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 Abstract– In hybrid imaging, such as with SPECT/CT, the use 
of CT-derived attenuation maps has the potential to improve 
image quality. However, the benefits of attenuation correction can 
be reduced when the patient CT (e.g. obese) is truncated. We 
investigate the use of Deep Learning to complete truncated regions 
within cone-beam CT-derived attenuation maps for attenuation 
correction in cardiac perfusion SPECT. Our technique is based on 
inpainting, which attempts to reconstruct missing parts of an 
image using a special type of Convolutional Neural Networks 
called a context encoder to learn the size and shape of the patient’s 
body. For training, we used 1,169 non-truncated low-dose cone-
beam CTs acquired with a SPECT/CT clinical imaging system 
from an existing cardiac perfusion study under an IRB approved 
protocol. Using our method, we were able to construct contours 
for the truncated images and fill them in with appropriate voxel 
values. Our method can be advantageous over other de-truncation 
methods due to being image-based and not requiring specialized 
reconstruction methods. We also show that utilizing the de-
truncated CTs for attenuation correction is beneficial in 
improving the photon counts in cardiac perfusion studies. 

I. INTRODUCTION

n hybrid imaging, such as with SPECT/CT, the use of CT-
derived attenuation maps has the potential to improve image 

quality [1]. However, the benefits of attenuation correction can 
be reduced when the patient CT (e.g. obese) is truncated. We 
investigate the use of Deep Learning to complete truncated 
regions within cone-beam CT-derived attenuation maps for 
attenuation correction in cardiac perfusion SPECT. Machine 
learning is a broad category of computational methods whose 
goal is to automatically learn how to solve problems using prior 
examples or experience. Of interest for this work is a class of 
methods called neural networks, which process data through 
layers of simplified functions called “neurons,” inspired by 
structures in the brain. Convolutional Neural Networks (CNNs) 
apply learned convolution kernels at each layer to extract 
spatially invariant features and are well-suited for image 
processing tasks. In this work, we utilize CNNs to infer missing 
voxels of truncated CT images from un-truncated body shapes 
in order to synthesize a method for CT de-truncation. 
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In recent years, various methods have been developed to 
address truncation in attenuation maps and the CTs from which 
they are derived. These techniques fall into one of the following 
categories: 1) methods that utilize raw projection data [2] or 2) 
image-based methods that operate only on reconstructed CT 
images. The vast majority of the methods utilize the projection 
data and therefore require custom reconstruction software, 
which limits their clinical applicability. In contrast, our method 
is performed post-reconstruction and does not require 
projection data for de-truncation. A simple image-based 
method for addressing truncation is to mirror the CT or 
attenuation map [3] and replace truncated voxels using data 
from the opposite side of the CT. Other methods utilize 
previously acquired CTs to replace truncated voxels [4]. These 
methods rely on the existence of prior and non-truncated 
images. Our method assumes no previous CT acquisition and is 
therefore more generally applicable. 

II. METHODS

Our technique is based on inpainting [5], which attempts to 
reconstruct missing parts of an image using a special type of 
CNN called a context encoder [5]. Prior to training our model, 
we preprocess each cone-beam CT to remove the bed, artifacts, 
and extract a bounding contour of the patient's body (see Fig 1 
– top). Our model uses a series of convolution layers in a
context encoder configuration to learn the size and shape of the
patient’s body. Once fully trained, our method can be used to
correct truncated contours and replace missing voxel data.

