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 A B S T R A C T

Speech is an effective indicator of medical conditions such as Traumatic Brain Injury (TBI), 
but frequently includes private information, preventing novel passive, real-world assessments 
using the patient’s smartphone. Privacy research for speech processing has primarily focused on 
hiding the speaker’s identity, which is utilized in authentication systems and cannot be renewed. 
Our study extends privacy to include the content of speech, specifically sensitive words during 
conversation. Prior work has proposed extracting privacy-preserving features via adversarial 
training, which trains a neural network to defend against attacks on private data that an 
adversarial network is simultaneously attempting to access. However, adversarial training has an 
unsolved problem of training instability due to the inherent limitations of minimax optimization. 
Instead, our study introduces Privacy-Preserving using Adversarial Pruning (PPA-Pruning). 
Nodes are systematically removed from the network while prioritizing those contributing most 
to the recognition of personal data from a well-trained feature extractor designed for TBI 
detection and adversarial tasks. PPA-Pruning was evaluated for various privacy budgets via 
a differential privacy setup. Notably, PPA-Pruning outperforms baseline methods, including 
adversarial training and Laplace noise, achieving up to an 11% improvement in TBI detection 
accuracy at the same privacy level.

. Introduction

Motivation: Speech contains rich information, including the speaker’s identity, linguistic content (Nautsch et al., 2019; 
amanarayanan et al., 2022) and underlying medical conditions. Recently, speech processing for health assessments from speech 
as gained attention due to its potential to support non-invasive, cost-effective, and passive detection and monitoring of neurological 
isorders, including Traumatic Brain Injury (TBI) and depression (Al Mamun et al., 2017; Ramanarayanan et al., 2022; Renn et al., 
018). TBI and depression affect speech production, including impairing the coordination between brain regions responsible for 
peech planning and emotion. This results in difficulties with articulation, fluency, and voice modulation. Current speech assessments 
re typically performed in-clinic using speech tasks that require subject engagement or a questionnaire (Norman et al., 2013; Low 
t al., 2020). These in-clinic assessments can be tedious and time-consuming, and the requirement for physical presence at a clinic 
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Fig. 1. Pipeline of privacy-preserving feature extraction using PPA-Pruning for health assessment from spontaneous speech.

and associated costs can be a barrier for some individuals. Enabled by advancements in speech technology and machine learning, 
automatic assessment and passive detection and monitoring of various ailments from speech (Banerjee et al., 2019; Ditthapron et al., 
2022; Ramanarayanan et al., 2022; Renn et al., 2018; Talkar et al., 2020). Such technology-based automatic assessments can detect 
early signs of neurological disorders using mobile devices, reducing the healthcare burden associated with over 1.4 million TBI cases 
in the USA (Bavikatte et al., 2021; Faul et al., 2010). Much of prior work has focused on improving assessment accuracy with only 
a few addressing privacy concerns around recording and analyzing the speech or voice, which contain speaker identity (such as 
gender and age) and sensitive biometric data (Vildjiounaite et al., 2006; Kröger et al., 2020).

The problem of privacy concerns: As defined by Article 4 of European Parliament, Council of the European Union (2016), 
personal data are ‘‘any information relating to an identified or identifiable natural person’’. The regulation mandates the incorpora-
tion of a ‘‘privacy by design’’ engineering approach, requiring proactive measurement to address the risks of violating personal data 
throughout the system. For speech recordings, an individual’s voice is considered personal data and, specifically biometric data that 
is utilized for authentication in personal devices and assistive technology.

Challenges: Unlike the protection of non-biometric data, which employs pseudonymization to replace sensitive information and 
prevent direct identification, voice characteristics pose a unique challenge. While pseudonymization techniques such as voice-style 
transfer (Qian et al., 2019) and Generative Adversarial Networks (GANs) for gender and fundamental formant transfer (Prajapati 
et al., 2022) exist for Automatic Speech Recognition (ASR), they are not suitable for health assessment. This limitation arises from 
the inherent complexity of individual medical conditions embedded within the voice, making it challenging to apply standard 
pseudonymization methods to ensure privacy in health-related contexts.

