A Personalized Transformer Neural Network for
Accurate Recognition of Health-Indicative Complex
Activities from Smartphone Sensors

Abstract—Continuous monitoring of Activities of Daily Living
(ADLs) and Instrumental ADLs (IADLSs) of the elderly is vital for
their safety, independent living, quality of life and overall health.
Declines in the ability to perform these tasks, which require
the interplay of musculoskeletal, neurological, and cognitive sys-
tems, often indicate underlying health problems. Early detection
of such declines can prompt timely interventions. Traditional
ADL/IADL assessment was manually done infrequently by a
skilled expert. Passive monitoring using data from the built-
in sensors of ubiquitous devices such as smartphones offers
continuous, objective monitoring of an individual‘s ADLs in their
natural environment. However, the recognition of ADLs from
sensor data faces challenges including high intra-class variability
due to individualized styles of performing ADLs. One-size-fits-all
machine learning models often misinterpret individual nuances
in ADL performance, resulting in inaccurate health assessments.
Personalization of ADL models can make them robust to inter-
subject variability. This paper proposes the Personalized Health
Activity Recognition Transformer (P-HART), a personalized
transformer-based model that captures temporal relationships
in sensor data for robust Complex Activity Recognition (CAR)
from smartphone sensor data. In rigorous evaluation on a com-
prehensive complex ADL dataset, P-HART achieved an F1-score
of 92.6% with personalization and 88% without personalization,
outperforming baseline models and demonstrating the substan-
tial benefits of ADL model personalization. P-HART facilitates
remote health-indicative activity recognition and monitoring.

Index Terms—Activities of Daily Living, Personalized Complex
Human Activity Recognition, Smartphone sensors, Transformers

I. INTRODUCTION

Motivation: The aging global population has created
unprecedented challenges in healthcare, particularly in contin-
uous monitoring for chronic care management [1]]. As of 2022,
there were 57.8 million US adults aged 65 and over 2] with
1.3 million of them living in nursing homes and 818,800 in
assisted living communities [3]]. As an overwhelming majority
of older adults prefer to “age in place” rather than relocate to
institutional care facilities [4], there is a growing need for
effective home-based monitoring solutions that support safe,
independent living. ADLs are critical indicators of an individ-
ual’s functional status and potential to live independently [5].
Since ADLs require coordination between multiple body sys-
tems including musculoskeletal, neurological, and cognitive
systems, declining performance is often an early warning sign
warranting medical intervention and care adjustments. ADLs
fall into two categories: basic and instrumental. Basic ADLSs
such as ambulating, eating, and using the toilet, are required

to meet a person‘s basic needs. Instrumental ADLs (IADLs)
include more complex activities necessary for independent
living, including meal preparation, managing finances, using
transportation, and taking medication. An individual‘s ability
to perform ADLs and IADLs directly correlates with their
potential to live safely and independently. ADL and IADL
monitoring integratively evaluates physical function, cognitive
ability, and psychosocial factors such as motivation to engage
in certain activities such as cooking.

Problem: Traditionally, ADL assessments have relied on
self- or observer reports [6], [7], which are susceptible to
recall bias and inter-rater fluctuations [8]], [9]. Additionally,
functional decline is often gradual. Initial signs are subtle
enough to be overlooked, resulting in missed opportunities
for early intervention. This highlights the need for auto-
mated monitoring systems. Sensor-based ADL monitoring has
emerged but has largely relied on ambient sensors or camera-
based systems [10], [11]], which require modifications to living
environments [12]. Given that over 91% of US adults own
smartphones [13]], leveraging their built-in sensors for ADL
monitoring is a more scalable approach.

