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ABSTRACT

Context Aware (CA) systems that adapt to user behaviors have many
real-world uses. CA systems require accurately labeled training
data to learn models of users’ context behavior. Unfortunately, it is
difficult to gather sufficient realistic context data in controlled envi-
ronments where reliable labels can be gathered. Therefore, recent
works have used in-the-wild study designs, where data is gathered
through passive sensing devices such as smartphones while users
periodically supply corresponding context labels. However, labels
gathered this way can be unreliable as users may provide incom-
plete or inaccurate labels which makes it difficult to build robust
CA models. We propose DELFI (Detecting Erroneous Labels using
Feature-linking Insights), a visual analytics approach to discover and
clean unlabeled or mislabeled context data. Visualizations enable
highlighting of similar data to find patterns and anomalies in behav-
iors. However, this is challenging when working with erroneous
human-labelled data as linking similar context labels is flawed since
the labels themselves are in question. DELFI identifies probably-
mislabeled instances by color-coding them based on an anomaly
score. Additionally, DELFI links similar instances based on a novel
concept called Multi-Feature Similarity Linking, which facilitates
the identification of probably true labels of mislabeled and unlabeled
data. We demonstrate the utility of our approach with use cases and
evaluation from domain experts.

Index Terms: Human Context Data—Mislabelled Data—
Interactive Data Visualizations—Unlabeled Data;

1 INTRODUCTION

Benefits of In-The-Wild Data Collection
Context aware systems that can accurately identify and adapt to
their users’ context have huge implications in multiple fields such as
detecting a passenger’s state in self-driving cars or accurately identi-
fying medical symptoms early and triggering preventive measures
in healthcare [3,8]. However, it is impossible to collect realistic data
on all possible contexts using a controlled study design [27]. For
this reason, recent work in Context Recognition (CR) [22,25] has fo-
cused on gathering real world data using in-the-wild data collection.
This type of data is typically collected through sensor-equipped de-
vices such as smartphones, where the device passively records some
set of sensor values while the user periodically provides ground truth
for their contexts which is then used to train CA algorithms [22, 25].
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In-the-wild data collection is more feasible now than ever
due to the proliferation of smartphones. Smartphones are useful
for developing and deploying CA systems because they are
widely used and are equipped with powerful sensors such as GPS,
accelerometers, gyroscopes and microphones, which can collect
data unobtrusively in the background while people perform their
daily routines. Readings from these sensors can be used by analysts
to identify the various contexts a person visits such as their location,
body posture and activity. This objective data can then be classified
using human-provided labels about the corresponding contexts as
ground truth.

State of the Art Visual Analytics In The Wild Human Behavior
Data
There has been interest in quantifying and understanding human
behavior in uncontrolled environments (in-the-wild) such as micro-
blogging sites and social media [13]. State of the art interactive
visual analytics for in-the-wild user behavior typically highlight
data with similar behavior labels [2, 14, 18, 28]. These visual
approaches are powerful because human behavior is multifaceted
and difficult to understand from basic summary statistics. Data
visualizations enable analysts to highlight instances of similar data
to find patterns and make inferences about behaviors. These visual
solutions generally deal with data where context is verifiable, such
as in the case of social media behavior or email logs where the
user’s behavior is known. For example, the number of re-tweets or
the user’s email response rate and content is verifiable.

Limitations of State of the Art for User-Labeled Data
State of the art human behavior visualizations are not robust enough
to transfer to domains where the “ground truth” is provided by the
users. This is due to the fact that highlighting instances with the
same human contexts labels is flawed as the labels themselves are in
question. This type of user-labeled data can arise in studies where
users are expected to report their physical activities [23]. These
studies are scalable and can be deployed to a larger and more diverse
audience than any lab setting, but the “ground truth” context labels
collected through this method are prone to error as these context
labels are provided by the study participants themselves. Participants
often do not have a strong incentive to provide clean labels, and are
also prone to human error. This limits the robustness of any CR
models trained on data gathered in-the-wild, as the ground truth
these models are trained on is flawed.

As the ground truth of contexts in user-labeled data is unreliable,
it is desirable to have a visual analytics approach that can highlight
data based on an alternate similarity metric. As these flawed
user-supplied labels are often used as ground truth to train machine
learning classifiers [22], it is also desirable for a visual solution to
identify instances that have probably been mislabeled by the user.
Once identified, the analyst would also benefit from discovering
the true context of that mislabeled instance. Furthermore, there
are often many unlabeled instances in user-labeled human context
data [22], where it would be beneficial for the analyst to know the



true labels of these unlabeled instances.

