

CS 4732: Computer Animation

Interpolation

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

2

Quaternion Rotation

A quaternion is a scalar and a vector q = [s, v] [s, v] = [-s, -v]

To rotate a vector v using a quaternion
Represent the vector as [0, v]

- Represent the rotation as q
- Using quaternion multiplication

$$v' = Rot_q(v) = qvq^{-1}$$

Note: The scalar value for v' is always zero

Composing Quaternion Rotations

Rotating a vector v by quaternion p followed by quaternion q is like a rotation using qp.

$$Rot_q(Rot_p(v)) = Rot_q(pvp^{-1})$$
$$= qpvp^{-1}q^{-1}$$
$$= (qp)v(qp)^{-1}$$
$$= Rot_{qp}(v)$$

Composing Quaternion Rotations

□TO rotate a vector v by quaternion qfollowed by its inverse quaternion q^{-1}

 $Rot_{q^{-1}}(Rot_q(v)) = Rot_{q-1}(qvq^{-1})$

 $=q^{-1}qvq^{-1}q$

Quaternion Interpolation

□A quaternion is a point on a 4D unit sphere

■ Unit quaternion: q = (s, x, y, z), ||q|| = 1□ Forms a subspace: 4D sphere

 Interpolating quaternions means moving between two points on the 4D unit sphere
 A unit quaternion at each step – another point on the 4D unit sphere.

Move with constant angular velocity along the greatest circle between the two points on the 4D sphere

Quaternion Interpolation (cont.)

Move with constant angular velocity along the greatest circle between the two points on the 4D unit sphere

Linear Interpolation

Linear interpolation generates unequal spacing of points after projecting onto a circle

Spherical Linear Interpolation (slerp)

Want equal increment along an arc connecting two points on a spherical surface

$$slerp(q_1, q_2, u) = q_1 \frac{\sin((1 - u)\theta)}{\sin\theta} + q_2 \frac{\sin(u\theta)}{\sin\theta}$$

□ Where

• u goes from 0 to 1

 $\bullet \theta = \cos^{-1}(q_1 \bullet q_2)$

NOTE: Normalize to get a unit quaternion

Spherical Linear Interpolation (slerp)

 $\Box \text{Let } q = \alpha q_1 + \beta q_2$

□We can solve, given:

- $\|q\| = 1$
- $q_1 \bullet q_2 = \theta$
- $q_1 \bullet q = u\theta$

to give:

$$slerp(q_1, q_2, u) = q_1 \frac{\sin((1 - u)\theta)}{\sin\theta} + q_2 \frac{\sin(u\theta)}{\sin\theta}$$

9

Spherical Linear Interpolation (slerp)

- \square Recall that q and -q represent the same rotation
- What is the difference between:

slerp(q₁,q₂,u) and *slerp(q₁,-q₂,u)*

- One of these will travel less than 90 degrees, while the other will travel more than 90 degrees across the sphere
- This corresponds to rotating the 'short way' or the 'long way'
- Usually, we want to take the short way, so we negate one of them if their dot product is < 0</p>

Quaternion Summary

□Advantages

- Good, smooth interpolation (slerp)
- No gimbal lock
- Can be compsed much more efficiently
 - Eight multiplies and four divides
- Disadvantages
 - Impossible to visualize
 - Unintuitive

□ Good for internal representations of rotation.