Challenges: The recognition of ADLs and IADLs faces
technical challenges. Unlike simple activities such as walking
that existing Human Activity Recognition (HAR) models
can detect, ADLs can be complex, consisting of multiple
simple activities that are performed concurrently, or inter-
leaved. Ranasinghe et al. [14] defines three types of Com-
plex Activities(CAs): sequential, interleaved and concurrent.
Sequential activities consist of multiple simple activities that
are performed in a sequence. For example, cooking involves a
series of simple activities such as opening the fridge, gather-
ing ingredients and picking up utensils. Concurrent complex
activities consist of multiple simple activities performed simul-
taneously. For example, concurrently cooking while watching
the television. Interleaved complex activities consist of a
complex activity that is interrupted by a simple activity. For
example, an individual may stop cooking to take a phone call
before resuming cooking. This complexity limits the efficacy
of algorithms that try to match patterns in the training and
test sets exactly, transforming Complex Activity Recognition
(CAR) into a multi-class, multi-label classification problem
requiring sophisticated modeling [15]. Additionally, complex
activities exhibit high intra-class and inter-subject variability
[16], where the same activity (e.g., “making a sandwich”)
can be performed in different ways by individuals based on
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Fig. 1. Illustration of intra-class and inter-subject Variability in an example "Making a Sandwich” ADL

personal style and contextual factors. For instance, Figure [I] 3) Rigorous evaluation demonstrating that P-HART signifi-

illustrates the variability in activity sequences among five ran-
domly selected participants from our dataset, showing that no
two individuals performed the exact same sequence of simple
activities while making a sandwich. This variability has led
to a well-documented challenge of inter-subject generalization
in HAR systems , where models trained on data from
certain individuals often perform poorly on new users due
to differences in age, gender, and styles. Personalization is
critical for accurate, reliable ADL assessment, particularly in
high-stakes domains such as healthcare.

Our approach: We propose Personalized Health Activity
Recognition Transformer (P-HART), a custom transformer
based architecture with user personalization, for complex HAR
using sensor data from a smartphone and simulated smart-
watch. P-HART leverages the temporal modeling strengths of
transformers while incorporating personalization mechanisms
to learn individual performance styles. In rigorous evaluation
on our CAR dataset, P-HART achieved a 92.6% F1-score with
user personalization vs. 88% without personalization.

Prior work: Chandrasekaran et al. introduced CART-
MAN, which used topic models to generate features that were
classified by a neural network, outperforming AROMA, the
previous State-Of-The-Art (SOTA) model for recognizing
sequential complex activities. However, CARTMAN did not
consider interleaved or concurrent complex activities. More
recently, Ek et al. [20] proposed HART, a Transformer-based
model that achieved SOTA performance in recognizing simple
activities but did not consider complex activities.

Contributions:

1) We propose P-HART, a personalized transformer-based ar-
chitecture to recognize complex ADLs. P-HART learns
from fine-grained simple activity labels to understand the
composition of complex ADLs from smartphone sensor data.

2) P-HART incorporates a novel multi-task learning strategy
that combines a dual-stream cross-modal attention mecha-
nism with a specialized contrastive loss framework (NT-Xent
and Temporal Contrastive Loss) to generate robust, context-
aware representations of user activity.

cantly outperforms baseline and state-of-the-art models, and
quantifies performances gains attributable to personalization.
We show that a few-shot adaptation (6-shot) provides the
optimal balance for maximizing recognition performance.

II. RELATED WORK

Fine-Grained ADL Recognition: While there have been
numerous studies on ADL recognition, not all types of ADLs
have been investigated equally. identifies gaps in the lit-
erature. For instance, the recognition of ADLs such as bathing
and dressing have been under-researched. [22]] describes the
importance of fine-grained ADL recognition and the use of
sensors to capture action-level details that are crucial for
assessing subtle changes in an individual’s ability to perform
ADLs. proposes a method to detect complex ADLs,
which first detects atomic activities from wearable sensor data
and then uses rank pooling to encode temporal transitions
between atomic activities. While their approach improved the
accuracy of recognizing sequential complex ADLs, they did
not consider concurrent and interleaved ADLs, a limitation
that our work addresses.

