & k_d are the spring and damper constants, respectively

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

Spring-Damper Animation

- Flexible shapes are most often modeled using a mesh of vertices (points) and edges (spring-dampers)
- □ Rest length (L_r) set to the original edge length
- Mass is evenly distributed amongst the vertices
- □ Spring/damper constants ($K_s \& K_d$) assigned uniformly

Spring-Damper Animation (cont.)

- As forces are applied (e.g., wind, collisions, or whatever), vertices are displaced
 - Leads to spring/damper forces on adjacent vertices
 - Leads to more displacements, etc.
- Result is a wiggling, jiggling object
 Cool!
- One problem is the time-delay for propagation of the displacements
 Need to care for number of vertices/edges

- Spring-Damper Animation Example
- □Consider an equilateral triangle of springs
- \Box Momentary force is applied to v_2
- Acceleration causes displacement

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

Spring-Damper Animation Example

Other springs can also use used to

improve stability

Angular springs can maintain angles between faces

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development WPI

Rigid Body Simulation

□ Given the tradeoff between control and automation, physics can help!

Interactive Media & Game Development

Rigid Body Simulation (cont.)

- Movement in free space is relatively easy
- Collisions, rolling, sliding are another matter!
- Modeling continuous processes in discrete steps can always have problems too
 E.g., missing collisions
- Traditional physics deals with what to do when events happen
- Computer animation must deal with continuous changes over time

I'm Free, Free Falling...

 \Box Interval between uniform time steps: Δt

□ Need to update position (p), velocity (v), and acceleration (a) over time (t)
 ■ Model as functions of time: x(t), v(t), a(t), respectively

 $v(t + \Delta t) = v(t) + a(t)\Delta t$

$$x(t + \Delta t) = x(t) + \frac{v(t) + v(t + \Delta t)}{2} \Delta t$$

$$x(t + \Delta t) = x(t) + \frac{v(t) + v(t) + a(t) * \Delta t}{2} \Delta t$$

 $x(t + \Delta t) = x(t) + v(t) * \Delta t + \frac{1}{2}a(t) * \Delta t^{2}$

*Assume constant acceleration for the duration of the time step

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

