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Abstract—Many health conditions can affect a person’s mo-
bility. Consequently, a person’s ability to perform transitions
between activity states (e.g. sit-to-stand) are accurate measures
of their mobility and general health. Mobility impairments can
manifest either as discomfort while performing certain activity
transitions or a complete inability to perform such transitions.
The Timed up and Go (TUG) is an important clinical test
that assesses patients’ sit-to-stand abilities. Research into passive
methods to assess the quality of patients activity transitions and
thus conduct the Timed Up and Go autonomously as they live
their lives, have recently become popular. Machine and deep
learning analysis of smartphone accelerometer and gyroscope
data have demonstrated promising activity and transition recog-
nition results. In this paper, we present Get Up!, a novel deep
learning-based method to detect whether a person is performing
a certain postural activity or transitioning between activities.
Get Up! analyzes data from the accelerometer and gyroscope of
the patient’s smartphone using Bi-Directional Gated Recurrent
Units (Bi-GRU) neural networks with an attention mechanism.
Our method outperforms TAHAR, the current state of the art
machine learning method, achieving an error rate of 1.47%
for activity classification and an accuracy of 97%. We also
achieved an error rate of 0.17% with an accuracy of 93.3% when
classifying postural transitions. As Get Up! segments activities
and transitions, individual TUG sub-components can be timed
to identify sub-components that patients find challenging.

Index Terms—activity recognition, activity transitions, bi-
directional GRU

I. INTRODUCTION

A. The Problem

Many illnesses and disorders have symptoms that manifest
physically, affecting a person’s balance and range of motion.
For example, a person with Parkinson’s might have tremors
and muscle rigidity that will affect their mobility. Patients’
physical activities can be categorized either as postural activ-
ities or dynamic activities. Postural activities such as sitting,
lying down and standing, and longer dynamic activities such as
walking and running, have been widely studied using machine
learning methods [1] [2] [3]. However, systems to passively
detect and assess shorter dynamic activities such as falling, and
transitions between different activities that provide valuable
insights into a patient’s condition, are much less studied.

The Timed Up and Go (TUG) is a popular test to evaluate
postural transitions [4], which measures the time taken by a
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patient to stand up from sitting, walk around and return to
sitting position. TUG is a well established clinical test that
reliably quantifies a patient’s balance and risk of falls. One
disadvantages of the TUG is that it is currently administered
manually, which introduces errors. Also, it only measures
the total time taken for the test, but not the individual sub-
components of the TUG test (Sit-to-Stand, Walking, Turning
180°, Walking, Turn and Stand-to-Sit). Patients can have
varying levels of difficulty in performing each TUG sub-
component and this information is lost in the traditional TUG
test. For example, a patient might have trouble standing up
from sitting but is fine with walking. This patient’s total time
taken for the test will not reveal their difficulty with standing
up, especially as the duration of the transition is small.

A new instrumented TUG (iTUG) test has been introduced
[5] which provides the sub-component times along with other
parameters making the test more robust. Prior work by Milo-
sevic et al has automated the iTUG test such that it can be
performed using a smartphone attached to a person’s sternum
[6]. In order to better quantify the sub-components, we need
to reliably identify the transitions indicating the beginning
and end of sub-components in the data. Hence, detecting
transitions is an important problem with ramifications in the
performance of the automated iTUG tests.

Human Activity Recognition (HAR) is a widely studied
problem that tries to detect the user’s current activity, which
plays an important role in various applications such as: health
monitoring, security monitoring, and human computer inter-
action. HAR using smartphones has been proposed as a way
to continuously assess and monitor the health of smartphone
users. In such HAR systems, sensor data gathered from users
smartphones is analyzed using Machine Learning (ML) or
Deep Learning (DL) techniques. Modern smartphones come
equipped with a plethora of sensors and are incorporated into
most people’s daily lives. Smartphone HAR is unobtrusive
as it utilizes sensors built into the phone and thus requires
no additional sensors to be worn or configured. Due to their
ubiquity, smartphones are effective and efficient for passive
data collection for HAR. Accelerometers are the most popular
sensors to perform activity recognition [7], while using gyro-
scopes have been shown to improve the recognition accuracy
[8]. A multitude of methods have shown that smartphone
user activities can be classified reasonably accurately using
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smartphone sensor data [9] [10].
In healthcare, Human Activity Recognition (HAR) systems

