
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Fine-grained diabetic wound depth and
granulation tissue amount assessment
using bilinear convolutional neural
network
XIXUAN ZHAO1, ZIYANG LIU2, EMMANUEL AGU2,(Member, IEEE), AMEYA WAGH2,
SHUBHAM JAIN2, CLIFFORD LINDSAY3, BENGISU TULU2, DIANE STRONG2, AND
JIANGMING KAN1
1School of Technology, Beijing Forestry University, Beijing, China, 100083
2Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA, 01609
3Radiology Department, University of Massachusetts Medical School, Worcester MA, USA, 01655

Corresponding author: Emmanuel Agu (e-mail: emmanuel@wpi.edu).

This work was supported in part by NIH/NIBIB under Grant 1R01EB025801-01. The authors also acknowledge financial support from
China Scholarship Council (CSC).

ABSTRACT
Diabetes mellitus is a serious chronic disease that affects millions of people worldwide. In patients with
diabetes, ulcers occur frequently and heal slowly. Grading and staging of diabetic ulcers is the first step
of effective treatment and wound depth and granulation tissue amount are two important indicators of
wound healing progress. However, wound depths and granulation tissue amount of different severities can
visually appear quite similar, making accurate machine learning classification challenging. In this paper, we
innovatively adopted the fine-grained classification idea for diabetic wound grading by using a Bilinear
CNN (Bi-CNN) architecture to deal with highly similar images of five grades. Wound area extraction,
sharpening, resizing and augmentation were used to pre-process images before being input to the Bi-
CNN. Innovative modifications of the generic Bi-CNN network architecture are explored to improve its
performance. Our research generated a valuable wound dataset. In collaboration with wound experts from
University of Massachusetts Medical School, we collected a diabetic wound dataset of 1639 images and
annotated them with wound depth and granulation tissue grades as labels for classification. Deep learning
experiments were conducted using holdout validation on this diabetic wound dataset. Comparisons with
widely used CNN classification architectures demonstrated that our Bi-CNN fine-grained classification
approach outperformed prior work for the task of grading diabetic wounds.

INDEX TERMS wound assessment, fine-grained classification, diabetic wounds, wound depth, wound
granulation tissue amounts, deep learning

I. INTRODUCTION

Diabetes mellitus is a serious chronic disease that affects
an estimated 425 million people worldwide (or 8.8% of the
adult population) [1]. In the U.S. in 2015, about 23.1 million
people of all ages (7.2% of the U.S. population) had diag-
nosed diabetes [2]. In diabetic populations, diabetic wounds
occur easily due to reasons including higher frequency and
intensity of mechanical changes in conformation of the bony
architecture, peripheral neuropathy, and atherosclerotic pe-
ripheral arterial disease [3], [4]. Diabetic wounds have a

lifetime prevalence estimated between 12% and 25% [2] and
has a high recurrence rate between 7.8% [5] to 48.0% [6].

Diabetic wounds may take months to years to heal and
require regular checkups by wound nurses who debride the
wound, inspect its healing progress and recommend visits
to wound experts when necessary. Consistent and accurate
wound care is crucial for proper diabetic wound healing and
delays in visiting a wound specialist could increase the risk
of lower extremity amputation or even death [2]. However,
a shortage of wound experts especially in rural areas can
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FIGURE1: Example images with different wound depth scores:
(a)-(e) score ranging from 0 to 4.

cause late diagnosis and poor wound care [7]. Moreover,
unnecessary hospital visits increase the workload of clin-
icians and add an avoidable financial burden for patients.
A smartphone photo-based wound assessment system that
patients or visiting nurses can use in the patients’ homes is
a promising solution to these problems.

Since 2011, our group has been researching and develop-
ing the Smartphone Wound Analysis and Decision-Support
(SmartWAnDS) system, which will autonomously analyze
wound images captured by patients’ smartphone cameras and
generate wound care decisions. SmartWAnDS will support
decisions made by wound nurses in remote locations, thus
standardizing the care of diabetic wounds. The SmartWAnDS
system would also enable patients get feedback anytime be-
tween visits, engaging them in their care. Grading and staging
of diabetic ulcers is the first step of effective treatment,
which has been shown to significantly affect and predict the
wound’s outcome. Increases in ulcer grades have been found
to correlate to increases in amputation rates [8], [9]. Conse-
quently, our research group is focusing on an autonomous
photo-based wound severity grading system.

