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Abstract—Sedentary behaviors such as sitting and watching TV
are ubiquitous in modern societies. Increases in sedentary time
have been linked with an increased risk of obesity, diabetes,
cardiovascular disease, and all-cause mortality. While smart-
phones and wearables can now detect sedentary user behaviors,
few computational models exist for predicting when they will
occur in future. In this paper, we propose a lightweight model
to predict future sedentary behaviors, facilitating prevention
rather than reactive interventions. Our models are based on
the concept of rhythm analysis, an idea proposed by Lefebvre,
which postulates that many human behaviors, the use of public
spaces, and many phenomena all follow natural rhythms. Our
work focuses on detecting the prevailing rhythms of sedentary
behaviors and modeling the cyclical rhythm and linear rhythm
in Lefebvre’s philosophy using periodic functions (history-free)
and linear functions (history-dependent) respectively. A person
who lies on his couch at the same time every day is an
example of a cyclical rhythm, while a person who lies down
in exhaustion after vigorous exercise is an example of a linear
rhythm. Our preliminary results from analyzing an existing
dataset clearly show that rhythmical sedentary patterns do
exist. Cyclical rhythms are more common than linear rhythms,
and half-day rhythms, daily rhythms, weekly rhythms, and bi-
weekly rhythms are clearly observed in a test dataset.

1. Introduction

Sedentary behaviors, defined as waking behaviors with
an energy expenditure ≤ 1.5 METs (Metabolic Equivalent
of Tasks) while in a sitting or reclining posture [1], are ubiq-
uitous in modern societies. Examples such as sitting while
using computers, watching TV, playing video games, and
commuting are common in daily modern lives. Sedentary
behaviors have been associated with a 112% increase in the
risk of diabetes, 147% increase in cardiovascular disease,
90% increase in cardiovascular mortality, and 49% increase
in all-cause mortality [2].

Sedentary behaviors caused by screen-based occupations
(e.g., desk jobs) and entertainment (e.g., watching TV) in
adults [3], [4], college students [5], [6], and children [7], [8]
have previously been studied. Many of these prior studies
have focused on post-analysis of past sedentary behaviors

to determine their causes. Predicting future sedentary be-
haviors, however, remains an open unsolved problem. The
ability to anticipate and predict future sedentary behaviors
will facilitate a transformation from health behavior inter-
vention to health behavior prevention, which will likely be
more effective [9].

We propose predictive models for sedentary behaviors
based on classic rhythm analysis [10], which contends that
rhythms are found in many areas of human life including
work schedules, seasonal patterns of influenza, the body’s
hunger, shopping center crowds, night and day. The dy-
namic interplay of rhythms yields important components
of the everyday contexts of people’s lives, increasing or
decreasing the effort required to perform everyday activities.
We hypothesize that such rhythms generally exist in many
Activities of Daily Living (ADL) [11] and specifically in
sedentary behaviors. This hypothesis is supported by the
work of Rantala and Valtonen, who found rhythmic patterns
in the sleep patterns of tourists [12]. McQuoid [13] also
proposes that self-management of chronic ailments might
be easier if patients form habits that do not conflict with
rhythms already existing in their lives. In this paper, we
focus on detecting rhythms of sedentary behaviors in order
to predict future occurrence.

While prior medical research has established the exis-
tence of rhythms in health-related behaviors such as the
circadian rhythms [14], which influence human sleep cycles
and may cause mood and mental health disorders when dis-
rupted [15], very few computational models have been pro-
posed to capture such rhythms. We propose two canonical
types of models to capture sedentary rhythms: (1) a history-
free predictive model, which uses a frequency domain al-
gorithm to predict future sedentary behaviors with cyclical
rhythms, and (2) a history-dependent model, which uses
the AutoRegressive (AR) model to predict future sedentary
behaviors as a function of recent past behaviors (observed
linear rhythms). We fit these two models to smartphone-
sensed user activity logs in order to extract rhythmic patterns
of sedentary behaviors and predict future sedentary behav-
iors at various timescales. Our results have broad impact
since such activity logs can now be generated by many
physical activity trackers (e.g., Fitbit) and smartphone apps
(e.g., Google Fit [16]).
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Figure 1. The sedentary behavior prediction problem