can be used for monitoring and assessing the quality of
patients’ activities, detecting falls [11], symptoms of stroke
[12] and changes in their gait patterns [13]. Identifying short-
duration events and activity transitions can be modelled as
a classification or an anomaly detection problem. Since de-
tecting a transition is a result of identifying abrupt changes
within patterns in a time series data, Change Point Detection
(CPD) techniques have also been proposed to detect activity
transition in smart home environments [14]. Detecting activity
transitions have also been proposed to be leveraged to better
classify various activities, as the transitions provide a better
understanding of the activity boundaries [15].

Prior work by Reyes-Ortiz et al integrates both HAR and the
detection of activity transitions in the Transition-Aware Human
Activity Recognition (TAHAR) system using smartphones.
TAHAR classifies the smartphone’s accelerometer and gyro-
scope data in real-time. It combines outputting the sequence
of probabilistic consecutive activity predictions of a Support
Vector Machine (SVM) with a heuristic filtering approach.

In this paper, we propose Get Up!, a novel deep learning-
based method to detect smartphone user activities and ac-
tivity transitions using Bi-directional Gated Recurrent Neural
Networks (Bi-GRUs). Neural networks have recently demon-
strated superior performance to Machine Learning (ML) tech-
niques on hand-crafted features in various tasks including
image classification, audio analysis as well as HAR. The Bi-
directional GRU (Bi-GRU) is suitable for analyzing future and
previous time-series data such as the smartphone’s accelerom-
eter and gyroscope data. We also include an attention layer,
which enables our classification model to identify specific re-
gions in the time series to focus on. Get Up! outperformed the
state-of-the-art TAHAR approach by achieving an error rate
of 1.47% and accuracy of 97% for activity classification and
an error rate of 0.17% with accuracy of 93.3% in classifying
the postural transitions. As Get Up! segments activities and
transitions accurately, individual sub-components can be timed
to identify sub-components that patients find challenging. Our
Get Up! approach is envisioned as an offline system that
analyzes patients’ smartphone accelerometer and gyroscope
data to provide end-of-day evaluations of a patient to provide
evidence for their treatment.

II. OUR APPROACH

A. Architecture

Our Get Up! approach aims to perform classification on
smartphone sensor data that is continuously gathered and
analyzed while the user performs their daily activities.

Activity and Transitions Dataset: We utilize the same
smartphone dataset utilized by Reyes-Ortiz et al to create
the TAHAR architecture, which facilitates direct comparison
of the efficacy of both approaches. The dataset contains 12
labels with 6 activities (Walking, Walking Upstairs, Walking
Downstairs, Sitting, Standing and Lying Down) and 6 postural
transitions (Stand-to-Sit, Sit-to-Stand, Sit-to-Lie, Lie-to-Sit,

Fig. 1: Architecture Overview

Stand-to-Lie and Lie-to-Stand). We take a two-step approach
to classify both the activities and the transitions. The overview
of the architecture can be found in Fig.1. We begin with
sensor data collected from the smartphone accelerometer and
gyroscope. The data is then sent to the feature extractor, which
creates a feature vector of size 561. The featurized time-series
data is then passed on to the next classifier.

Fig. 2: Bi-GRU Architecture

Recurrent neural network architectures are suitable for clas-
sifying time series data. We designed a modified version of a
GRU model combined with a self-attention layer to achieve
better performance. Since we are proposing an offline method,
we use a Bi-directional GRU(Bi-GRU), which can make use
of the information from past instances and the future instances.
The attention layer enables the model identify specific regions
in the time series to focus on. The attention mechanism is
a feed-foward layer that takes the hidden layer outputs from
the Bi-GRU and outputs a transformed representation that can
be used for classification [16]. The Bi-GRU architecture with
attention mechanism is shown in Fig.2. The featurized time
series input (x1, x2,...,xT) is received from the feature extractor.
xi is fed into the GRU layer. Since we have a bi-directional
GRU, there are essentially two GRU layers (forwards and
backwards), with one layer processing the inputs from the
beginning(x1 to xT) and the other layer processing the input
backwards(xT to x1). Both the forward and backward GRUs
outputs a hidden layer representation, h and h′. The hidden
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layer representations are passed on to the attention layer.