Wound depth and granulation tissue amount are two im-
portant attributes that indicate the wound’s severity during
grading. However, machine learning classification is chal-
lenging because wound depths and granulation tissue amount
of different severities can appear quite similar (See Figures 1
and 2). Fine-grained image classification is an emerging
intra-class image classification approach, which tries to rec-
ognize sub-categories in the same main category. These sub-
categories usually look quite similar (e.g. recognizing differ-
ent sub-types of flowers [23], [24], plants [25], [26], insects
[27], [28], birds [29]–[38], dogs [39]–[42], vehicles [37],
[43] and shoes [44]) and do not have obvious discriminative
features such as different shape, color and texture, making
classification challenging. In this paper, we utilize the fine
grained neural networks approach to improve the accuracy
of classifying wound depth and granulation tissue amounts
attributes compared to prior work.

Our rubric for wound grading is the Photographic Wound
Assessment Tool (PWAT)) [10]–[12], which has been pro-
posed by wound assessment experts to enable novices ac-
curately grade wounds and has been generally accepted as
a standard for photo-based wound evaluation. PWAT uses
eight criteria for grading wound healing: size, depth, necrotic
tissue type, total amount of necrotic tissue, granulation tissue

(a) score 0 (b) score 1 (c) score 2 (d) score 3 (e) score 4

FIGURE2: Example images with different granulation tissue
amount scores: (a)-(e) score ranging from 0 to 4.

type, total amount of granulation tissue, edges and periulcer
skin viability. Each PWAT criterion can be scored from 0 to 4
(good to bad), yielding a maximum total score of 32. Details
of the PWAT assessment criteria for depth and total amount
of granulation tissue are shown in Table 1. Since PWAT
scores for each attribute ranges from 0 to 4, we consider the
grading of the wound depth and granulation tissue amount of
diabetic wounds as a five-class image classification task.

Previous photo-based automatic wound assessment re-
search mostly used traditional machine learning approaches
with hand-crafted image descriptors such as color and textu-
ral features [13], color histograms [14], local binary patterns
(LBP) [15], morphological and topological characteristics
[16]. There has been little research into image-based wound
depth evaluation. Acha et al extracted first-order statistical
features [17] and colour and texture features [18] for wound
diagnosis. In summary, these approaches all utilize hand-
crafted image descriptors with unsupervised approaches for
classification, which may not effectively distinguish similar
wound attribute sub-classes.

Following the success of deep neural network in many
computer vision and image analysis tasks, they are increas-
ingly being used for wound image analyses. Convolutional
Neural Networks (CNNs) are the most widely used architec-
tures for wound image analyses. In order to classify healthy
skin and the wounds, CNN-based DFUNet [19] and LeNet
[20] were proposed. CNN architectures performed well for
wound tissue type classification [21], [22]. However, these
prior deep learning methods adopted CNN architectures for
classifying wound images into two or three very distinct
classes (e.g. Skin vs wound vs background).In contrast to
prior work, our goal was to classify wound depth and gran-
ulation tissue amount into five grades ranging from 0 to 4
based on the PWAT grading rubric. As wound depth and
granulation tissue amount of different grades do not have ob-
vious distinguishing visual characteristics, our classification
task was challenging.

To solve these problems, we innovatively adopted a Bi-
linear CNN (Bi-CNN) architecture specifically designed for
fine-grained classification for grading diabetic wounds into
five classes. The main contributions of this paper are four-
fold:

1) In collaboration with wound experts, we created a large
diabetic wound image dataset that we then annotated
with their corresponding wound depth and granulation
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TABLE1: PWAT assessment rubric for wound depth and granulation tissue amount.