Proposed Visual Solution for User-Labeled In-The-Wild Limi-
tations
We present DELFI, an interactive data visualization and exploration
tool to discover instances of mislabelled data and missing labels.
DELFI is a visual analytics solution for user-labeled in-the-wild
human context smartphone-collected data. DELFI identifies data
instances that have probably been mislabeled by the user by calculat-
ing an anomaly score using the Isolation Forest [15] algorithm. This
score gives a measure of how much a context differs in the feature
space from other instances with the same context labels. The intu-
ition is that mislabeled instances will be unlike the correctly-labeled
instances of it’s incorrectly assigned context labels.

Any anomaly detection method has limitations, especially when
dealing with the typically high dimensional and multi-faceted nature
of human context data. Rather than only relying on an anomaly
score to decide mislabeled instances, DELFI also links highlights
instances based on a multi-feature similarity score. This score is a
novel metric we introduce, which measures how similar instances
are based on their features, not labels. This highlighting enables
the analysts to quickly identify what other instances a suspected-
mislabeled instance is most similar to. If the most similar instances
share the same context label as the suspected-mislabeled instance,
the analyst can conclude that the instance was not in fact mislabeled.
However, if the most similar context labels are consistently different
from the provided label for that instance, the analyst is justified in
believing that the instance was in fact mislabeled. Additionally, the
analyst will be able to identify what the true label likely is, based
on the labels of the most similar instances. Additionally, the multi-
feature similarity score allows the analyst to discover the likely
labels of unlabeled instances. That is, the most common labels of
the most similar instances to a given unlabeled instance are likely to
be the true labels of that instance.

Furthermore, since it is infeasible for the analysts to correct these
labels on an instance-by-instance basis (as in such studies an instance
might be a second or minute worth of data, where the total duration
of the study might be weeks of data [22]), we group sequences
of contexts with the same context labels into continuous context
chunks, and provide the aforementioned visual analytics on these
longer chunks.

In this paper, we thus make the following contributions:

• Research and development of DELFI, a visual analytics system
to interactively explore human context data

• Demonstration of DELFI by utilizing use cases to show its
utility in finding mislabeled instances and providing labels for
unlabeled instances

• Propose a novel data instance similarity metric called multi-
feature similarity score

• Propose a novel concept called “Multi-Feature Similarity Link-
ing” that highlights data that is similar based on their feature
values, not labels.

• Evaluate DELFI in sessions with experts in the field of human
context modeling and present results.

2 RELATED WORKS

2.1 Visualizing Behavior Data To Find Trends and Pat-
terns

People’s usage behaviors with various technologies in uncontrolled
environments such as social media [7, 14] leave complex and inter-
esting data trails that can reveal a lot of interesting relationships.

Archambault et.al. [2] proposed ThemeCrowds, a visualization sys-
tem to interactively mine and discover trends in Twitter data. Their
tool sets various levels of resolution for data mining to show the
most important Twitter users for particular topics and the evolution
of topics online. Setting various granularity levels is important in
human context data because it typically contains a large number of
events that will be difficult to understand without some grouping.
Wang et.al. [26] used interactive visual techniques to present tem-
poral summaries at various levels of temporal granularity to enable
analysts to discover trends in timeline data. Showing such evolving
trends is important in visualizing human context data so that analysts
can quickly discern unlikely occurrences of activities.

Data visualization is also useful for individual vs. group analysis
and making comparisons across various trends. Polack et.al. [20]
present Chronodes, an interactive visualization tool to visualize
mHealth (Mobile Health) sensor data and highlight patterns in var-
ious events. Chronodes also enabled users to define and compare
groups of peoples’ behavior data. Such comparison of objective
sensor data is necessary for human-labelled data as the labels them-
selves might not reflect reality.

Nguyen et.al. [18] created U4, an interactive tool to find instances
of unusual behavior in event data using an online administrative
tool. They proposed a novel concept called Multi-Semantic Linking,
which proposes linking data based on semantic similarity across
connected panes for more intuitive exploration. Highlighting such
patterns and sequences across multiple views is especially important
in human labelled context data as that allows analysts to gain clearer
insight about the data labels that rarely occur in a user’s data and
which may be indicative of faulty labelling.

2.2 Visualizing Behavior Data In Conjunction With Auto-
mated Anomaly Analysis

Visual analytics is an effective way to find anomalous points in
crowdsourced data. Liu [16] et.al. created LabelInspect, an interac-
tive visualization tool to help experts identify instances of wrongly
annotated image data that was obtained through crowdsourcing.
Their integrated visualization system allowed analysts to reduce
“noise” in their labels and improve the image dataset. LabelInspect
also identified suspicious workers and let the analyst make judg-
ments about the quality of work they were receiving. Their work
shows the utility of visual analytics in improving data quality when
the annotations are in doubt.