Smartphone and Smartwatch-Based Recognition: Activ-
ities can be recognized from various sensor modalities, in-
cluding wearable sensors , smart home environment ,
Wi-fi [26]], audio sensors [27], video [28]], or a combination
of these modalities. Since we aim to utilize devices already
owned by users without modifying the living environment, we
focus on smartphones and smartwatches. Kwapisz et al.
comprehensively demonstrates the viability of using sensors
already embedded in smartphones, specifically accelerometers,
for recognizing a range of physical activities. Roy et al.
presents a hybrid approach that augments smartphone-
based activity sensing with data from ambient sensors to
effectively recognize multiple inhabitants in a home. Their
approach discerned individual context by combining person-
specific mobile data with person-independent ambient context,
significantly improving complex ADL recognition accuracy.
Laput et al. showcases the ability of commodity smart-



watches to recognize fine-grained hand activities performed
in many ADLs (e.g., eating, personal hygiene) by leverag-
ing smartwatch sensors. Ferndndez et al. [32] demonstrates
the excellent performance of deep learning architectures in
recognizing ADLs from wearable sensor data captured from
smartwatches and wearable devices.

III. DATASET

We utilize a previously collected novel CAR dataset
consisting of sensor data from 47 participants performing
sequential, concurrent and interleaved complex ADLs and
IADLs. A paper describing the dataset is in submission.
Upon acceptance, the dataset will be publicly available at
figshare.com/s/939ec0ab75630c3dlace. Data were collected
from two identical smartphones, mounted on the participant‘s
wrist (simulating a smartwatch) and in their pants pocket.
Each device recorded data from five sensors (accelerometer,
gyroscope, rotation vector, magnetometer, and gravity) at var-
ious sampling frequencies. This yielded 36 raw data columns
(18 per device). To ensure consistency, all the sensor data
were resampled to 50 Hz and then featurized using sliding
windows of varying sizes (1-60 seconds) with different overlap
percentages. This yielded a 332-dimensional feature vector.
Table [[ shows the equations for the features.

The study to collect CAR data was conducted in a lab
and received Institutional Review Board approval. This dataset
contains ~54 minutes of labeled data per participant, for 29
simple activity and 9 complex activity labels. The partici-
pants performed representative ADLs (bathroom activities) and
IADLs (cooking activities). The dataset was annotated at two
granularities: “sandwich CAs” had fine-grained labels of the
constituent simple activities. For privacy reasons, ‘“bathroom
CAs” contain only complex-level labels.

IV. APPROACH

Figure 2] shows the smartphone placement on the user, the
list of activities performed and an overview of the classifica-
tion process. Simple and complex activity labels were one-
hot encoded to enable multi-label classification of concurrent
simple activities (e.g., talking on the phone while making a
sandwich) and interleaved complex activities where multiple
tasks can be performed simultaneously.

P-HART (Fig. EI) is a multi-device, transformer-based ar-
chitecture that uses contrastive loss and user-personalization
for enhanced complex ADL recognition. P-HART analyzes
time-series sensor data streams from mobile devices in the
user‘s pant pocket and on their wrist. P-HART leverages
deep learning to learn robust, personalized representations of
complex activities. P-HART uses a series of specialized layers
to process two input data streams. Initially, Pocket and Wrist
Feature Extractors, each containing a linear layer followed by a
ReLU activation layer, extract salient features from raw sensor
signals. These features are then passed to a Positional Encoder,
which injects data temporal order information, crucial for
sequence processing using transformers. The core of each
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stream is a Transformer Encoder layer that applies multi-
headed attention to weight the importance of various elements
in the input sequence to capture long-range dependencies in
the time-series. To tailor P-HART to individual users, a User
Adapter module in each stream fine-tunes and personalizes the
learned representations to the user‘s movement patterns.

A key innovation of the P-HART architecture is the in-
tegration of information across the two input streams via
cross-modal attention. enabling the learning of complementary
information from both sensor streams to enhance complex
ADL recognition. The outputs of the cross-modal attention
layers are concatenated and processed as follows. First, the
output from the cross-modal attention layers is fed into a Re-
current Neural Network (RNN) Encoder suitable for capturing
temporal dynamics. The encoder is made up of a bi-directional
GRU layer. Second, a Simple Activity (SA) Classification
Head analyzes the fused representations to predict the simple
activities that make up the complex activity. Since there can
be more than one simple activity performed concurrently, this
head is trained using Binary Cross Entropy (BCE) loss. The
output predictions of the SA classification head is fed into
an SA context extractor. The context extractor uses NT-Xent
contrastive loss to ensure that the contextual representation of
SAs belonging to the same complex activity are closer together
while SAs belonging to different complex activities are farther
apart. It also uses a temporal contrastive loss to ensure that
if two contexts lead to the same activity, their representations
are closer while contexts leading to different activities have
representations that are far apart.