Hi = [hi _ h′i] (1)

For each time step i, the hidden representations from both
forward and backward are concatenated (1) to generate a
vector Hi. Hi across all time steps are stacked to yield a matrix
representation H.

Ĥ = tanh(H) (2)

The attention weight vector(v) is initialized with random
weights that was learned through the back-propagation. Since
the attention model is trying to find the best positions in the
time-series to focus on, we need a function to quantify how
much each hidden representation should be considered for the
output. This is called the alignment score function, which is
used to calculate the alignment score α (3). The context vector
is a weighted sum of the hidden representation Ĥ and the
alignment scores (2) (3) (4).

α = softmax(vTĤ) (3)

C = HαT (4)

We generate the attention vector a that is passed to the
feed-forward layer for final classification using softmax (6).
The prediction assigns each instance to one of seven classes
(6 activity classes and one binary class to indicate transition).

a = tanh(C) (5)

ŷ = argmax(softmax(Wa+ b)) (6)

If the instance is classified as one of the activities, we
keep the prediction but if it was predicted to be a transition,
we pass the information to a rule-based transition classifier.
Our architecture is modular, so that we could use any other
classification model to replace the activity classifier and still
continue with the transition classifier.

The rule-based classifier takes into account the predictions
of the preceding and succeeding instances of the transition and
assigns the instance to a specific activity transition class. For
Example, if an instance at t is classified to be in transition by
the GRU classifier, and the previous instance(t−1) is classified
as Sitting and the next instance(t+1) is classified as Standing,
then the instance t is assigned the class Sit-to-Stand.

III. EXPERIMENTS AND RESULTS

A. TAHAR Activity and Transition Dataset

The data was collected from a controlled study with 30 par-
ticipants. The participants had a smartphone mounted on their
waist and performed six activities; 3 static postures(Sitting,
Standing, Lying) and 3 dynamic activities(Walking, Walking
upstairs and Walking downstairs). Data from the smartphone’s
3-axial accelerometer and gyroscope were captured. The raw
sensor data was sampled with a fixed-length sliding window
and a feature vector of 561 values was generated by calcu-
lating numerous time and frequency domain variables. Each

sample is accompanied by one of 12 labels (Walking, Walking
Upstairs, Walking Downstairs, Sitting, Standing, Lying Down,
Stand-to-Sit, Sit-to-Stand, Sit-to-Lie, Lie-to-Sit, Stand-to-Lie
and Lie-to-Stand), which was labelled manually by going
through the video recording of the study.

B. Experimental setup

We split the dataset into 3 parts: training set, validation
set and test set consisting of 60%, 20%, 20% of the total
number of users, respectively. We used the validation set
to perform a grid search to find the best hyper-parameter
combination. We tuned our model to find the best learning
rate, hidden layer size and the number of epochs. We also
evaluated the impact of the number of directions in the GRU
model and the presence of the attention layer. After tuning
the parameters, we ran the model on the test set and the
results, averaged across 5-folds using k-fold cross-validation,
are presented below. Since there are fewer instances of the
transitions compared to the activities, data imbalance occurs.
To address the class-imbalance, we define the accuracy as
Accuracy = (Sensitivity + Specificity)/2. It is observed
that the training loss with the attention mechanism helps to
improve the performance of the model. The attention weights
after learning to classify the activities can be seen in Fig. 3.
It shows the regions on which the model has learned to focus,
during the first 100 timesteps.

Fig. 3: Attention Weights

We used the rule-based classifier to classify activity transi-
tions. Table I shows the rules we used.