Calculating measures of anomaly for human behavior data is
difficult because of vast behavior variation and multivariate nature
of the data. Therefore data visualizations can reduce the opacity
of any black-box automated method to generate anomaly scores.
Cao et.al. [5] created TargetVue, an interactive system that allows
users to find anomalous behavior data in online communication sys-
tems. Their system presents rich user data using multiple glyphs and
connected panes that make the task of human judgments easier. A
common pitfall in automated analysis of anomalous online informa-
tion data is that it fails to consider other semantic information that an
analyst might use to explain the degree of “unusualness”. To tackle
this, Zhao et.al. [28] created a visualization tool called FluxFlow to
analyze twitter data. They used advanced machine learning mod-
els to find instances of anomalous tweets and then present them in
linked panes for further analysis. Such approaches are particularly
relevant because unlike some domains such as cyber security where
user log data can be used as a ground truth, human labelled context
data makes it challenging to establish a ground truth.

3 HUMAN BEHAVIORAL CONTEXT

A person’s context is difficult to detect [22]. Human context
comprises of several factors such as a person’s location, activity,
body posture, occupation, time of day etc. In order to collect
realistic context data for the vast range of possible contexts a user
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Figure 1: Typical In-The-Wild Labelling Workflow.

could be in, it is desirable to collect this data using an in-the-wild
method. To enable this, Vaizman et.al. [23] created the ExtraSensory
phone application which continuously gathered data from multiple
smartphone sensors throughout the day and had an intuitive interface
to enable users to label their contexts for different time periods
periodically. Users typically provided multiple labels throughout
their day.

Errors in Human Context Data
In-the-wild-gathered human context data is prone to having instances
of mislabeled or unlabeled data, as users are typically required to
label their own data. [6,22,25]. Generally, factors such as recall bias,
careless reporting and inopportune solicitation of context labels [6]
are reasons for why individuals often fail to properly label their own
context data (Figure 1). From literature review, there seem to be two
broad issues with the labels provided in in-the-wild studies:

• E1 - Wrong labels: Users are prone to memory biases and
may mis-estimate both the start/end times as well as the dura-
tions of their contexts. The users may also get interrupted at
inopportune moments and may provide labels carelessly.

• E2 - Missing labels: Users may not provide labels for all the
collected sensor data or may provide incomplete data. For in-
stance a user may be “Sitting”, “Typing”, with “Phone in their
Hand” but they only supplied the context “Sitting”. Missing
labels make it challenging to use the data for classification.

4 GATHERING CONTEXT DATA

4.1 WASHSensory
In a pilot study, we used a modified version of the ExtraSensory
Android application and renamed it WASHSensory. This application
has new context labels and collects additional phone data such as the
apps being used in the foreground. The data was gathered to train
classifiers on real world context data to determine patterns in behav-
ior that may be indicative of traumatic brain injuries and infectious
diseases, for instance determining if a person is using the bathroom
more often or is spending less time lying down and sleeping. The
data collection duration and the scheduling of the collection of ses-
sions were not changed. The user labelling mechanisms were also
kept the same. The application was installed on participants’ phones
where it collected approximately twenty seconds of data between
minute long intervals throughout the day. The participants were able
to label the data either by “Actively” labelling what they will be
doing in the near future or use a “History Page” which lets them
report their activities retroactively. The users could also respond to
notifications asking for labels. Table 1 shows the eighteen labels
that they were able to provide. The users can only select one label
for phone prioception i.e. “Phone In Hand” vs “Phone In Pocket”
and can select multiple other labels. The participants were asked not
to modify their natural routines for the duration of the study.

Overall, 115000 labelled individual data sessions were gathered
across twelve study participants. The average user participation
duration was two weeks. An individual session consists of approxi-
mately twenty seconds of continuous and discreet sensor data along

Table 1: Context Labels that study participants could select on
WASHSensory.

Context Labels

Phone In bag Phone In hand Phone In
pocket

Phone On Table - up Phone On Table -
down Walking

Bathroom Standing Jogging
Exercising Running Sitting
Sleeping Lying down Typing

Going Up Stairs Talking On Phone Going Down Stairs

with phone state measurements between minute long intervals. The
participants provided labels for approximately 65% of the data. The
labels and the data are merged and processed so that every data
session has summary features such as the averages and standard
deviations of multiple sensors etc. In the end, we computed over
120 features for every data session. These feature values are used
for training and testing of context recognition models.