Attribute PWAT Scoring Rubric

Wound depth

0. wound is healed (skin intact) or nearly closed (< 0.3cm2)
1. full thickness
2. unable to judge because majority of wound base is covered by yellow/black eschar
3. full thickness involving underlying tissue layers
4. tendon, joint capsule, bone, visible/ present in wound base

Granulation tissue amount

0 = Wound is closed (skin intact) or nearly closed (< 0.3cm2)
1 = 75%to 100% of open wound is covered with granulation tissue
2 = > 50% and < 75% of open wound is covered with granulation tissue
3 = 25% to 50% of wound bed is covered with granulation tissue
4 = < 25% of wound bed is covered with granulation tissue

tissue amount based on the PWAT rubric.
2) We innovatively applied a Bi-CNN fine-grained clas-

sification deep neural network to deal with the chal-
lenging task of recognizing different grades of wound
depth and granulation tissue amount, which are highly
similar.

3) We modified the generic Bi-CNN network architecture
and adopted several pre-processing techniques to im-
prove the Bi-CNN’s performance in automatic diabetic
wound grading.

4) Our results show that our modified Bi-CNN outper-
formed other widely used CNN classification architec-
tures, demonstrating that the fine-grained classification
approach can significantly improve wound attribute
classification accuracy.

To the best of our knowledge, this is the first work to
classify wound depth and granulation tissue on a 5-point
scale, and the first attempt to adopt state-of-the-art fine-
grained classification deep neural networks for wound image
analyses. Our experimental results showed that our proposed
approach is promising for diabetic wound analyses.

The rest of this paper is organized as follows: Section
2 summarizes related work, highlighting their differences
with our work. Our methodology is described in Section 3.
Sections 4 presents the wound image data set utilized in our
study and the implementation details of model training. Our
analyses, results and findings are presented in Section 5. In
Section 6 we discussed possible improvements and suggest
directions for future work. Finally, in Section 7 we conclude
our work.

II. RELATED WORK
Traditional computer vision classification approaches based
on manual feature extraction are not effective solutions for
sub-classes that appear quite similar. Thus, we utilize fine-
grained deep classification neural networks to learn latent
discriminative features from our diabetic wound dataset.
Nejati et al [48] is the only work we found using fine-grained
deep neural networks for wound tissue classification. How-
ever, they utilized AlexNet, an image recognition architecture
that is not specifically designed for fine-grained classification
as their neural network for tissue classification. Also, they
addressed the wound tissue classification problem, for which

manually extracting features such as color, shape and texture
can be an effective approach. In contrast, our depth and
granulation tissue amount grading task is more challenging
as the class differences cannot be captured by obvious visual
features.

To the best of our knowledge, our work is the first that uses
a deep neural network specifically designed for fine-grained
classification for the analyses of fine classes of wound at-
tribute grading.

A. BILINEAR CONVOLUTIONAL NEURAL NETWORK
FOR WOUND GRADING (BI-CNN)
The Bilinear Convolutional Neural Network (Bi-CNN) archi-
tecture was first proposed by Lin et al [37]. In their paper, the
Bi-CNN performed well on a birds dataset with images in
200 categories, an aircraft dataset with 100 categories and
cars dataset with 196 categories. The Bi-CNN consists of
two parallel stream feature extractors based on CNNs whose
outputs are multiplied using the outer product at each location
of the image and pooled across locations to obtain a bi-linear
vector as the learned image descriptor, which is followed by
the fully connected layer.

In our work, we utilized the VGG16 architecture [49],
which was pre-trained on more than 14 million images from
ImageNet [50] as the basic network for both streams of
our Bi-CNN architecture for wound grade classification. We
also compared the Bi-CNN approach to the classic VGG16
network, which has 16 weight layers, 13 convolutional and
3 fully connected layers. Based on this architecture, we
utilized five convolutional blocks for both streams and then
the feature outputs were combined at each location using the
matrix outer product with sum pooling.

The bilinear feature BF is calculated by:

BF (L, I, SA, SB) = SA(L, IA)
TSB(L, IB)

T (1)

Where L is the location of current pixel, IA and IB are
input images, for our proposed method they are same. SA
and SB are the two feature outputs extracted from Stream A
and Stream B respectively. And then we adopted sum pooling
to obtain the bilinear vector φ(I) by calculating:

φ(I) =
∑
L∈I

BF (L, I, SA, SB) (2)
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The bilinear vector p = φ(I) obtained is then passed
through a signed square root step (q ←− sign(p)

√
|p|),

followed by l2 normalizations (r ←− q/ ‖q‖2) that have been
shown to improve the model’s performance in practice [37].