A unified model is then proposed to combine the history-
free and history-dependent models. Two algorithms are
developed to build and optimize this unified model. Our
preliminary results show that cyclical (periodic) rhythms
are more common than linear (based on recent past behav-
iors) rhythms, and half-day rhythms, daily rhythms, weekly
rhythms, and bi-weekly rhythms are clearly observed in a
test dataset [17]. Our application of rhythm analysis yields a
lightweight model for predicting future sedentary behaviors
without requiring complex contextual information (e.g., lo-
cation, temperature, and humidity) sensed with sensors and
computations utilizing context, which is more suitable for
wearable devices such as Fitbit.

An overview of the problem addressed by this paper as
well as our overarching vision are depicted in Figure 1. The
rest of this paper is organized as follows: A brief review of
related work is provided in Section 2. Section 3 describes
our two canonical types of predictive models as well as our
unified model that combines them. In Section 4, we present
the results of experiments to validate our proposed predictive
models and then discuss our results in Section 5. Finally, in
Section 6, we conclude by summarizing our contributions,
limitations, and future work.

2. Background and Related Work

2.1. Activity Prediction

Activity Prediction has been researched in the context of
Activities of Daily Living (ADL) in smart homes [18] and
for predicting user actions within videos in computer vision
[19]. Pentland and Liu [20], proposed that many human
behaviors can be accurately described as a set of dynamic
models (e.g., Kalman filters and Markov chains). By using
their behavior modeling methodology, they demonstrated

that driving-related actions can be accurately categorized
soon after the actions begin in order to predict future actions.

Similarly, graph-based probabilistic activity prediction
models such as Hidden Markov Models [21], Conditional
Random Fields [22], and rule-based activity prediction have
been suggested [23]. Applications combining ideas in activ-
ity prediction with computer vision techniques have emerged
in recent years [19]. For instance, Galata et al. [24] com-
bined motion capture data with a Markov model in order to
predict body movements in exercise routines.

Although these proposed human behavior prediction
models have shown promising results in certain scenarios,
they are usually complex due to the large amount of mul-
tivariate information required for making predictions (e.g.,
context information such as location, environment, people’s
mental state and physical state). In contrast, we propose
models that are context-free, utilizing only the history of
user’s activity, which makes our models suitable for running
on resource-constrained mobile/wearable devices such as
activity trackers (e.g., Fitbit).

2.2. Circadian and Health-Related Rhythms

Prior medical research has established the existence of
rhythms in health-related behaviors. The circadian rhythm
is a 24-hour cycle of physical, mental, and behavioral
changes in humans, which influence humans’ sleep patterns
and master clocks [14]. Disruptions and abnormalities in
circadian rhythms have been linked with the development of
mood disorders such as bipolar disorder, major depression,
and seasonal affective disorder [15]. Our work investigates
whether sedentary behaviors occur in a rhythmical fashion.
Specifically, we synthesize a computational model for de-
tecting underlying rhythms of sedentary behaviors in order
to predict future occurrences.
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2.3. Rhythm Analysis

In 1930s, Lefebvre pioneered the idea that rhythms are
found in many areas of human life including work schedules,
seasonal patterns of influenza, the body’s hunger, shopping
center crowds, night and day. Lefebvre postulated that two
types of rhythm exist in the daily lives of humans: (1)
Cyclical Rhythms: repetitions with determined periods or
frequencies; and (2) Linear Rhythms: lines, trajectories, and
repetitions where future behaviors are linked with recent
past behaviors [25]. A person who lies on their couch at the
same time every day is an example of a cyclical rhythm,
while a person who lies down in exhaustion after vigorous
exercise (recent past behavior) is an example of a linear
rhythm.

The rhythm analysis philosophy and methods proposed
by Lefebvre have been widely used for analyzing the
rhythms of urban spaces and how these rhythms influence
the inhabitants living in those spaces [26]. It has also been
applied in medical studies to understand the causes of diffi-
culties experienced by people afflicted with chronic diseases
participating in paid work (logistical and rhythmic space-
time conflicts between managing illness and paid work) [27],
to identify the sleep problems of tourists [12], and to guide
the use of technological devices to encourage physically
active lifestyles [28].