4.2 Label Providing Mechanisms
An important aspect of gathering data in-the-wild is that it needs to
be unobtrusive i.e. it should not require a substantial effort or disrupt
a person’s daily routine, otherwise it cannot truly be considered “real
world” data. That is why ExtraSesnory and WASHSensory appli-
cations let the users provide labels for the near future and past (for
the present day and yesterday using a “History Page”) and also let
them set up notification schedules to ask for labels. There has been
work that examines the effect of using various labelling mechanisms
and the accuracy of the provided data. Chang et.al. [6] described the
labelling process in terms of “User Balance” and “User Load”. They
collected real world travel data and had the subjects provide labels
for their travelling activities. They categorized three categories of
annotation methods called “POST”, “”PART” and “SITU” which
correspond to labelling data post-hoc, labelling data for near future
and labelling data in-situ respectively. Their work suggests that
while the PART condition provides the lowest quantity of data, it
provides the best quality data. ExtraSensory and WASHSensory
also enable users to label data in ways that can broadly fit these
categories. Since the labelling sources can have implications for the
quality of data, a visual analytics approach may encode labelling
mechanisms for the collected context labels which may aid analysts
in making judgments about the authenticity of the labels.

5 CALCULATING OBJECTIVE MEASURES TO COMPARE
DATA

5.1 Data With Similar Feature Values
People are prone to making errors in the labeling process. This
means that the reliability of CA systems is hindered by unreliable
ground truth labels. One way of identifying mislabeled instances is
by removing data that is anomalous given its context labels. How-
ever, this method is limited by the effectiveness of the anomaly
detection method. Additionally, a simple anomaly score is unable
to identify the likely labels of unlabeled instances. For this reason,
we compute an anomaly score to identify possible mislabeled in-
stances and an additional metric which we call the feature similarity
score to supplement the anomaly score. The goal of this similarity
score is to determine which context a suspected-mislabeled session
identified through an anomaly detection method is most similar to.
If a suspected-mislabeled session is very similar to a set of context
labels different from the labels that were supplied by the user, this
informs the analyst that the session is likely truly mislabeled and
gives the analyst insight into what the correct labels likely are. As
there are typically hundreds of thousands of instances in human



context recognition datasets (as each instance typically represents
data collected every second or minute, where the study might take
place over weeks [22]), we compute these aforementioned metrics
for linking the data on aggregated sequences of context data, where
every instance in the sequence has the same context labels.

Thus, first We segment a users data into Continuous Context
Chunks, then compute an Anomaly Score for each continuous se-
quence of context data in order to identify likely-mislabeled in-
stances, and then compute a Multi-Feature Similarity Score between
every context chunk in order to supplement the anomaly score and
give insight into the true context labels for mislabeled and unlabeled
context chunks. Each step - segmenting the data, computing the
anomaly score, and calculating the similarity score - is described
below.

5.2 Continuous Context Chunk

Let D be a dataset of context data from N users, where each
user’s data consists of a sequence of feature and label pairs Ui =
{(x0,y0),(x1,y1), ...,(xn,yn)}, where ‖xi‖= d is the number of fea-
tures of each reading. yi ∈ Rc ⋃{∅}, as each label can either be a
vector of length c where c is the cardinality of the set of all labels
or can be empty if the user did not provide labels for that instance.
Additionally, each (xi,yi) pair of feature and label values has an
associated timestamp ti.

We define a continuous context chunk to be a subsequence C j ⊂
Ui, C j = {(xk,yk),(xl ,yl , ...,(xm,ym)} where yg = yh ∀ label pairs in
C j , yk−1 6= yk and ym 6= ym+1, and the difference between associated
subsequent timestamps ti and ti+1 are less than some ∆t for all
subsequent feature-label pairs. That is, a continuous context chunk
is a sequence of context labels and associated feature values where all
the context labels in the sequence are equal, and the time difference
between each instance is less than some cutoff ∆t.

We chose ∆t = 300 seconds for our work. This is due to the fact
that the data collection mechanism may stop collecting data for some
period of time. In that case, even if the context of the user before
the data collection stopped matches the context of the user after data
collect begins again we would not want to consider that to be one
continuous context chunk. We overcome this by setting the required
maximum time difference between contexts in a continuous context
chunk to be relatively small, but still long enough to account for the
longest systematic delay between data collections we found among
the devices used during our study.

5.3 Anomaly Score

We now describe how the anomaly score for a given continuous
context chunk is determined. As one of the goals of our method
is to identify instances of mislabeling, if there was some measure
of how dissimilar a given continuous activity chunk is compared
to other continuous chunks with the same context-labels we could
identify these mislabeled instances. This is due to our assumption
that mislabeled instances will have feature values that are unlike the
feature values of true instances of that context.