After generating the bilinear vector, a dropout layer is
applied to avoid overfitting, followed by a soft-max layer.
Fig. 3 is a detailed list of parameters of our proposed Bi-
CNN architecture for wound grade classification. The outer
product captures pairwise correlations between feature chan-
nels and can model part-feature interactions. For example, for
the classification of wound depth grades, one of the networks
is a part detector that locates edges of the wound and the
other network is a local feature extractor that recognizes the
depth of the wound. Thus, as this architecture can model local
pairwise feature interactions [37], it is particularly useful
for fine-grained categorization. The pipeline of our proposed
Bi-CNN architecture for the grading of wound depth and
granulation tissue amounts is shown in Fig. 4.

B. END-TO-END TRAINING
Our network for wound severity grading can be trained using
an end-to-end approach. All the parameters in the network
were trained by back-propagating the gradients of the classi-
fication loss. We adopted the cross-entropy loss function in
our experiments. Based on the chain rule, back propagation
of gradients through bilinear pooling is shown in Fig. 5. dE/
dSA and dE/dSB are the gradients of the loss function with
regard to the feature outputs SA (from stream A ) and SB
(from stream B) respectively. Thus, we have:

dE

dSA
= SB(

dE

dr

dr

dq

dq

dp
)T (3)

dE

dSB
= SA(

dE

dr

dr

dq

dq

dp
) (4)

For other layers, the gradients before bi-linear pooling
and in the classification layer are straightforward and can be
computed using the chain rule.

III. MATERIALS AND IMPLEMENTATION DETAILS
Our proposed wound evaluation system consists of three ma-
jor steps: image pre-processing, fine-grained neural network
model training and then using the trained model for wound
grading. Fig. 6 shows the flow diagram of our proposed
wound evaluation system. In the following, we will describe
the wound image dataset we utilized, after which we cover in
detail each of the stages of our approach.

A. WOUND IMAGE DATASET
All the images we used for the study of wound evalua-
tion systems were acquired in one of three ways. First, we
acquired 114 wound images captured with a wound imag-
ing box [51], which maintained a consistent, homogeneous
lighting environment for imaging the wound. Second, 202
images were gathered from wound images publicly avail-
able on the Internet, which were mostly captured from a

relatively perpendicular angle. Third, 1323 patient wound
images collected at the University of Massachusetts Medical
School (UMMS) were received after IRB approval for our
use. These images had large variations in lighting, viewing
angles, wound types and skin texture. In total, we gathered
1639 wound images of diabetics from these three sources
for inclusion in our wound dataset. For all the experiments
we conduct five-fold holdout validation, each fold had 1477
images for training and 162 images for testing. The number
and percentage of images in each class are shown in Table 2.

B. PRE-PROCESSING
In our proposed method, we adopted four pre-processing
steps to facilitate good feature extraction. One step was
specific to our wound classification problem, while two oth-
ers were standard pre-processing steps used to prepare the
images before inputting them into deep networks. The details
of our pre-processing steps are as follows.

1) Image patches for training
As most of the original wound images had large background
regions (an example is shown in Fig. 7 (a)), if such images
are directly classified, the deep network will learn most of the
visual features of the background and thus will not accurately
learn wound features. Thus, in our proposed method, we first
segmented the target wound region (segment) out using an
annotation app proposed in our previous research [52] from
which we generated a wound mask. A view of this annotation
app is shown in Fig. 8.

After segmentation, we derived a bounding box of the
recognized wound area, and cropped the images using these
bounding boxes to create wound image patches. Finally, all
the image patches were cropped to dimensions of 256∗256∗3
pixels, and were sometimes resized again according to the
needs of different deep networks in our experiments. An
example of the image patch generation is shown in Fig 7.

2) Image enhancement
In order to improve the performance of fine-grained deep
neural network, we sharpened input wound images to en-
hance their features and make the textures of the wound
image clearer. An example of a sharpened wound image is
shown in Fig. 9.

3) Resizing
Since all pre-trained networks used in our proposed method
and the approaches we compared against expect input images
to be of a specific size during training, we resized all images
to a standard dimension of 448 ∗ 448 ∗ 3 and subtracted the
mean of the image before propagating it though the network.