Previous work: Previous work addresses privacy concerns in health assessment by employing adversarial training, which aims to 
defend against attacks by another network, to train the feature extractor. Prior work incorporated the adversarial model to recognize 
speaker identity in the features extracted by the feature extractor network (Lavania et al., 2023; Srivastava et al., 2019). This involves 
a minimax optimization of two competing tasks: health assessment and the identification of personal data. The primary objective is 
to extract features for the target assessment task that are resistant to use in the adversarial task, specifically speaker identification 
and word recognition in this work. While adversarial training has demonstrated state-of-the-art results in many applications, it is 
not without challenges. The minimax or zero-sum game optimization inherent in adversarial training can lead to non-convergence 
and overfitting issues, where the model excels in one task at the expense of the other, rendering the latter uncompetitive (Wang 
et al., 2019). For instance, an exceptionally accurate assessment model may fail to preserve privacy, or vice versa.

Our proposed approach:  To avoid issues with minimax optimization, we introduce an innovative approach to derive 
a well-performing and privacy-preserving feature extractor. Instead of relying on minimax optimization, a pruning scheme is 
employed within the adversarial training framework. Pruning nodes or connections in neural networks reduces network complexity, 
accelerating the network (Vadera and Ameen, 2022) by eliminating information from the network (Srivastava et al., 2014). An 
example in the latter case is dropout, which mitigates overfitting by preventing some nodes from adapting to new samples. 
Dropout removes information from a DNN, but does so randomly. For privacy preservation, Gong et al. (2020) introduced a 
pruning optimization to identify sparse patterns in a CNN that preserve data privacy during private training. This alternative 
seeks to overcome the training instability in traditional adversarial training, offering a potential solution to the challenges of 
non-convergence and overfitting in privacy-sensitive applications. Our proposed Privacy-Preserving using Adversarial Pruning (PPA-
Pruning) is designed to safeguard the personal data of patients, specifically focusing on voice biometrics and linguistic content. This 
method is implemented during speech recording and feature extraction on smartphones, aiming to eliminate speech content and 
speaker identity from the extracted features, as illustrated in Fig.  1. Instead of retaining raw audio, privacy-preserving features 
are extracted from speech to protect sensitive information against potential malicious activities such as data leaks or attacks on 
stored data during data transmission for health analysis on the server. With the overarching objective of privacy-preserving feature 
extraction, our PPA-Pruning offers more comprehensive protection compared to anonymization and pseudonymization methods. The 
proposed method operates on a feature extractor previously pre-trained to extract features for both health assessment and adversarial 
tasks, systematically removing nodes that contribute the most to the adversarial task one by one. After each pruning iteration, the 
networks for both tasks are updated to seamlessly adapt to the pruned feature extractor. Pruning also reduces the computational 
complexity of the feature extractor on the smartphone and improves power utilization, a critical factor in mobile applications.
2 
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The pruning method was evaluated for the TBI detection task, selected as an example of a health assessment task from speech. 
The adversarial tasks included speaker identification and word recognition. Classification metrics for each task are reported, along 
with the privacy budget derived from differential privacy to measure the level of protected personal data. Adversarial training using 
minimax optimization, was performed.

Our contributions can be summarized as follows:

1. We proposed PPA-Pruning using a pruning method that is more stable than the traditional minimax method for extracting 
privacy-preserving speech features.

2. We evaluated our proposed PPA-Pruning in terms of accuracy and privacy, using a privacy budget to measure upper bound 
of privacy leaks, for TBI assessment on conversational speech.

3. We present results that demonstrate a higher level of privacy protection in extracted features compared to baselines, and 
comply with GDPR regulations; the pruning method achieves a higher detection accuracy of up to 11% than baselines 
at the same privacy-preserving level. Baselines included state-of-the-art speech feature sets for health assessment, formant 
coordinations, and bag-of-audio-word (BOAW).

4. We show that pruning using a gradient of nodes in the network is the only method that is ‘‘unlinkable’’ between speaker 
identities.

The rest of this paper is organized as follows: background and related work of privacy-preserving features for health assessment 
from speech are in Section 2. Our adversarial pruning method is described in Section 3, followed by experimental setup in Section 4. 
Evaluation results of the proposed method are reported in Section 5 with a discussion. Finally, we conclude our study in Section 6.

2. Background and related work

2.1. Regulation and guidelines on personal data

Protecting personal data is imperative during data collection and processing, and extends beyond anonymization. Analyzing 
labeled speech that obstructs speaker identity is crucial to avoid compromising speech-based authentication systems. Well-known 
regulations governing data collection and processing include the General Data Protection Regulation (GDPR) and the California 
Consumer Privacy Act (CCPA). In the USA (2023), states such as Illinois, Texas, and Washington have initiated measures to safeguard
biometric identifiers, encompassing voiceprints, iris scans, fingerprints, face scans, and face geometry. These states mandate an 
additional layer of data security. For instance, Illinois’s Biometric Information Privacy Act (Illinois General Assembly, 0000) aims to 
ensure that entities ‘‘store, transmit, and protect all biometric identifiers and biometric information’’ with a higher level of protection 
than other confidential and sensitive information. Notably, Illinois empowers private individuals with the right of action, enabling 
them to seek redress ($1000–$5000 per violation) for any breaches of this protection.