We use the anomaly score for a given instance as its measure
of dissimilarity to other instances with the same context labels.
We calculate the anomaly score from the features associated
with each context instance, which can include both numeric and
semantic features. The feature-values used in human activity
recognition are typically high-dimensional [24]. For this reason
it is critical for our anomaly detection method to be robust to
high-dimensional data. For this reason, along with the fact that we
can not assume that our feature values follow a normal distribution,
common anomaly detection measures such as the z-score are
not appropriate. Therefore, we selected the IsolationForest
algorithm as our anomaly detection method. This is due to
the fact that IsolationForest is robust to high-dimensional data,
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Figure 2: Multi-Feature Similarity Linking. Highlighting instances
of context data that are similar in terms of feature values rather than
in terms of annotation.

and does not assume a specific distribution of the feature values [15].

Isolation Forest
Isolation Forest is an anomaly detection method which isolates
outliers, namely points with lower local densities than the majority
of points. The method works by creating a set of decision trees,
where each tree successively picks a dimension and value on which
to split the data. Each tree repeats this step until every point is
isolated. This assumes that outliers will be isolated in fewer splits
than inliers on average. Mathematically, the decision function is:

s(x,n) = 2−
E(g(x))

c(n)

where E(g(x)) is the expected value of the path length g(x) to isolate
observation x, n the number of data points in the training set, and
c(n) the average path length to isolate an observation. A score close
to 1 is classified as an outlier.

If c(n) << E(g(x)), namely if the average path length for an
observation is significantly smaller than the expected path length for
all data points, then that point will have a high anomaly score.

Anomaly Score for Continuous Context Chunks
Given an instance of data consisting of a feature-label pair (xi,yi),
yi ∈ RJ in a continuous context chunk C, we compute an anomaly
score ai, j for each positive label in the label vector yi. We then
average the anomaly score for each label over all instances of the
context chunk.

5.4 Multi-Feature Similarity Linking
The anomaly score gives insight into which context chunks were
likely mislabeled. However, it does not tell us what the true labels
for that context chunk likely are. In order to supplement the anomaly
score and identify the true labels of mislabeled and unlabeled chunks,
it is desirable to find instances of data where the feature values are
similar rather than viewing data based on identical labels. Knowing
which other instances a given instance of context data is most similar
to can aid the analyst in identifying and removing or relabeling
mislabeled instances, as well as in labeling unlabeled instances.

Data visualizations allow analysts to gain insights by linking
other instances of data with some related feature or value. Nguyen
et.al. [18] proposed a novel visual concept called Multi-Semantic
Linking that relaxed the constraints of normal linking behavior to
highlight data across multiple panes and levels with similar semantic
information. In the case of human labelled context data, the ground
truth labels associated with the data are themselves in question.
Therefore, Multi-Semantic Linking might not work in this case as
any attempt to highlight the same semantically related contexts
would need to assume completely accurate labelling which is not
the case.

Inspired by Multi-Semantic Linking, we propose a novel visual
concept called Multi-Feature Similarity Linking. The idea is to high-
light and link data that is similar in terms of objective features since
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Figure 3: Data Description: Showing the various data attributes
linked to individual data sessions and continuous context chunks.

the sensor data and other phone measurements may be indicative
of a different context than the one labelled by the user. Figure 2
illustrates visually the concept of Multi-Feature Similarity Linking.
In this example, the app user has provided labels for “Sitting” which
through some anomaly metric stands out as being suspicious. If
a user interacts with this data (in this case hovers over it), other
instances of data where the feature values were similar are also high-
lighted. In this case the data for the “Standing” instance is close in
terms of features but not labels to two instances of “Sitting, Typing”.
For instance, the data instances with blue boxes around them have
similar gyroscope values and were also performed with the phone
being unlocked . Further, the highlighted data for “Sitting, Typing”
is also less anomalous. This may guide the analyst to make a more
informed decision about mislabelled data. The metric we use for
Multi-Feature Similarity Linking is a novel multi-feature similarity
score.

5.5 Multi-Feature Similarity Score
For each instance continuous activity chunk K we associate a se-
quence of predicted context labels PK = {ŷi, ŷ j, ..., ŷm}, ŷi = f (xi) =
yi + εi, where f is some classifier and εi is the difference between
the prediction for the ith label and the value provided for that label.

For each continuous context periods K, we average the label
probability vectors PK . Let P̄K be this average, where P̄K = ∑PK

‖PK‖ .
We then take Euclidean distance between continuous context

chunk pairs K and J, for all such pairs. That is, we compute SJ,K =
d(P̄K , P̄J). SJ,K = SK,J is then the feature similarity score between
continuous context chunks K and J.

Continuous context chunks whose associated label-probability
vector have the smallest Euclidean distance with a given chunk are
considered to be similar continuous context chunks.