We apply rhythm analysis in order to predict sedentary
behaviors without using contextual information. We model
the two everyday life rhythms (cyclical & linear rhythms)
in Lefebvre’s philosophy using history-free and history-
dependent predictive models respectively, which we will
discuss in the next section.

3. Predicting Sedentary Behavior Rhythms

We start by defining sedentary behavior quantitatively
as the percentage of time a person is sedentary within a
given time interval. For instance, if a person sits a total
of 15 minutes during the 10:00AM–10:20AM (20-minute)
time period, by our definition, this person had a sedentary
behavior with sedentary level of 75% (= 15min

20min ×100%). A
more detailed discussion of sedentary behaviors in practice
will be discussed in the Section 4 (Experiment).

We propose two types of models for predicting sedentary
behavior: (1) history-free predictive model, which predicts
the future sedentary behavior using learned cyclical rhythms;
and (2) history-dependent predictive model, which predicts
the future sedentary behavior using observed linear rhythms
(recent past behaviors). A unified model is then introduced
to combine the history-free and history-dependent models.

3.1. History-Free Sedentary Behavior Prediction
(HF-SBP)

Cyclical rhythms or periodic patterns are common in
nature. For example, most people sleep every night. We
believe that some sedentary behaviors may follow peri-
odic patterns. If such patterns exist, the prediction task

switches to that of finding the periods of all active cycles of
sedentary behaviors. The time series of sedentary behavior
(y1, y2, . . . , yt) with an underlying cyclical pattern can be
modeled as:

Y = Acos(ωt+ φ) +B (1)

where ω is the frequency, φ is the phase shift, A is the
amplitude, B is the vertical shift, t is the time, and Y is the
sedentary level. Given a time index t indicating a sedentary
behavior in the future, we can predict this sedentary behavior
yt by applying Equation 1 with t.

At any instant, multiple cycles may be occurring, requir-
ing the combination (summation) of several cyclical rhythms
with different frequencies, phase shifts, amplitudes, and
vertical shifts (e.g., Figure 2 as an example). To generalize
our history-free model, we replace Equation 1 with:

Y = B +
n∑

i=1

Aicos(ωit+ φi) (2)

where n is the number of periodic functions, and B is
the overall vertical shift. Equation 2 uses the superposition
principle of Fourier series to combine sedentary behaviors
on multiple different timescales. To estimate the parameters
Ai, ωi, and φi of this model, we apply discrete Fourier
transform and Cooley-Tukey algorithm [29].

Figure 2. A visualization of a periodic function (red) decomposed into 6
cosine functions (blue) [30]

In our earlier paper [31], we demonstrated a similar
model for sedentary behavior and found that some college
students had clear daily and weekly sedentary behaviors
such as being sedentary every Monday at 1PM as a result
of class attendance. We consider this model “history-free”
because once the active sedentary cycles have been discov-
ered in model training phase, subjects’ activity histories are
not required to make predictions. What is needed are the
trained model and time index t.

3.2. History-Dependent Sedentary Behavior Pre-
diction (HD-SBP)

Another type of temporal behavior patterns is also com-
monly observed in nature. Behaviors with such temporal
patterns are linearly correlated with the history of these
behaviors themselves. For instance, after running a 400-
meter race (yt−1 = 20%, low sedentary level), for the next 5
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minutes, a person is likely to sit and take a rest (yt = 80%,
highly sedentary). In this example, the current state of
sedentary behavior is negatively correlated with the previous
state of the behavior. Mathematically, we can model this
correlation as yt = α yt−1 + 1, where the coefficient α is
negative (−1) in this case, indicating a negative correlation.
Such linear correlation can be interpreted as a linear rhythm.