4) Image augmentation
While our dataset contained 1639 images, we needed more
images in order to achieve a robust deep learning model. Im-
age augmentation is a commonly used technique to enlarge
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StreamA Stream B

Type Input size Output size Kernel size/

stride

Type Input size Output size Kernel size/

stride

Conv1 448*448*3 448*448*64 3*3/ 1 Conv1 448*448*3 448*448*64 3*3/ 1

448*448*64 448*448*64 3*3/ 1 448*448*64 448*448*64 3*3/ 1

Maxpool 448*448*64 224*224*64 2*2/ 2 Maxpool 448*448*64 224*224*64 2*2/ 2

Conv2 224*224*64 224*224*128 3*3/ 1 Conv2 224*224*64 224*224*128 3*3/ 1

224*224*128 224*224*128 3*3/ 1 224*224*128 224*224*128 3*3/ 1

Maxpool 224*224*128 112*112*128 2*2/ 2 Maxpool 224*224*128 112*112*128 2*2/ 2

Conv3 112*112*128 112*112*256 3*3/ 1 Conv3 112*112*128 112*112*256 3*3/ 1

112*112*256 112*112*256 3*3/ 1 112*112*256 112*112*256 3*3/ 1

Maxpool 112*112*256 56*56*256 2*2/ 2 Maxpool 112*112*256 56*56*256 2*2/ 2

Con4 56*56*256 56*56*512 3*3/ 1 Con4 56*56*256 56*56*512 3*3/ 1

Maxpool 56*56*512 28*28*512 2*2/ 2 Maxpool 56*56*512 28*28*512 2*2/ 2

Conv5 28*28*512 28*28*512 3*3/ 1 Conv5 28*28*512 28*28*512 3*3/ 1

Input Size Output Size

Bilinear

Pool

28*28*512 (Stream A)

28*28*512 (Stream B)

512*512

FC 262144 5

Dropout

Soft-max

FIGURE3: Proposed Bi-CNN architecture and parameters for wound grading.

TABLE2: Statistics of our collected data set.

Score/Class 0 1 2 3 4 Total

Wound depth Train 28 161 777 352 159 1477
(1.9%) (10.9%) (52.6%) (23.8%) (10.8%)

Test 3 17 86 39 17 162

Granulation tissue amount Train 109 130 96 222 920 1477
(7.4%) (8.8%) (6.5%) (15.0%) (62.3%)

Test 12 14 10 24 102 162
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FIGURE4: The pipeline of Bi-CNN based diabetic wound grading architecture.

Stream A

Stream B

sqrt L2

FIGURE5: Back propagation of gradients through bilinear
pooling.

the training dataset by creating variations of each image in
the training dataset to yield more generalized deep neural
networks. In our experiments, we created variants of each
training image that were rotated by 90, 180 and 270 degrees’
as augmentations. Fig. 10 shows an augmentation example.

C. MODEL TRAINING
We adopted a two-step model training strategy with transfer
learning and fine-tuning steps, which are expounded on be-
low.

1) Transfer learning on wound data set
Transfer learning is a commonly used approach in deep
learning where a model trained on one task is used as the
starting point of a new related task. By learning a model
transferred from pre-trained networks, we are able to take
advantage of the abundant data utilized and attributes learned
by the pre-trained network. Thus, we ran our wound images
through the pre-trained networks and took the output of the
FC layers as was done in some prior work [53], [54].

In our work, we first applied transfer learning by freezing
all parameters of the convolution blocks and added a dropout

layer and a five-way soft-max layer on top of the network for
5 wound grades and then trained the network. The network
is trained by minimizing the cross-entropy loss, as shown in
formula (5).

E(θ) = −
∑
p

k∑
j=1

tpj ln(yj(xp, θ)) (5)

and

ln(yj(xp, θ) = log
eθ

T
j xp∑k

j=1 e
θTj xp

(6)

Where k is the number of image categories, tpj is the
function that indicates the pth image belongs to class j.θ rep-
resents the parameters of the softmax classifier. ln(yj(xp, θ)
is the network output of the pth image.