NT-Xent Loss (Normalized Temperature-Scaled Cross-
Entropy Loss): [33] is a type of contrastive loss that maximizes
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Fig. 2. Overview of our main steps for complex activity classification

the similarity between multiple samples with the same label
(positive pairs) while minimizing the similarity of samples
with different labels (negative pairs) in a batch. To calculate
the NT-Xent loss, all feature vectors are first normalized to unit
length. This simplifies the similarity calculation to a matrix
multiplication, as the dot product of two unit vectors is their
cosine similarity, 2; = U;W Then the similarity matrix is
computed. It contains cosine similarities between every pair of
feature vectors in the batch and scales them by a temperature
parameter (7). A lower temperature makes the distribution of
similarities sharper, increasing the penalty for dissimilar items
s..5T

being close, expressed as sim(z;, z;) = Zi':j . A key part of
this implementation is how it handles one-hot encoded labels,
especially for interleaved activities where a sample can have
multiple 1s. By performing a matrix multiplication of the label
with its transpose, a label similarity matrix is created. If two
samples share any common activity, their dot product will be
at least 1. It is made to be a binary mask, where 1 if they are
a positive pair and 0 otherwise. For a single positive pair of
samples (i,j), the loss is given by []]

exp(sim(z;, z;))

N :
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»Ci,j = —log (D

Temporal Contrastive Loss: function applies contrastive
learning principles to the temporal dimension of sequential
data. The goal is to teach the model to represent and under-
stand activity transitions such that if two different temporal
contexts (pairs of consecutive activity embeddings) lead to
the same next activity, their representations are similar. Con-
versely, if they lead to different next activities, their represen-
tations are dissimilar. Two linear layers are used to project the
temporal context. Let z;_; and z; be the embeddings at time
t—1 and t respectively. Their concatenation is ¢; = [z¢—1; 2.
hy = ReLU(c;W{ +b;) and p; = hy W +by. The embedding

is L2 normalized and the embedding z; + for batch b at time
step t. 2pt.q iS the d-th component of this embedding. The
normalized embedding is denoted as 2 ;.
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The normalized embedding of the previous step (2;—1) and
the current step (%;) are concatenated to form the input to
the context projection. ¢; = [2;—1; %] Then the temperature-
scaled cosine similarity between all pairs of flattened projected
contexts, is computed. Let pj and p; be the k-th and [-

th vectors in the projected contexts p; after normalization
_ pe)”
-

2

and flattening. Sg where 7 is the temperature
parameter. The label similarity matrix is computed in which
two contexts pj, and p] are “positive” pairs based on their target
next activity labels. Let L) and L] be the one-hot encoded
target label vectors for contexts pj, and p; respectively.

LabelSimy, ; = min(max((L}, x (L})7),0),1) 3)

!
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where, € is a small constant for numerical stability. The
temporal contrastive loss is the mean of L over all contexts
k that have at least one positive pair. Finally, the output of the
cross-modal attentions layers, RNN Encoder, and SA context
extractor are concatenated and used in the CA head, to classify
complex activities. The training of this last head is supervised
by a composite loss function that includes the SA (BCE), CA
(BCE), NT-Xent, and Temporal Contrastive Losses.
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V. EVALUATION

P-HART is compared to baseline activity recognition mod-
els using 5-fold cross-validation with subject-wise splitting. A
70%:15%:15% training:validation:test split ratio was utilized.
Averages of metrics Accuracy, F1-Score, Precision, and Recall
are reported.

We compared against the following traditional machine
learning baseline models 1) Support Vector Machine (SVM)
[34] with a Radial Basis Function (RBF) kernel, 2) Random
Forest (RF) [35]], and 3) XGBoost [36]. We also compared
against the following deep learning models.