Linear correlation with previous behaviors may not al-
ways be as simple as first-order. Linear dependency can be
long (Figure 3). To generalize our history-dependent model,
we define it as:

Yt =
n∑

i=1

βiYt−i + ε (3)

where n is the order of the model, ε is a constant, and βi

are the coefficients, which can be estimated with the Maxi-
mum Entropy Method (MEM) [32]. This type of history-
dependent prediction has been discussed in our previous
study [33] and showed good accuracy in terms of having
low Mean Squared Errors (MSEs) in predicting sedentary
behaviors.

Figure 3. N-th Order Linear Correlation

We call this model “history-dependent” because it needs
to remember and utilize the subject’s history of sedentary
behaviors {yt−1, yt−2, . . . , yt−n} for the purpose of making
predictions. It is instructive to note that the difference be-
tween above two predictive models (HF-SBP and HD-SBP)
is the required input information—time index t vs. historical
states {Yt−1, Yt−2, . . . , Yt−n}.

3.3. Hybrid Sedentary Behavior Prediction (Hy-
SBP)

To combine the benefits of the HF-SBP and HD-SBP
models and synthesize a unified model, we propose a semi-
history-dependent predictive model (Equation 4). This hy-
brid model (Hy-SBP) is a weighted combination of the HF-
SBP and HD-SBP models. The HF-SBP part of this model
captures the patterns caused by periodic cycles at multiple
time scales and the HD-SBP part captures the patterns inside
these cycles.

To build a Hy-SBP model, we first perform Fourier
transform on the sequence of sedentary behaviors and find
the dominant periodic functions—cosine functions with the
largest amplitudes. These dominant periodic functions can
be interpreted as the cyclical rhythms of sedentary behaviors.
Then, we subtract cyclical rhythms from the sequence and
get the remaining sedentary behaviors in the sequence as
linear rhythms. We further model the linear rhythms with
autoregression.

Y =
k∑

i=1

αicos(ωit+ φi) +
l∑

j=1

βj Ỹt−j + ε (4)

where ε is a constant, k is the number of cyclical rhythms,
l is the order of linear rhythm, ωi are the frequencies
of periodic functions, φi are the phase shifts, αi are the
amplitudes, t is the time index, βj are the autoregressive

coefficients, and Ỹj are the remaining sedentary behaviors
in the sequence after subtracting cyclical rhythms.

An example is demonstrated in Figure 4. The algorithm
for generating such Hy-SBP model is described with pseu-
docode in Algorithm 1.

Figure 4. An example of generating Hy-SBP model
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Algorithm 1 Hy-SBP model generator: genHybridModel(y,
k, l)
Require: k ≥ 0, l ≥ 0, and y = [y1, y2, . . . , yt]
Ensure: k + l > 0

1: ω, φ, α← fourierTransform(y)
2: ω, φ, α← ω[1..k], φ[1..k], α[1..k]
3: ỹ ← inverseFourierTransform(ω, φ, α)
4: ŷ ← y − ỹ
5: β, ε← burgEstimateWithMaxEntropy(ŷ, l)
6: return ω, φ, α, β, ε

4. Experiment to Validate Our Proposed Pre-
dictive Models

In order to validate our proposed Hy-SBP model, we
utilize data from a public dataset from Dartmouth College,
called “StudentLife” [17]. StudentLife provides us with
activity data (automatically sensed using smartphones) of
a class of 49 Dartmouth students over a 10-week term
(2013 Spring). The dataset contains students’ activities,
locations visited, and smartphone usage. The StudentLife
dataset is publicly available on the project’s website (http://
studentlife.cs.dartmouth.edu). For our purposes, StudentLife
dataset presents a complete academic term of time series of
students’ activity states, contextual information, smartphone
usage, and physical activities, including sedentary behaviors
that we utilize in validating our model.

The raw physical activity logs provided by StudentLife
dataset contain timestamps and activity labels: Stationary,
Walking, Running, and Unknown. The physical activities of
subjects were sampled every 2–3 seconds in 1 of every 4
minutes. The activity types were inferred from acceleration
data sensed with smartphone’s accelerometer and classified
using a decision tree classifier with 94% accuracy. In this
study, we are only interested in whether the activity was
Stationary (i.e. sedentary). We make the assumption that
sedentary behaviors such as sitting and lying down probably
correspond to the Stationary state in the StudentLife dataset.
As such, non-sedentary behaviors such as standing still for
2–3 seconds may be mis-classified as Stationary, but is
likely not be as common as sitting still for 2–3 seconds.