For transfer learning, we adopted 1e-8 as weight decay
rate, batch size was set as 16 for training with a relatively high
base learning rate as 1. The initial weights of the modified
layer were generated using the Kaiming uniform approach
[55]. After training for about 20-30 epochs, the Bi-CNN
classification outputs became stable. We utilized Stochastic
Gradient Descent with Momentum (SGDM) as the optimizer
in all our experiments.

2) Fine-tuning the proposed wound grading deep neural
network
Simply applying transfer learning (i.e. using pre-trained net-
works without fine tuning) achieved relatively good classifi-
cation results (shown in Table 6). We then hypothesized that
fine-tuning the pre-trained networks using diabetic wound
images would yield higher quality features from the images.
We fine-tuned the entire model and all layers using back-
propagation for about 20-30 epochs at a relatively small
learning rate (0.0001), keeping all other input parameters the
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Trained model
Wound grading Transfer learning

Fine tuning

Train

Input original

images

Obtain image

patches

Image patches

sharpening

Image patches

augmentation

Resize to

448*448*3

FIGURE6: Flow diagram of the proposed wound evaluation system.

(a) (b) (c)

FIGURE7: An example of an image patch generation.
(a)Captured wound image (b) Segmentation mask for wound
(c) Wound image patch.

(a) (b)

FIGURE8: A view of annotation app. (a) Annotated wound
image (b) Wound mask.

(a) (b)

FIGURE9: Image sharpening process. (a) the original wound
image patch. (b) the image patch after sharpening.

same with transfer learning. Our accuracy increased around

(a) (b) (c) (d)

FIGURE10: Sample image augmentations done during training
(a) Original image (b)90o rotation (c)180o rotation (d)270o

rotation.

5% for the wound depth test dataset and 8% for granulation
tissue amount test data set, which will be detailed in Sec-
tion IV-D.

IV. RESULTS
A. EVALUATION METRICS
Our classification approach was evaluated using two perfor-
mance measures: accuracy and weighted F1 score [56]. We
also analyzed the classification performance of each class by
showing the confusion matrix.

Accuracy is the ratio of the number of images accurately
classified by the algorithm out of the total number of images
in the test dataset, and is calculated as:

Accuracy =

∑4
i=0 (TPi + FNi)∑4

i=0 (TPi + TNi + FNi + FNi)
(7)

We also adopted weighted F1 score as an evaluation index
which is defined as:

F1score =

4∑
i

wi
2× Pi ×Ri
Pi +Ri

(8)

Where Pi and Ri stands for precision and recall of class i,
which can be calculated by:

Pi =
TPi

TPi + FPi
(9)

Ri =
TPi

TPi + FNi
(10)
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Where for these two metrics, TPi represents the number of
True Positive of class i, FPi is the number of False Positives
of class i, TNi for True Negative of class i and FNi for False
Negative of class i. wi is the weight and calculated as the
proportion of class i images in the test dataset.

B. CHOOSING THE BEST DROPOUT RATE
In order to avoid over fitting in the training process and
achieve a more generalized model, we added a dropout layer
before the softmax layer. The dropout rate was chosen exper-
imentally leading us to set the optimal dropout rate for wound
depth images as 0.2, and for granulation tissue amount as 0.3.
The performance of our Bi-CNN with different dropout rates
are shown in Table 3 and Table 4. We selected the dropout
rate that yielded a high test set accuracy with a relatively
small accuracy gap between the train and test accuracies,
which indicates that the model is not overfitting.

TABLE3: The performance with different dropout rates on
wound depth images.

Dropout rate 0.1 0.2 0.3 0.4
Train accuracy 97% 91% 85% 78%
Test accuracy 81% 85% 84% 82%

TABLE4: The performance with different dropout rates on
granulation tissue amount.

Dropout rate 0.1 0.2 0.3 0.4
Train accuracy 98% 94% 88% 79%
Test accuracy 84% 85% 85% 81%

C. INFLUENCES ON DIFFERENT FULLY CONNECTED
LAYER CONSTRUCTIONS
We explored the influences of two different fully connected
layer architectures and compared their classification accura-
cies. First, we adopted an architecture with 3 fully connected
layers after bi-linear pooling, shown in Table 5. The exper-
imental results were obtained by setting the base learning
rate as 0.01 with 60 epochs. Secondly, we explored an
architecture using one Fully-Connected (FC) layer mapped
to a softmax layer as was introduced in Section II-A.