5.6 Relabeling Unlabeled Sessions using the Feature
Similarity Score

Data labeled in-the-wild generally contains a large number of un-
labeled instances, where the user did not provide any context la-
bels [22]. The predictions of a non-standard classifier that is trained
to predict whether or not a label was provided for an instance can
be transformed into the probability of an instance being a positive
example of a given label under the assumption that the distribu-
tion of true-positives matches the distribution of unlabeled posi-
tives in the feature space [4]. Let Ytrue be the set of true posi-
tives, and Yunlabeled be the set of unlabeled positive instances. Then,

P(yunlabeled = 1|x) = c∗P(ytrue = 1|x), where c is the labeled fre-
quency c = Pr(yunlabeled = 1|ytrue = 1). c is unknown in practice,
but [9] shows that c can be estimated from the relative values of
P(Yunlabeled |X). Thus, we can train a classifier f on both the labeled
and unlabeled data, and then create the feature-similarity scores
for all continuous chunks, including those that are unlabeled. The
analyst can then examine which continuous chunks are most similar
to the unlabeled chunk to estimate the true context label for that
chunk, even if the classifier f would predict a value less than the
positive-cutoff for that chunk.

5.7 Classification
In order to calculate the feature-similarity scores, we need to train
a classifier f to predict the labels Y from data X . We chose f to
be a gradient boosting classifier [10], as it has been shown to be a
robust classifier that routinely shows high performance on a variety
of classification problems [19]. Unlike a deep learning classifier,
gradient boosting produces high classification accuracy on smaller
datasets. As we perform in-user classification, and thus might have
a limited number of samples, this is a desirable characteristic for our
classifier.

5.8 Gradient Boosting Classifier
Given a dataset of features X and corresponding labels Y , we con-
struct a Gradient Boosted Classifier f such that

f (X) =
N

∑
i=0

hi(X),

where hi is a weak learner, which is typically chosen to be a
shallow decision tree. Each individual learner hi is trained to fit the
residuals of the previous learners. That is,

hi(X) = Y −
i−1

∑
j=0

h j(X)

The initial learner h0 is trained to match the target Y .

6 DESIGNING A VISUAL APPROACH TO PRESENT HUMAN
CONTEXT DATA

Interactive visualizations enables analysts explore and mine data to
gather intuition about multi-variate and heterogenous data. Keim
et.al. [12] discussed the challenges in presenting complex data using
visual analytics and proposed the “Visual Analytics Mantra”:

• Analyse First (M1)

• Show the Important (M2)

• Zoom, Filter and Analyse Further (M3)

• Details on Demand (M4)

As mentioned, in-the-wild human-labelled context data is com-
plex as it contains readings from a multitude of continuous sensors,
along with other discreet measurements. This mantra was used to
guide our workshops to design visualizations that would highlight
mislabelled data. Given the limited visual real estate because of
screen space and complexity of the data, there were a few specific
visual requirements that had to be met in order to visualize this data
effectively. They are summarized below:

• V1 - Grouping continuous instances of the same context to
easily make sense of the data since there are 1440 minutes in
a day and it would be difficult to analyze so many individual
sessions separately (M1).
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Figure 4: Detecting Erroneous Labels using Feature-linking Insights (DELFI). (A) Habit View: Shows every user’s data split up by days
of participation. The bars represent Continuous Context Chunks. Hovering over a bar hides all other chunks except for those that are most
feature similar. The user has hovered over a chunk with labels “In pocket” (shortened from phone in pocket) and “Sitting”. (B) Chunk Detail
View: Shows details about the clicked chunk such as the label providing mechanisms used to label the data sessions in the chunk. The labels in
this chunk detail view were provided using the “History” interface. The individual labels comprising the context are split up as separate bars
and the lines inside them show the respective anomaly score values or probability values (in case of unlabelled data) for the data sessions
comprising the continuous context chunk. The two grey bars above the labels represent the battery charging status (top) and app usage status
(second bar) at the time of collection for the data sessions. (C)Relabel Dialog: The analyst can relabel or unlabel data sessions by dragging the
mouse across the label bars in a Chunk Detail View that they think are mislabelled and selecting a new label.

• V2 - Humans are creatures of habit so there needs to be a quick
way to figure out patterns and see if anything is out of place
(M2).

• V3 - An objective measure of anomaly along with what typical
labels based on feature similarity would be helpful in guiding
exploration (M3).

• V4 - Highlight data that have similar features while being
label agnostic since the labels or the “ground truth” itself is in
question (M3).

• V5 - Showing other phone state measurements apart from
continuous sensor streams that can give clues about a person’s
“ground truth” data. For instance, making sessions with a
particular app conspicuous so the user can identify suspicious
labels. i.e., if a person labels ”Phone in Bag” and ”Sleeping”
but has a communications app open the foreground, that is
suspicious (M4).