As defined in the previous section, sedentary behavior
is defined as the percentage of activity logs classified as
Stationary for a given person in a given period of time.
In this experiment, we consider 1-hour buckets of time.
For instance, between 08:00AM and 10:00AM, there are 2
time buckets: 08:00AM–09:00AM and 09:00AM–10:00AM.
Sedentary behaviors occurring in a given period are summa-
rized as a sedentary level—a percentage, 0–100%.

4.1. Estimate k & l

To estimate parameters k (the number of cyclical
rhythms) and l (the order of linear rhythm) in the Hy-SBP
model, we exhaustively test different combinations of k & l
in certain ranges and select the 〈k, l〉 pair with the smallest

Mean Squared Error (MSE) tested on the training data
(Algorithm 2). The MSE quantifies the difference between
sedentary levels predicted by our model and the observed
sedentary levels in the dataset. In this experiment, the length
of historical data used for training is 2 weeks.

As mentioned in the previous section, the HF-SBP part
of the Hy-SBP model captures the patterns across cycles
while the HD-SBP part captures the patterns inside cycles.
The l parameter required in HD-SBP part is constrained
to take values less than the length of the smallest cyclical
rhythm. For instance, if the smallest cyclical rhythm is a
half-day (12-hour) periodic pattern, l should be ≤ 12.

Algorithm 2 Hy-SBP model optimizer: genOptimalHybrid-
Model(y, k, l)
Require: minK ≤ maxK, minL ≤ maxL, and y =

[y1, y2, . . . , yt]
1: for k = minK to maxK do
2: for l = minL to maxL do
3: model = genHybridModel(k, l, y)
4: models[] ← model
5: mse[] ← evaluate(model, y)
6: end for
7: end for
8: i = findIndexOfMinimium(mse)
9: return models[i]

4.2. “Replay” and Model Students’ Daily Lives

For each subject in the StudentLife dataset, we “replay”
activity logs of their daily lives—feeding their historical
sedentary behavior data (1-hour time buckets) in chrono-
logical order to our algorithm—and model them by build-
ing our predictive models. The algorithm moves along the
sequence of buckets, building models, making predictions,
and comparing predictions with the ground truth—the real
sedentary behaviors in the data. At any point in the sequence
of a subject’s sedentary behaviors, we use the subject’s past
2 weeks of sedentary behavior data (look back 336 1-hour
buckets) preceding that point to generate an optimized Hy-
SBP model, and then use the model to predict the subject’s
next sedentary behavior. This 2-week period acts like a
sliding window.

For instance, Subject 19 has 1,536 buckets sequenced
chronologically. Initially, we use the first 336 buckets to
generate a model, and use it to predict the 337th bucket.
Then, we move the look-back window forward one step
and buckets 2–337 to predict the 338th bucket. By the time
all 1,536 buckets have been traversed for Subject 19, 1,200
predictions would have been made (1536− 336 = 1200).

For all 49 subjects in StudentLife dataset, we built a total
of 49,248 Hy-SBP models and made 49,248 predictions.
The automatically optimized parameters (k and l) used with
Algorithm 2 are summarized in Figure 5, where the columns
correspond to different values of l, the rows correspond
to different values of k, and the numbers in the cells are
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the frequencies of the model selected for the corresponding
parameter combinations.

Figure 5. Frequency of Hy-SBP parameter combinations

5. Discussion

5.1. Cyclical Rhythms and Linear Rhythms

Setting the values of k = 0 and l = 0, makes the
Hy-SBP model act like a simple Moving Average (MA)
model—predicting the future with the simple average of
the past. As shown in Figure 5, 23,935 times (48.6%) the
genOptimalHybridModel algorithm (Algorithm 2) selected
k = 0 and l = 0 as the optimal values to use in building
the Hy-SBP model and to make predictions. Although this
goes against our assumption that people’s daily lives consist
with cyclical rhythms (k > 0) and linear rhythms (l > 0),
this is not surprising as people spend about 6–8 hours per
day sleeping (sedentary level = 100%). While a subject is
asleep, the best prediction could be as simple as using the
average sedentary level of the prior few hours, during which
the subject may also be sleeping.