Transition Classification rules
Preceding Activity Succeeding Activity Transition Label
Sitting Standing Sit-to-Stand
Standing, Sitting Stand-to-Sit
Lying Down Standing Lie-to-Stand
Standing Lying Down Stand-to-Lie
Lying Down Sitting Lie-to-Sit
Sitting Lying Down Sit-to-Lie
1Lying down Walking Lie-to-Stand

TABLE I: Activity transitions classification rules
While using the rule-based classifier, we observed that our

model was not predicting Lie-to-Stand as effectively as the
other transitions. We noticed in the data that there were activity
transitions labelled as Lie-to-Stand but the activities before and
after were Lying Down and Walking respectively as shown in
Fig. 4.

We added an exception in our rule-based to consider when-
ever the transition was from Lying to Walking, the transition
to be labelled as Lie-to-Stand. We theorize that when a
person stands up from lying down and starts walking, there
is a very short period of time during which they are in the
standing posture. We consider these activities to be complex
and hierarchical in nature, consisting of multiple sub-activities
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Fig. 4: Transition between Laying and Walking

[17] [18]. We propose to identify such complex activities
automatically and use them to improve the transition classifier
in future work.

Table II shows that our BiGRU with attention method out-
performs the BiGRU and TAHAR for activities, transtions and
overall. Figure 5 shows our accuracy for classifying individual
activities and postural transitions. Table III is a confusion
matrix of our activity and postural transition accuracies.

Error %
Activities Transitions Overall

TAHAR [10] 3.50% ± 4.7 0.24% ± 0.7 3.22% ± 4.3
BiGRU 1.74% ± 1.32 0.19 ± 0.14 0.96% ± 0.19
BiGRU-Attn 1.47% ± 0.96 0.17% ± 0.16 0.82% ± 0.28

TABLE II: Comparison of our Results with TAHAR

Fig. 5: Activity and Postural Transition Accuracies

WK WU WD SI ST LD ST-SI SI-ST SI-LD LD-SI ST-LD LD-ST UK
WK 370 0 1 0 0 0 0 0 0 0 0 0 0
WU 31 270 0 0 0 0 0 0 0 0 0 0 3
WD 2 0 274 0 0 0 0 0 0 0 0 0 0
SI 0 1 0 288 55 15 0 0 0 0 0 0 8
ST 1 0 0 0 251 0 0 0 0 0 0 0 0
LD 0 0 0 0 0 347 0 0 0 0 0 0 0

ST-SI 0 0 0 0 0 0 11 0 0 0 0 0 3
SI-ST 0 0 0 0 0 0 0 7 0 0 0 0 0
SI-LD 0 0 0 0 0 0 0 0 19 0 4 0 0
LD-SI 0 0 0 0 0 0 0 0 0 15 0 1 0
ST-LD 0 0 0 0 0 0 0 0 0 0 22 0 0
LD-ST 0 0 0 0 0 0 0 0 0 0 0 16 0
WK:Walking, WU:Walking Upstairs, WD: Walking Downstairs, SI: Sitting, ST: Standing, LD: Lying Down, ST-SI: Stand-To-Sit, SI-ST:
Sit-To-Stand, SI-LD: Sit-To-Lie, LD-SI: Lie-To-Sit, ST-LD: Stand-To-Lie, LD-ST: Lie-To-Stand, UK: Unknown

TABLE III: Confusion Matrix

IV. CONCLUSION AND FUTURE WORK

We proposed Get Up!, a modular two-tier recurrent neural
network architecture to perform activity and postural transition
classification from smartphone accelerometer and gyroscope
data. We were able outperform TAHAR, the previous machine
learning-based state-of-the-art method for activity and postural
transition classification by achieving an error rate of 1.47%

and accuracy of 97%. We were also able to achieve an
error rate of 0.17% with accuracy of 93.3% in classifying
the postural transitions. We encountered a unique transition
scenario between the activities Lying Down and Walking,
which we handled by considering Walking as a complex
activity that consists of sub-activities, including standing. In
future work, we will handle complex activities by learning to
automatically identify the sub-activities instead of manually
doing it on a case by case basis.
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