To allow for multi-perspective exploration of data, we
present Detecting Erroneous Labels using Feature-linking Insights
(DELFI), an interactive visual analytics tool to find instances of mis-
labelled human context data. We designed DELFI keeping in mind
the issues with the dataset, the tasks that analysts need to perform
to reveal those issues and the visual cues we want to highlight. To
illustrate the features and use cases for this tool, we introduce Jill,
a graduate student who wants to train CR models and design a CA
system.

6.1 Gaining overview of the data
Jill opens DELFI and and sees the participants’ data broken up by
day to allow easy pattern recognition. Figure 4 a shows the pane,
called the Habit View as analysts can identify repeated contexts.
Each separate rectangular segment or “Continuous Context Chunk”
represents the time duration for which the user’s context was exactly
the same i.e. all labels provided for subsequent sessions were the
same (V1). She can easily discern a pattern that most people tend
to be “Lying Down” and “Sleeping” at the beginning of the day
(00:00 AM) (V2). Since there are large differences in the duration
of continuous context, it is difficult to put text on top of some of the
smaller chunks as it will be harder to read and may overflow. That is
why text is overlaid on chunks that are longer than a certain width.
Jill can hover over a chunk to see its context labels (Figure 4 a). She
can also identify periods of time where the data was not collected or
where the data was present but unlabelled, shown as gray blocks
and blue blocks (E2) respectively.

6.2 Finding Mislabelled Data
Jill notices a chunk in the Habit View that is bright red (V3). Each
chunk has a list of average anomaly for all underlying sessions
across all different individual labels comprising the context for that
chunk (Figure 3 shows the data attributes associated with individual
data session and chunks). The luminance of each chunk is encoded
to represent the highest anomaly score in that list. Jill hovers over
the chunk which then hides all the users data apart from the forty
chunks with the highest feature similarity scores (V4) (Figure 4 a).
Chunks with the exact same context labels are further highlighted
by green boxes . This is meant to aid Jill in seeing if the most
feature similar chunks are also labelled with the same context. The



Figure 5: Similarity Dialog: Showing most similar chunks in terms
of features.

chunks also have an overlay of color #ffffb3 . The longer this
overlay is, the less similar a chunk is to the hovered over chunk. For
example is more feature similar than . Jill can see that not
all the chunks of similar feature values are labelled as “In Pocket,
Sitting”. She further explores this by clicking on the chunk which
opens a Chunk Detail View (V3, V5) in Figure 4 b. This view sep-
arates out the individual labels in a person’s context and the lines
inside the bars for the individual labels show the anomaly scores
for the time-ordered individual sessions comprising the chunk (V3).
The two thinner gray bars on the top show changes in battery charg-
ing status and app usage respectively. App usage shows whether
there was an app running in the phone foreground when it collected
data and battery charging status shows if it was plugged into a USB
or an AC electric outlet (V5). Positive and negative instances for
app usage and battery charging status are denoted by and
respectively. The view also encodes the label providing mechanisms,
namely History , Active and Notifications with three colors
selected in ColorBrewer [11] to ensure that the analyst can easily
discern between them. Jill can see that all the individual sessions
in this chunk were provided using the “History” option meaning
they were labelled retroactively. She notices that while the anomaly
scores for the sessions in this chunk for both labels are high, they
are particularly higher for “Sitting”. She clicks on the “Most Similar
Chunks” button in the Chunk Detail View and she views the Simi-
larity Dialogue (Figure 5). This shows her a list of the most similar
contexts ordered in terms of the number of occurrence in the top
forty most similar chunks (V4). She sees that a dozen of the most
similar contexts were labelled as “In Pocket, Walking”. Further, Jill
notices that there was a transition in this duration from no app run-
ning in the phone foreground to app usage for most of the duration
of the context (V5). The break in app usage denotes changing
apps open in foreground. When she hovers over the first app in the
app usage bar, she sees that it is for the “Maps” app. She is now
more confident in her assessment that she has found mislabelled data
sessions for at least “Sitting” (E1). To make a note of this discovery,
she drags the mouse over the sessions in the context duration across
the “Sitting” bar that she thinks is mislabelled and relabels them as
“Unlabelled” in the Relabel Dialog (Figure 4 c).

6.3 Finding Missing Labels
Jill also wants to find data that has missing labels (E2). She scrolls
to another user’s data and notices an unlabelled chunk from morning
well into the afternoon. Hovering over the chunk tells her that is
most feature similar to other chunks with “In pocket, Sitting” (V4).
She is hesitant to label all the chunks in this long duration with the
exact same context. She clicks on the chunk to view it in the Chunk
Detail View (Figure 6). This shows probability values for three labels
that had the highest average overall probability across all the data
sessions (see Figure 3 for data description). Jill notices that at the
beginning of this chunk (Figure 6 a), the probabilities for the session
being “In pocket” were low and jump up as the phone is no longer
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Figure 6: Showing the Chunk Detail view and the Similarity Dialog
for an unlabelled chunk of data. The lines in the yellow bars for each
label show the probability of that label for the individual sessions
comprising the unlabelled chunk.