The first colored column in Figure 5 represents the Hy-
SBP models with l = 0, which means the Hy-SBP models
only have the HF-SBP part (for cyclical rhythms). The first
colored row represents the Hy-SBP models with only the
HD-SBP part (for linear rhythms). For this particular dataset,
it is more common for Hy-SBP models to have only the
cyclical (periodic) rhythms (14,883) than having only the
linear (based on recent history) rhythms (3,450).

Multiple cyclical rhythms with different cycle lengths
may occur simultaneously for each subject. Consider a
subject who sits in a weekly class for 3 hours every Monday
(weekly cycle) and also sits for lunch at the same time
every day (daily cycle). Figure 6 shows how frequently
different cycle lengths were recognized by the Hy-SBP
models in the StudentLife dataset. Half-day rhythms, daily
rhythms, weekly rhythms, and bi-weekly rhythms stood out.
Daily rhythms were commonly observed. We speculate that
such a strong pattern was largely caused by sleeping—a
sedentary behavior albeit one that should not be intervened.
We also suspect that the weekly rhythms were caused by
scheduled sitting in classes—another sedentary behavior. In

future work, by analyzing contextual information such as
time and location, we will further investigate the causes of
these cyclical rhythms. We make the point here that since
our models are simple, it catches all sedentary behaviors
including sedentary behaviors such as watching TV that are
typically targeted by interventions, as well as sleeping and
sitting at work or classes, which will likely not be the targets
of interventions from a practical perspective.

Figure 6. Frequencies of Hy-SBP models with different cyclical rhythms

Not all subjects had distinct cyclical and linear rhythms.
For 13 of 49 subjects, our Hy-SBP model outperforms the
baseline—moving average model—when predicting seden-
tary behaviors. For the rest, however, it does not always
outperform the average model. We speculate that this might
be caused by the diversity of patterns exhibited by students
(the demographic covered by StudentLife dataset). Since
students’ schedules are generally more flexible than many
other occupations, a wide variety of patterns (and models)
are to be expected.

5.2. Model Sensitivity to the Length of Historical
Data Used for Training

For the bulk of our data exploration experiments, we
used a 2-week sliding window of historical data for training
the optimized Hy-SBP models. In this section, we explore
how sensitive our models are to the size of the look-back
sliding window. For instance, if the sliding window is in-
creased, does the accuracy of predicting sedentary behaviors
improve? Intuitively, using more data to predict a person’s
behavior should yield a more accurate prediction. However,
in statistical models, beyond a certain threshold, using more
training data can cause the problem of overfitting [34].

To study how sensitive the accuracy of the Hy-SBP
model is to the length of the sliding window, we compared
the accuracies of Hy-SBP models built with different sliding
window lengths for all students in the StudentLife dataset.
Figure 7 shows the MSE of predictions—the smaller the
MSE is, the more accurate the model is—made by the
Hy-SBP model. As depicted in Figure 7, as the length of
historical data increases, the average MSE of all students
decreases.

However, increasing window size does not always yield
more accurate predictions for every subjects (Figure 9). We
further categorize the results as follows:
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Figure 7. MSE vs. length of historical data used for training

1) Strictly obey: Monotonically increasing. i.e.
MSE1week > MSE2weeks > MSE3weeks >
MSE4weeks;

2) Partially obey: MSE1week > MSE4weeks only
but no clear pattern for 2-week and 3-week win-
dows;

3) Strictly disobey: Monotonically decreasing. i.e.
MSE1week < MSE2weeks < MSE3weeks <
MSE4weeks; and

4) Partially disobey: MSE1week > MSE4weeks only
but no clear pattern for 2-week and 3-week win-
dows.

Figure 8 summarizes the number of students in each of
the above categories in the StudentLife dataset.