GDPR recommends that systems processing personal identity information take measures to prevent collected data from being 
traced back to a consumer’s identity. This is particularly relevant in the context of automatic health assessment from speech, which 
involves the speaker’s identity. The GDPR states that the collection and usage of biometric data should adhere to the following 
principles (Nautsch et al., 2019; European Parliament, Council of the European Union, 2016):

1. Unlinkable: Speech representations from the same speaker should not be individually identifiable.
2. Renewable: References of speech must be renewable without the need for recollection.
3. Irreversibility: Speech signals should not be reconstructable from stored data.

Beyond speaker identity, concerns also arise regarding linguistic or intelligible spoken words, especially in the analysis of 
unscripted or conversational speech that requires no speaker attention but may contain words revealing the speaker’s identity (Dit-
thapron et al., 2022; Talkar et al., 2020). To this end, we introduce a novel approach for privacy-preserving feature extraction using 
adversarial pruning. To the best of our knowledge, this is the first work that endeavors to preserve both speaker identity and speech 
content for health assessment applications.

2.2. Differential privacy (DP)

DP is a mathematical framework for protecting the privacy of individuals in statistical databases or data analysis. It gained 
attention in the context of data protection regulations, including the GDPR and other similar frameworks. This study uses privacy 
budget, a fundamental measurement of privacy in DP, to evaluate the privacy protection of the proposed pruning method. DP is 
formalized using the notion of a privacy budget and a privacy loss function. The definition involves the introduction of randomness 
through noise to obscure individual contributions to the data. DP can be defined as a mechanism 𝑀 that is said to satisfy 𝜀-differential 
privacy if, for all adjacent datasets 𝐷 and 𝐷′, and for all possible outcomes 𝑆 in the range of 𝑀 , the following holds: 

Pr[𝑀(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 × Pr[𝑀(𝐷′) ∈ 𝑆] (1)

where 𝜀 is a privacy budget, a non-negative parameter that quantifies the privacy guarantee. Smaller values of 𝜀 correspond to 
stronger privacy guarantees. 𝑀(𝐷) represents the output of the mechanism 𝑀 on dataset 𝐷. 𝑆 is a subset of possible outcomes. 𝐷
and 𝐷′ are neighboring datasets, meaning that they differ by the inclusion or exclusion of a single individual’s data. The formula 
3 
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states that the probability of obtaining a specific outcome 𝑆 on the dataset 𝐷 is roughly the same as obtaining that outcome on 
dataset 𝐷′, up to a multiplicative factor 𝑒𝜀. A 𝜀 value of zero indicates perfect privacy and larger values imply weaker privacy 
guarantees.

Privacy Budget Parameter: The parameter 𝜀 is the privacy loss parameter. Smaller values of 𝜀 provide stronger privacy guarantees 
but may reduce the accuracy of the output.

Noise Injection: DP protects data privacy by adding random noise to individual data points before they are aggregated. This 
method is used as a baseline for privacy protection on handcrafted speech features, which excludes the proposed method and 
adversarial baselines. The added noise makes it difficult to determine the contribution of a specific individual’s data during training. 
However, this study adopts this concept for inference of the health assessment, where speech input is 𝐷 in the DP formula. Although 
DP provides substantial protection of personal data, it requires careful consideration of parameters and potential trade-offs between 
privacy and system performance, controlled by the privacy parameter 𝜖.

De-identification and preserving anonymity in speech features: DP aids in the de-identification of individual recordings. 
Even if an adversary has auxiliary information about some individuals, in differentially private datasets (speech sample in this 
study), the added noise makes it challenging to re-identify specific individuals, thereby protecting against re-identification attacks. 
However, we considered a speech sample from one speaker as a dataset and each temporal snippet of speech as a data entry—in a 
way that aggregating data with added noise is preserved under DP. DP provides a mathematically rigorous framework for privacy 
protection. It ensures that the privacy guarantees hold even in the presence of sophisticated adversaries attempting various attacks 
to de-anonymize the data. DP can be used to meet the unlinkable and irreversibility requirements of the GDPR.