Figure 7: Large variation in the anomaly scores for the two different
in the context.

charging (V5). There are also some dips with app usage but for a
large portion of the time (Figure 6 b), the probabilities of the session
being “In pocket” are quite high . She opens the Similarity Dialog
(Figure 6 c) and notices that the most feature similar chunks are
those for “In pocket” with “Walking” and “Sitting”, which makes her
unsure about the sitting label (V4). Jill notices that there are some
dips in the probabilities for chunks later in the chunk. Therefore,
Jill selects the portion for “In pocket” for the highest probability
sessions (Figure 6 b).

6.4 Finding Large differences in anomaly scores
While exploring these chunks, Jill notices a smaller chunk with
a high anomaly score (V3). She hovers over it to discover that
it is labelled “Table - up, Walking”. She clicks on it to see that
the anomaly scores for data sessions with “Walking” label are
consistently more anomalous than those for “Table up” (V3)(Figure
7). She also noticed that for most of the duration, the phone was
plugged into an AC connection (V5) which seems likely for the
“Table up” label. This leads her to believe that she cannot be certain
about the “Walking” label (E1), while not discarding the other label
in this context.

Such fine grain analysis shows that visual analytics can fill in the
pitfalls of relying solely on automated anomaly measure calculation
approaches.

7 EXPERT EVALUATION

To evaluate DELFI, we invited three experts in the field of human
context data modelling and inferring. The experts were given a
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Figure 8: There is a major spike in the probability values for “Table
- up” and a major drop in the probability for “In pocket”.

tutorial for using DELFI. They were then guided to view the chunks
that Jill had viewed to find mislabels. The experts were asked to
verbalize their thought process as they explored the data and not to
constrain themselves to the use cases that we provide but rather to
expand on them and explore other data sessions as well. After a
tutorial, they were able to note a clear trend for when people labelled
“Sleeping”. As they went through the use cases, they generally came
to the same conclusions as Jill about the types of mislabelling that
occurred.

They liked the multi-faceted approach of showing anomaly scores
in conjunction with a measure of feature similarity along with the
ability to flexibly select the session for relabelling and unlabelling.
One expert noted how a naive version of feature similarity linking
would be to just cluster data but its high dimensionality makes
it difficult which is why showing the data in a multi-pane view
allows them to gain a better picture. During their exploration of
the data, they found an unlabelled chunk (Figure 8) where there
were rapid changes in the probability values for “In pocket” (steep
decline Figure 8 a) and “Table up” (shortened from “Phone on Table
- Facing up”) (steep rise Figure 8 b). The experts were quick to note
that this happened around the same time that the phone was plugged
in. This lead them to conclude that this sharp change connotes a
transition between “In pocket” to “Table up”.

One expert who specializes in transitions in human context sug-
gested using a method called “Change Point Detection” to find such
instances of transition and highlighting them visually. Overall, the
experts liked the approach and indicated interest in following future
work.

8 DISCUSSION AND LIMITATIONS

We have shown the utility of VA in analyzing human context data.
However, there are some limitations. This approach is time consum-
ing and does not allow for bulk selection of data. Future implemen-
tations may incorporate some top level filtering mechanisms such
as excluding all data with certain co-occurring labels, highlighting
only the data with some app usage etc. However, a limitation to that
is people have specific phone using habits and typically individual-
ized modelling of data proves to be more reliable than all inclusive
modelling [17, 21].

Additionally, a limitation of our similarity linking method occurs
when a given chunk has been mislabeled, and in reality two or more
distinct contexts occurred within that chunk. Our feature similarity
linking method would find the chunks that are most similar to that
given mislabeled chunk as a whole, as we do not have a way of
distinguishing that there are multiple distinct contexts within that
chunk. Change point detection techniques are known to be able
to segment individual contexts in a continuous stream of activity

data [1]. In future work, a change point detection method can be
implemented to identify when there are multiple contexts within one
labeled continuous context chunk.

9 CONCLUSION

We motivated the paper by describing the limitations of prior human
behavior visualization systems for dealing with user-labeled ground
truth data. To overcome these limitations, we introduced DELFI,
an interactive tool designed to explore and find instances of misla-
belled human context data. To that end, we developed a framework
that identifies mislabeled instances and determines the likely true
labels using an anomaly score and a novel multi-feature similarity
score in conjunction. We proposed a visual metaphor Multi-Feature
Similarity Linking to link data in terms of feature similarity to help
analysts find data with mislabelled ground truth. DELFI’s utility was
illustrated by walking through multiple use cases and with expert
feedback.
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