Figure 8. “More data, more accurate” pattern

5.3. Granularity of Time and Sedentary Level

Intuitively, predicting sedentary patterns in the near fu-
ture (e.g., next 1 hour) is more difficult than forecasting
longer term behaviors (e.g., next 6 hours), because people’s
daily lives are very complicated and dynamic. Shorter term
predictions are more affected by random noise, which can
be smoothed out in longer term predictions. Many factors
may significantly influence peoples’ next 1-hour sedentary
behaviors. Making the bucket size bigger may increase the
accuracy of prediction, but it will reduce the granularity of
prediction.

In future, we will explore bucket sizes that establish a
balance between prediction accuracy and granularity. We
would like to investigate how far into the future (e.g., 1

bucket away or 2 buckets away) the Hy-SBP model can
predict and how small the granularity of time we can predict
(e.g., next 10 minutes or next 20 minutes). For sedentary
behavior interventions, we believe that sub-hour predictions
may be more useful. This requires further investigation and
user studies to confirm.

In this study, our original goal was bold—we wanted
to predict the exact future sedentary level (e.g., 84%) of
a subject. An easier task may be predicting discretized
ranges of sedentary levels, e.g., very sedentary (90-100%),
sedentary (80-90%), active (40-80%), and very active (0-
40%). We will explore such discretization in the future.

5.4. Model Complexity

The context-free model discussed in this paper is a light-
weight predictive model, which only models the patterns of
sedentary behavior itself. No contextual information (e.g.,
location and temperature) is exploited to improve the accu-
racy of prediction. It has two advantages over the context-
aware models: fewer sensors required and lower model
complexity—the complexity of the model decreases as the
number of required context inputs decrease [35].

For wearable devices such as Fitbit, a light-weight pre-
dictive model will be more computationally feasible than
models that utilize large multivariate contextual information.
Resource-constrained mobile/wearable devices might not be
equipped with the sensors required to sense rich context and
might not have sufficient computational power to discover
patterns and to make predictions. For more powerful devices
such as a smartphone, the cost of gathering and analyzing
various types of contextual information to generate sophis-
ticated context-aware models will be more reasonable.

While the models discussed in this study do not take
advantage of context information for prediction purpose,
we by no means underestimate the usefulness of context.
In our previous work [36], we found that using a simple
Logistic Regression model and smartphone-sensed context
information such as user location, time, and smartphone
app usage, we could predict whether a student will be very
sedentary in the next hour with a precision of 73.1% (recall
of 87.7%).

In future, we would like to research the idea of com-
bining our context-free models (discussed in this paper) and
the context-aware models (discussed in [36]) and to develop
a unified framework for model evaluation.

6. Conclusion

In this paper, we proposed two canonical types of
model and a hybrid model to quantitatively perform rhythm
analysis, a concept proposed by Lefebvre [25]. Cyclical
rhythms and linear rhythms, proposed by Lefebvre, are
modeled using periodic functions (history-free model) and
linear functions (history-dependent model) respectively. Our
preliminary results with our Hy-SBP model showed that
cyclical rhythms are more common than linear rhythms, and
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Figure 9. MSE when Different Lengths of Historical Data are Used for Training the Hy-SBP Model

half-day rhythms, daily rhythms, weekly rhythms, and bi-
weekly rhythms were observed clearly among students in
the StudentLife dataset.

In future, we would like to see how Just-In-Time health
behavior intervention can be integrated with behavior pre-
diction to achieve better health behavior change outcomes.
For instance, if it is predicted that a subject will become
sedentary (e.g., watching TV) after dinner, a reminder might
be sent to her/his smartphone just as s/he arrives home from
work, reminding her/him to walk around during the TV
commercial breaks.

Finally, we believe that beyond sedentary behaviors, the
concept of rhythm analysis could apply broadly to many
health-related behaviors. We believe that it could be applica-
ble to biological and social rhythms and might help mitigate
chronic behavioral disorders (e.g., unhealthy dietary habits,
cigarette smoking, and substance abuse) [14] and mental
disorders (e.g., cyclothymic and bipolar disorders) [15]. Our
proposed framework may help facilitate various interven-
tions driven by behavior prediction, helping people live
healthier lives.
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