2.3. Voice anonymization methods

Voice anonymization has become an important area of research that aims to protect sensitive information about speakers while 
retaining the meaning of speech and emotions. To balance these competing objectives, a number of recent studies have explored 
adversarial frameworks and Differential Privacy (DP) mechanisms. In this section, we provide an organized review of these prior 
methods.

2.3.1. Adversarial-based methods
Prior work has explored adversarial training to conceal speaker-specific information in the learned representations. Wang et al. 

(2024), Srivastava et al. (2019) and Chen et al. (2023) proposed adversarial losses that can be used to make embeddings less 
sensitive to the speaker’s identity. An adversarial model is trained to guess the speaker’s identity based on encoded features, and 
the speech feature extractor is penalized based on how well the adversarial model does. Min–max optimization, which is built into 
these methods, can cause problems such as training instability and convergence because the adversarial network may overfit or 
underfit at different stages of training.

Qian et al. (2019) and Prajapati et al. (2022) propose extensions to the adversarial paradigm by incorporating generative 
frameworks. In 2019, Qian et al. created a zero-shot voice style transfer model using an autoencoder structure. In 2022, Prajapati 
et al. used CycleGAN architectures along with time-scale modification to make voices less recognizable. While these methods are 
good at retaining the meaning of the language, they often struggle with achieving the right balance between performance and 
anonymization, especially when sensitive features are linked to the speaker’s language patterns.

In addition, Gu et al. (2024) and Hua et al. (2024) focus on preserving not only privacy but also other aspects of speech, such 
as emotional content. Gu et al. (2024) use a strategy called disentanglement to separate features that are related to the content from 
those that are not related to the content. Hua et al. (2024) created fake speaker speech that retained emotional cues. These works 
provide a comprehensive understanding of voice anonymization. However, while it is important to protect speaker privacy, it is just 
as important to keep the speech signals still usable for other tasks, such as emotion detection and automatic speech recognition.

2.3.2. Differential privacy in voice anonymization
Another research direction focuses on applying DP to the task of voice anonymization. Shamsabadi et al. (2023) present a 

framework that integrates DP directly into the adversarial training process. Their method adds calibrated noise to the gradients 
and intermediate feature representations, ensuring that the information from any speaker only makes a small difference in the final 
output. Shamsabadi et al. (2023) show that their method achieves state-of-the-art anonymization while still keeping acceptable 
levels of speech intelligibility for later tasks. Their proposed method uses noise injection that is carefully tuned to the extracted 
features, following 𝜖-DP. This implies that the presence or absence of a single speaker’s data in the training set will not significantly 
alter the learned representations.

In contrast, our proposed PPA-Pruning takes a different direction to achieve privacy preservation. PPA Pruning systematically 
determines and removes feature extractor nodes that change the adversarial task the most, which corresponds to discovering speaker-
sensitive attributes. This is done without adding noise to the model’s gradients or intermediate representations. This pruning-based 
strategy inherently reduces the risk of privacy leakage by removing the specific network components that capture personal data.

A notable advantage of the PPA-Pruning approach is its improved training stability. The noise injection method used by
Shamsabadi et al. (2023) requires knowing the noise level (and, by extension, the privacy budget) to be carefully tuned. PPA-Pruning, 
on the other hand, does not utilize min–max adversarial optimization at all. Our method maintains the network’s performance high 
on the target health assessment task while ensuring that the pruned network is unable to reconstruct sensitive speaker information. 
We achieve this by repeatedly pruning the network and then adapting it through model re-training. PPA-Pruning also used DP as 
4 



A. Ditthapron et al. Computer Speech & Language 95 (2026) 101854 
a technical measure to find privacy leaks. However, Shamsabadi et al. (2023) employs DP by enhancing the randomness of the 
network’s calculations.

In addition to suppressing speaker identity, our approach also targets the verbal content in the speech signal. Although prior 
work (Ahmed et al., 2020) considers specific words, such as names, locations, or other unique identifiers, which increases the risk 
of privacy leakage, we simply suppress all verbal content in the speech. This is because speech is inherently contextual; even words 
that appear neutral in isolation may reveal sensitive information when combined with surrounding context. Given the difficulty in 
reliably distinguishing which words are more indicative of privacy risks, to ensure comprehensive protection, our method treats 
every word as potentially sensitive.

