Funded Mobile Projects in Healthcare Sensing and Imaging

Emmanuel Agu WPI Computer Science Dept, Director, HDI

Project 1: AlcoGait Intoxication Sensing

1 Masters student: Spring + Summer

AlcoGait: Intoxication Detection

- Can we test drinker's before DUI? Prevent it?
 - Vision: Test gait at party, during walk to car
- How? Alcogait smartphone app:
 - Samples accelerometer, gyroscope
 - Extracts accelerometer and gyroscope features
 - Classify features using Machine Learning (SVM, naïve Bayes, Random Forest, etc)
 - Notifies user if they are too drunk to drive
- Video: https://www.youtube.com/watch?v=pwZaoKmfq8c

Project 2: SmartPhone Wound Imaging 3 PhD Students

Sugar Diabetes App

PI: Strong, co-PIs: Tulu, Agu, Pedersen UMASS: Harlan, Pagoto, Ignotz, Dunn **ECE PhD Student: Lei Wang (wound analysis)**

- NSF-SCH funded project: smartphone app
 - Diet, blood glucose, exercise, weight
 - Analyzes wound healing from pictures
 - Wound boundary detection
 - Generates wound healing score
 - Behavior change (reminders, goal-setting)
- Funding: \$1.2 million, 2011-2015

Color Correction

Sugar Wound Assessment: Sample Steps

Wound Image

Wound boundary determination (Conditional Random Fields)

Tissue composition analysis (Red-Black-yellow model) K-means Clustering

3 Versions of Wound Detection Algorithm

Version 1: Mean-shift segmentation + footbox

• Version 2: 2-stage Cascaded SVM + no footbox

Version 3: Associative Hierarchical Random Field

(AHRF) + calibration patch

Healing Score

Weighted proportion of red, yellow and black tissue

$$S_n = 1 - \frac{WA_n - WA_0}{WA_0} * G = (1 + G) - G \frac{WA_n}{WA_0}$$

- High level of agreement with physician-assessments
- Krippendorff's Alpha Coefficient ranging from 0.42 to 0.81

SmartPhone Biomarkers for TBI/Infectious Diseases 2 PhD Students

- Smartphone biomarker
 - Smartphone-sensable user behaviors that can reliably indicate the health status, ailment symptoms and condition of the smartphone user.
- Example: depressed smartphone users:
 - Fewer step count per day
 - Smaller radius away from home
 - Fewer conversations
 - Difficulty sleeping at night
- All signs above can be sensed with a smartphone

TBI & Infectious Disease Smartphone BioMarkers

- US military would like early signs of warfighter has:
 - Traumatic Brain Injury (bomb blasts, explosions, fall, etc)
 - Infectious diseases (E.g. tuberculosis, pneumonia, measles, meningitis, malaria, Ebola, cholera and influenza)
- WASH Concept: Smartphone biomarkers may manifest first

Approach: Gather Data

- Gather up to 1 million subjects from Military cohort pools
 - Smartphone sensor data (accelerometer, GPS/Bluetooth, light, etc)
 - Medical reports (Sleep, anger, depression, pain, etc)

Extract Features + Correlation with TBI, Infectious Disease Symptoms

Generate TBI, Infectious Disease e-Score

- Cluster symptoms/smartphone biomarkers into disease families
- Detect anomalous warfighter behaviors

Conclusion

- I have exciting mobile sensing and imaging projects
- Currently hiring funded students for projects (to start in the spring)
 - AlcoGait: 1 masters student for spring semester + summer
 - (accelerometer, gyroscope, heart rate) signal processing + machine/deep learning
 - Smartphone wound image analysis: 3 PhD students, 4 yrs
 - algorithms for wound image analysis + machine/deep learning
 - Algorithms for decision on treatment plan
 - Smartphone biomarkers: 2 PhD students for 4 yrs
 - Early detection of smartphone biomarkers
 - Processing of location, mobile, smartphone sensors + machine/deep learning
- Note: We can discuss if you are only a Masters student