Multilayer Perceptron (MLP) with 4 hidden layers each
containing 256, 128, 64 and 32 units respectively. The final
layer is a sigmoid layer with 9 outputs. A dropout layer
was used for regularization. The Adam optimizer with weight
decay was used. The optimizer used a BCE loss function
with custom weights for each class. The class weights were

calculated using normalized inverse class frequency f; = 7%,
where f; is the frequency of class ¢, n; is the number of
samples in class ¢, and N is the total number of samples.
W™ = %— x C where w}°™ is the normalized weight
for class i, ]a:nld JC is the total number of classes.

DeepConvLSTM [37] has performed well in prior simple
HAR work. We used a DeepConvLSTM model with 1 CNN
layer followed by 1 LSTM layer and a fully connected sigmoid
layer. Adam was used as the optimizer with weight decay. A
BCE loss function was used with custom per-class weights
calculated using normalized inverse class frequency.

CARTMAN |18 first uses a Latent Dirichlet Allocation
(LDA) topic model to generate sensor features, in order to
discover the simple activities (“topics”) that constitute the
larger complex activity. These topic-based features are clas-
sified using DeepConvLSTM with self-attention.

HART [20] leverages the Transformer‘s attention mecha-
nism to weight the importance of various time-points in time
series sensor readings. This captures long-range dependencies
and complex temporal patterns more effectively than RNNs.
Minimal changes were made to the HART model to accom-
modate the multi-label classification.

P-HART implementation Weights and Biases‘ sweep func-
tionality [38]] was used to determine optimal values of hyper-
parameters including the number of layers, the dimensions of
layers and the personalization adapter, number of samples and
number of adaptation steps used for personalization.

We conducted comprehensive model evaluation including
comparison to baselines and an ablation study to quantify
the contribution of individual model components. To assess
the contributions of user personalization, P-HART model
performance with and without personalization were compared.
For the personalized P-HART model, two key parameters were
investigated: (1) minimum number of test instances per user
required for effective adaptation, and (2) optimal number of
adaptation steps. Various few-shot learning scenarios were
evaluated, where zero-shot indicates that no user-specific test
data was used for adaptation, one-shot employs a single test
instance, and so forth. After systematic experimentation, 6-
shot adaptation was determined to achieve the optimal balance
between performance improvement and minimal user-specific
data for personalization.

To evaluate the impact of personalization on individual
users, we conducted a Leave-One-Participant-Out (LOPO)
cross-validation experiment. As shown in Figure ] user per-
sonalization consistently improved performance for 41 out
of 47 participants. The six participants who did not benefit
from personalization already had high performance, suggesting
limited room for improvement from personalization. Notably,
participant 5 exhibited near-zero performance without per-
sonalization, indicating potential data quality issues. Hence,
participant 5 was excluded from all subsequent experiments,
resulting in a final dataset of 46 participants. During eval-
uation, various regularization techniques were employed in-
cluding data augmentation, dropout, and label smoothing. We
randomly selected 1 of 5 data augmentation functions: jitter,
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Fig. 4. Per-Participant F1-Score With and Without Personalization

scaling, rotation, time warping and random dropout. Table [[I]
shows the overall performance of our personalized P-HART
model compared to baselines. To assess the contribution of
each sensor modality, Table details the per-activity F1-
scores for models trained using only pocket data, only wrist
data, and both data streams combined. Figurelﬂ demonstrates
the effectiveness of personalization across different activities
using Fl-score. Table [TV] shows the results from an ablation
study, revealing that each of P-HART ‘s components contribute
non-trivially to its performance.
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TABLE II
COMPARISON WITH BASELINES
Model [ Exact Accuracy | Fl-Score | Precision [  Recall
Machine Learning Models
SVM 0.000+0.00 0.235+0.03 | 0.147+0.02 | 0.600+0.07
RF 0.391+0.05 0.392+0.05 | 0.393+0.05 | 0.392+0.05
XGBoost 0.569+0.04 0.600+0.04 | 0.601+0.04 | 0.606+0.04
Deep Learning Models
MLP 0.468+0.07 0.514+0.06 | 0.512+0.06 | 0.528+0.06
DeepConvLSTM 0.385+0.06 0.404£0.06 | 0.404+0.06 | 0.409+0.05
CARTMAN 0.262+0.09 0.283+0.09 | 0.279+0.09 | 0.291+0.09
HART 0.673+0.06 0.693+0.07 | 0.712+0.06 | 0.692+0.07
P-HART (Ours) 0.912+0.02 0.926+0.02 | 0.927+0.02 | 0.927+0.02