2.4. Neural network pruning

Most pruning aims to reduce the number of parameters in a large DNN without compromising accuracy, fundamentally by 
removing connections between layers, nodes, or filters in a large pre-trained network (Vadera and Ameen, 2022; Kulkarni et al., 
2022). The main criteria for pruning a neural network can be categorized into three groups: magnitude-based, similarity clustering, 
and sensitivity analysis (Vadera and Ameen, 2022). All three methods share the same goal: reducing network complexity with 
minimal change to the final prediction, which involves identifying nodes that contain the same information or do not contribute 
significantly to the prediction. However, as our proposed method aims to remove nodes that specifically contribute to a certain 
measurement, such as private data, only sensitivity analysis criteria for pruning meet our objectives.

In addition to the objective of reducing network parameters, pruning is frequently employed during training as dropout, which 
temporarily removes random connections of nodes to avoid overfitting (Srivastava et al., 2014). Although dropout was not initially 
proposed as a privacy-preserving method, Jain et al. (2015) demonstrated that dropout preserves privacy under the differential 
privacy terms, in addition to improving learning stability in deep belief networks. In evaluating our proposed adversarial pruning 
method, dropout is considered and evaluated for random pruning to preserve speaker and speech content privacy.

3. Proposed method

3.1. Overview and requirements

We propose Privacy-Preserving using Adversarial Pruning (PPA-Pruning) to preserve speaker identity and linguistic content 
during health assessments from speech recordings. Speech features extracted using a deep neural network (DNN) are denoted as ℎ, 
obtained through the feature extractor  . These features are protected against personal data attacks, represented by the adversarial 
network 𝐴𝐷𝑉 , while simultaneously performing well on the TBI detection task, denoted as 𝑇𝐵𝐼 . This aligns with the common setup 
of adversarial networks trained using minimax optimization. However, the inner maximization in this setup is globally non-concave, 
posing training challenges between the 𝐴𝐷𝑉  and 𝑇𝐵𝐼  networks. In an effort to derive a stable privacy-preserving feature extractor, 
we propose PPA-Pruning as an adversarial method, which simply removes nodes in  that contribute the most to 𝐴𝐷𝑉  as part of 
the outer minimization process. Unlike minimax optimization, the PPA-Pruning assumes that networks  , 𝐴𝐷𝑉 , and 𝑇𝐵𝐼  have 
already converged through multi-task learning for the TBI detection and adversarial tasks before the pruning stage.

Prior to pruning to preserve privacy, multi-task learning is used to train feature extractors  , which comprise 𝑙 layers each 
containing 𝑛𝑙 nodes, for both the TBI detection and adversarial tasks (speaker identification and ASR). The entire pruning process is 
depicted in Fig.  2. Considering different ranges and sensitivities of loss functions in each task, gradients in each task are normalized 
using GradNorm (Chen et al., 2018), which weights the loss (𝑤𝑡) in each training batch, as outlined in Eq.  (2). The pruning starts 
after  converges for both tasks. 

𝐿𝑔𝑟𝑎𝑑 (𝜃𝑡) =
∑

𝑡

|

|

|

‖

‖

∇𝜃𝑤𝑡𝑓𝑡(𝜃𝑡)‖‖ − ‖

‖

∇𝜃𝑤𝑓 (𝜃)‖
‖

|

|

|

(2)

3.2. Node pruning

This study proposes two criteria for selecting and pruning nodes in  that contribute the most to the training objectives in 
adversarial tasks. The weight of the node is not considered a pruning criterion, as it signifies the importance of the node for 
both TBI and adversarial tasks. Instead, this study explores SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) and 
Integrated Gradients (IG) (Sundararajan et al., 2017), two algorithms commonly employed to explain feature importance in DNN. 
Both algorithms capture the contribution of each node in DNN to the predictions, including speaker identity and spoken words that 
we aim to exclude from extracted features.