For comparison, the results are obtained by only re-
training the Fully Connected (FC) layers with the convolu-
tional layers frozen. The details are shown in Table 6.

TABLE5: Parameters of 3 fully connected layers architecture.

Type Input size Output size
FC 262144 1000
Dropout (p=0.2)
FC 1000 1000
Dropout (p=0.2)
FC 1000 5
Soft-max

TABLE6: Results obtained by different Fully Connected (FC)
layer architectures. WD represents Wound Depth and GTA
stands for Granulation Tissue Amount.

Architecture Data set WD GTA
3 FC layers Train 84.00% 74.00%

Test 79.27% 70.37%
1 FC layers Train 86.00% 82.00%

Test 82.93% 72.83%

From Table 6, we can see that simply using one FC layer
yielded the best results. Hence, in our following experiments,
we adopted a single FC layer architecture.

D. ACCURACY AND STABILITY ANALYSES
To better evaluate the performance of our proposed wound
grading network, in our experiments, we adopted five-fold
holdout validation. We extracted five sets of test images,
ensured no overlap between sets and equal proportions of the
different grades of original diabetic wound images in each
set. Our final results are the average classification accuracy
of the five folds. Fig 11 shows a sample of our training
accuracy trajectory and the loss history of the best performing
model on five-fold holdout validation based on the depth and
granulation tissue amount datasets respectively.

Fig 11 shows that our proposed network for wound grading
converges very fast, obtaining a stable accuracy and train
loss after around 20 epochs, which also demonstrates good
stability of the proposed method. The accuracy of the five-
fold holdout validation experiment is shown in Table 7 and
analyzed using box plots shown in Fig 12. The best accuracy
for wound depth and granulation tissue amount grading are
both 84.6%.

To evaluate the classification accuracy of each class, we
generated confusion matrices for the test set with the best
accuracy for wound depth and granulation tissue amount
classification, which are shown in Fig 13 and Fig 14.

In the confusion matrices, the numbers on diagonal line
represent images that were correctly classified. We can see
that the majority of test images are on diagonal line or near
it. For our wound grading task, numbers above the diagonal
line indicate that the wound severity has been over estimated,
in which case patients will be recommended to visit a wound
expert for an unnecessary examination and further treatment.
Although such incorrectly scored images will increase costs
to the health care system, they will not affect the patients’
health adversely. However, of greater concern are the num-
bers below the diagonal line in the confusion matrices, which
indicate that the wound severity has been underestimated.
Such patients may need to visit the wound clinic, but our
system will not correctly assess this.

E. ERROR ANALYSIS OF MIS-CLASSIFIED WOUND
IMAGES
Next, we performed error analysis by qualitatively assess-
ing the reason individual images were mis-classified. We
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FIGURE11: Training progress of depth and granulation tissue amount data set: the Accuracy and the loss history of best
performing model on five-fold holdout validation. (a)-(b) are the results of depth dataset. (c)-(d) are the results of granulation
tissue mount dataset.

TABLE7: Results of the five-fold holdout validation experiment using various evaluation metrics.

Index Label category Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Accuracy Wound depth 84.0% 84.6% 80.3% 84.6% 83.3%

Granulation tissue amount 84.6% 83.3% 82.7% 84.6% 81.5%
F1-score Wound depth 0.8367 0.8433 0.7933 0.8489 0.8290

Granulation tissue amount 0.8382 0.8229 0.8146 0.8378 0.8004

FIGURE12: Box plot of changes in accuracy across five folds.

discovered that unstable lights, blurring, low resolution and
controversial labels were the most common causes of mis-
classification, accounting for about 30% of mis-classified
images. Some examples of such images are shown in Fig 15
and Fig 16.