For training, we used 1,169 non-truncated low-dose cone-
beam CTs acquired (FOV; 47cm, transaxial) with a Philips 
Healthcare Brightview SPECT/CT clinical imaging system 
from an existing cardiac perfusion study under an IRB approved 
protocol. CTs were acquired during free-breathing with 300 
projections covering a 360-degree rotation over a 60s 
acquisition (5mA current at 120Kvp voltage), matrix size of 
256×256×101, and voxel size of 4mm3. Truncation occurred in 
approximately 40% of the patients, ranging from negligible to 
severe. The truncation results from either positioning the patient 
partially outside the FOV or from an insufficient imaging 
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volume to envelope the entire patient. For cardiac perfusion 
studies, left side truncation (heart side) has a greater impact due 
to a higher influence on the attenuation correction. For training 
our CNN, we chose CTs not truncated during acquisition and 
expanded our set to 5,845 CTs by generating 5 different 
artificially-truncated CTs for each non-truncated CT. Artificial 
truncation was randomly chosen as 85-95% (5-15% truncation) 
of original volume and we utilized 70% of the artificially-
truncated CTs for training and 30% for validation. Since CNNs 
are a supervised learning method, having non-truncated and 
artificially-truncated CTs provides ground truth for the 
truncated CTs. The ground truth CTs are used during training 
to aid the CNN in learning optimal parameters. After testing 
different sets of parameters, we determined the best 
performance (i.e., MSE/computation time) used a kernel size of 
5 and a depth of 128 over 583 epochs. Our implementation uses 
Python and the Tensorflow library.  

Our method works in three phases to recover an approximate 
CT. First, a contour of the truncated CT (fig 1 – top row, center 
column) is processed by our fully trained CNN to recover the 
approximate shape of the non-truncated patient body contour 
(fig 1 – top row, right column). Next, the recovered contour is 
superimposed over the original unprocessed truncated CT. 
Empty voxels outside the original truncated CT but within the 
recovered 3D contour are filled-in with voxel values consistent 
with the tissue values in that region of the patient’s body which 
are previously determined as part of the preprocessing stage 
described above. The tissue profile is generated by marching 
inward toward the center at contour point of non-truncated 
scans and sampling values at different depths at each slice and 
averaging the values across all non-truncated CTs. Since 
truncation within our dataset occurs primarily in the thoracic 
regions composed of mainly adipose and epidermis tissue, the 
range of potential voxel values needed is reduced, thus creating 
a concise tissue profile.  

III. RESULTS AND DISCUSSION 
We evaluated the performance of our method in two stages: 

1) validation of our de-truncation with artificially-truncated 
CTs and subsequently 2) determining the improvement in 
photon counts for CTs truncated during CT acquisition. For 
validation of our training method, we reserved 30% of the 
artificially-truncated CT images left out of the training set 
(1,753 CTs of 5,845) and performed de-truncation on them. 
Using the Structural Similarity Index Measurement [6], our 
ability to reconstruct the artificially truncated regions was on 
average 0.2% with a standard deviation of 0.1% of the original 
non-truncated volume from which the artificially truncated CTs 
were derived. This result shows that we were not only 
successful in recovering the lost portions of the original un-
truncated CTs, but that our method did not adversely affect the 
volume of the recovered CTs.  

Our second-stage validation involved generating polar map 
results for 5 artificially-truncated and 3 originally-truncated 
patients (see Fig 2) by incorporating our method into a 
previously established SPECT/CT reconstruction pipeline [7] 
with the goal of improving photon counts in the lateral regions 

of the heart. For the 5 artificially truncated CTs, our assessment 
was based on photon count preservation using our method when 
compared to the original reconstruction using non-truncated 
CTs. We were able to show that the 5 artificially-truncated CTs, 
when de-truncated with our method, retained 99.77% of the 
counts with a standard deviation of 1.22% compared to the 
original CTs. For the 3 CTs truncated during acquisition, we 
show that we were able to positively increase the photon counts.  

IV. CONCLUSIONS 

Using our method, we were able to construct contours for the 
truncated images and fill them in with appropriate voxel values. 
Our method can be advantageous over other de-truncation 
methods due to being image-based and not requiring 
specialized reconstruction methods. We also show that utilizing 
the de-truncated CTs for attenuation correction is beneficial in 
improving the photon counts in cardiac perfusion studies.  
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Fig 1. Contours (top) & CT slices (bot) showing ground 
truth (col. 1), truncated CT (col. 2), & de-truncated CT 
(col. 3) 



 

  
 

 

Fig 2. Polar maps quantifying the results of our method. 
Top left is the polar map from the original cardiac 
perfusion study using the original CT for attenuation 
compensation. Top center is the same study with a 
truncated CT and top right de-truncated CT method. 
Bottom shows the difference polar maps with respect to 
the original perfusion study. As you can see, the map 
from the truncated CT has significantly difference from 
original compared to our method.  