VI. DISCUSSION

Our findings show the significant contributions of per-
sonalization for complex activity recognition, with P-HART
achieving a 92.6% Fl-score, surpassing the 88% F1-score
of its non-personalized version and baseline models. Per-
sonalization effectively addressed inter-subject variability in
ADL/IADL performance caused by individual performance
styles that generalized models may misinterpret. Few-shot
personalization improved performance for most users and
demonstrated that our Transformer backbone with a contrastive
learning strategy is highly effective for this task. While this is
a promising result, personalization offered minimal gains for
users who already have high performance with the generalized
model and slightly reduced the performance for 6 partici-
pants. These 6 participants had high baseline scores without
personalization, indicating their ADL performance style was
captured well using the generalized model. We speculate that
personalization introduced minor inaccuracies by overfitting
to a non-representative adaptation set. Furthermore, the P-
HART s sensitivity to data quality was highlighted by the need
to exclude one participant with anomalous sensor readings.
This suggests that a deployed system must handle such real-
world issues. The evaluation also revealed a dependency on a
small, labeled adaptation set, as zero-shot personalization was
insufficient to achieve the peak performance possible with the
few-shot model.

The limitations of this work mainly stem from the absence
of fine-grained labels for the “bathroom CAs”. In future work
these missing labels can be handled using transfer learning.
Other future directions include exploring unsupervised per-
sonalization, extending the P-HART to more activities and
cohorts, and conducting in-the-wild studies.



TABLE III
F1-SCORES PER ACTIVITY - PER PHONE

Activity [ Pocket Phone | Wrist Phone | Both Phones
S ial CA
bathroom 0.877+0.06 0.845+0.08 0.878+0.06
bathroom with blowing nose 0.862+0.07 0.829+0.08 0.895+0.06
bathroom with blowing nose first 0.889+0.06 0.840+0.07 0.920+0.04
making a sandwich 0.876x0.02 0.837+0.04 0.897+0.03
packing a backpack 0.872+0.02 0.854+0.07 0.888+0.03
Interleaved CA
cleanup interleaved with packing sandwich 0.934£0.01 0.942+0.01 0.948+0.01
making a sandwich interrupted by phone call 0.883+0.04 ‘ 0.739+0.10 ‘ 0.910£0.03
Concurrent CA
bathroom with phone call 0.948+0.04 0.884+0.06 0.953+0.03
making a sandwich concurrent with phone call 0.926+0.03 ‘ 0.704+0.09 ‘ 0.946+0.01
TABLE IV
ABLATION STUDY
[ Model [ Exact Accuracy | Fl-Score [ Precision | Recall |
Our Model 0.912+0.02 0.926+0.02 | 0.927+0.02 | 0.927+0.02
Without User Adapters 0.858+0.03 0.878+0.03 | 0.879+0.03 | 0.882+0.03
Without Cross Modal Attention 0.906+0.02 0.921+0.02 | 0.921x0.02 | 0.925+0.02
Without Simple Activity Branch 0.886+0.02 0.901+0.02 | 0.903+0.02 | 0.903+0.02
Without RNN Encoder 0.882+0.02 0.898+0.02 | 0.899+0.02 | 0.902+0.02

VII. CONCLUSION

To address the limitations of generalized machine learning
models in recognizing real-world complex activities, this paper
introduced P-HART, a personalized multi-device Transformer
that learns individual ADL and IADL performance styles from
smartphone sensors to mitigate inter-subject and intra-class
variability in activity data. The personalized P-HART model
achieved a 92.6% Fl-score, significantly outperforming the
non-personalized version (88% F1-score) and baseline mod-

els,

demonstrating the contributions of personalization. This

research advances robust health-indicative complex activity
recognition, paving the way for accurate remote health moni-
toring to support independent living and timely interventions.
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