Following analyses, we believe that additional image pre-
processing techniques could be used to deal with uncertain

FIGURE13: Confusion matrix of wound depth dataset. The
accuracy is 84.57%

environments while taking photos, mitigating the effects of
blurred, bad illumination, low resolution images on wound
grading. Additionally, patients could be given picture-taking
guidelines to improve the quality of wound images they take
for assessment by our system and wound experts.
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FIGURE14: Confusion matrix of granulation tissue amount
dataset. The accuracy is 84.57%

F. COMPARING WITH OTHER NETWORKS
We compared experimental results of our Bi-CNN with five
CNN architectures: AlexNet [57], VGG16 [49] and two
variations of ResNet [58] and Densenet [59] which have
shown excellent performance in previous classification tasks.
VGGNet was the runner-up in ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2014, while AlexNet
and ResNet were the winners of the challenge in 2012 and
2015, respectively. Densenet paper won CVPR best paper
award in 2017. By adopting the same holdout folds for test,
we obtained the experimental results and the best accuracy of
different CNN architectures are shown in Table 8.

TABLE8: The results of different CNN architectures. WD rep-
resents wound depth and GTA stands for granulation tissue
amount.

Methods Accuracy
WD GTA

w/o fine-tuning

VGG16 71.9% 76.6%
Densenet 71.9% 69.8%
Alexnet 74.5% 75.5%
Bi-CNN 82.9% 76.8%

w/ fine-tuning
Resnet18 78.1% 81.7%
Resnet50 79.3% 81.7%
Bi-CNN 84.6% 84.6%

By comparing our Bi-CNN approach with other CNN
architectures that have shown excellent performance on other
classification tasks, we see that adopting the fine-grained
classification idea for the wound grading problem improved
performance and demonstrated the effectiveness of our pro-
posed approach.

V. DISCUSSION AND FUTURE WORK
A. MITIGATING CLASS IMBALANCE
As shown in Table 2, we noticed that the number of images
in different classes are not well-balanced, as there are 52.6%
wound depth images in grade 2, 62.3% wound granulation
tissue amount images in grade 4. It is common practice to
balance datasets in such cases using data augmentation to

avoid unbalanced datasets. By adopting horizontal flip, verti-
cal flip and translation, we augmented the dataset to balance
all classes, before applying our proposed architecture. In our
experiments, this data augmentation did not improve our
experimental results. In fact, our test set accuracy dropped
by around 2%. Therefore, we did not explicitly address
class imbalance in our approach, nor does prior work by
Matsunaga et al. [60]; Barata et al. [61]; Menegola et al. [62],
the three top teams of the ISIC 2017 contest. In future work,
collecting more diabetic wound images especially for classes
with fewer images now will be important to facilitate robust
model training.

B. EXPLORING ADDITIONAL PRE-PROCESSING
TECHNIQUES:
In order to obtain clearer images for training our model, pre-
processing techniques for image deblurring, image super res-
olution and illumination correction will be another important
direction.

C. INVESTIGATING THE EFFECTS OF DOWNSAMPLING
WOUND IMAGES
The pre-trained VGG16 networks we utilized for both Bi-
CNN streams of our proposed wound grading architecture
required resizing images to a certain dimension. Resizing
may have caused some valuable information to be lost during
the down sampling step. So in the subsequent research, we
will address this problem to reduce loss of information.

D. FINE-GRAINED CLASSIFICATION OF MORE WOUND
ATTRIBUTES
Adopting state-of-the-art fine-grained techniques on diabetic
wound grading of other PWAT aspects such as size, necrotic
tissue type, edges and periulcer skin viability will be ad-
dressed in our future research.

VI. CONCLUSION
In this paper, we proposed a fine-grained diabetic wound
grading method based on the Bi-CNN deep neural network.
To the best of our knowledge, this is the first attempt at using
a fine-grained deep neural network for wound healing grade
classification of five classes. We evaluated the wound healing
grades for wound depth and granulation tissue amount guided
by ground truth labels provided by wounds experts. We
also adopted pre-processing techniques and modified the Bi-
CNN architecture to better adapt to the diabetic wound grad-
ing task. In comparisons with other commonly used CNN
networks, our experimental results show the effectiveness
of using fine-grained deep neural network for the diabetic
wound grading task.

The results of our proposed approach on diabetic wound
grading reveal a promising direction for analyzing wound
images that are highly similar and do not have obvious
distinguishing visual features for classification. The gener-
alization of the proposed approach for other medical imaging
classification tasks is a subject for future work.
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FIGURE15: Examples of common causes of mis-classified wound depth image examples.
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FIGURE16: Examples of common causes of mis-classified granulation tissue amount image examples.
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