1. SHAP estimates the contribution of each feature to speaker identity and word recognition predictions. The Shapley value, a 
concept from cooperative game theory, is used to assign a fair value to each feature based on its marginal contribution to all 
possible coalitions of features. In the context of feature importance, the Shapley value of the node 𝑛𝑖𝑗 where 𝑖, 𝑗 represents 
the node 𝑗 of the layer 𝑖 in the feature extractor  , is calculated as the average marginal contribution of that feature across 
all possible permutations of features. The formula for the Shapley value is 

Sh𝑖(𝑓 ) =
∑

|𝑆|!(|𝑀| − |𝑆| − 1)!
|𝑀|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)], (3)

𝑆⊆𝑀⧵{𝑖}
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Fig. 2. The proposed PPA-Pruning preserves speaker privacy in extracted speech features. Shapley Additive Explanations (SHAP) and Integrated Gradients (IG) 
are adopted as measures to remove a node with the highest contribution to the adversarial network, which violates the speaker’s privacy. In each iteration, a 
node is pruned, followed by network adaptation in discriminators to match changes due to pruning.

where 𝑓 (𝑆) is the model’s prediction when using only the features in the set 𝑆, 𝑀 is the set of all features, |𝑆| is the number 
of features in set 𝑆, |𝑀| is the total number of features, and 𝑆 ⊆ 𝑀 ⧵ {𝑖} denotes all possible subsets of features excluding 
feature 𝑖. This gives a fair distribution of the model prediction among the features, considering all possible combinations. In 
practice, since evaluating all subsets is computationally expensive, approximation methods like Monte Carlo simulations or 
kernel SHAP are often used to estimate the Shapley values.

2. IG assigns an importance score to a node 𝑛𝑖𝑗 by integrating the model’s predictions over a path from a baseline (usually a 
reference input with zero influence) to the actual input. The formula for IG for a feature 𝑖 is given by 

IG𝑖(𝑓 ) = (𝑥𝑖 − 𝑥′𝑖) × ∫

1

𝛼=0

𝜕𝑓 (𝐳 + 𝛼 × (𝐱 − 𝐳))
𝜕𝑥𝑖

𝑑𝛼, (4)

where 𝑓 is the model’s prediction function, 𝐱 is the actual input, 𝐳 is the baseline input, 𝑥𝑖 and 𝑥′𝑖 are the 𝑖th feature values 
of 𝐱 and 𝐳, respectively.

In each pruning iteration, all DNN connections to node 𝑛𝑖𝑗 that have the highest Sh𝑖(𝑓 ) or IG𝑖(𝑓 ) are removed. This removal 
impacts subsequent DNN layers, particularly the normalization layer and bias, necessitating network retraining for the DNN to 
make accurate predictions.

3.3. Training procedures and network adaptation

PPA-Pruning performs four main steps as follows:

1. Forward Pass: Run the updated feature extractor  (with fewer nodes) on a batch of training samples, thereby generating 
updated feature representations.

2. Update 𝑇𝐵𝐼 : Compute the TBI detection loss (𝐿𝑇𝐵𝐼 ) using the updated representations and backpropagate through 𝑇𝐵𝐼
and  . This step ensures that 𝑇𝐵𝐼  adjusts its parameters to accommodate the pruned structure while preserving detection 
accuracy.
6 



A. Ditthapron et al. Computer Speech & Language 95 (2026) 101854 
3. Update 𝑆𝑃𝐾 and 𝐴𝑆𝑅 (Adversarial Tasks):
Following the TBI update, we compute losses for the adversarial tasks of speaker verification and automatic speech 
recognition. Let 𝐡 denote the updated features from the pruned extractor  (𝐱). For speaker verification, the loss 𝐿𝑆𝑃𝐾 is 
calculated via cross-entropy over 𝐶𝑆𝑃𝐾 possible speaker classes and over 𝑁 samples in the training batch: 

𝐿𝑆𝑃𝐾 (𝜃 , 𝜃𝑆𝑃𝐾 ) = − 1
𝑁

𝑁
∑

𝑖=1

𝐶𝑆𝑃𝐾
∑

𝑐=1
𝑦(𝑖,𝑐)𝑆𝑃𝐾 log

(

𝑆𝑃𝐾 (𝐡(𝑖))𝑐
)

, (5)

where 𝑦(𝑖,𝑐)𝑆𝑃𝐾 ∈ {0, 1} indicates whether a sample 𝑖 belongs to the speaker class 𝑐, and 𝑆𝑃𝐾 (𝐡(𝑖))𝑐 is the predicted probability 
for that class.
Similarly, for the word recognition task, 𝐿𝐴𝑆𝑅 is computed by comparing the predicted token distribution against the ground-
truth tokens for each input. Assuming a vocabulary of size 𝑉 , let {𝑤𝑡}𝑇𝑡=1 be the predicted word (or subword) sequence and 
{𝑧𝑡}𝑇𝑡=1 the ground truth: 

𝐿𝐴𝑆𝑅(𝜃 , 𝜃𝐴𝑆𝑅) = − 1
𝑁

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

𝑉
∑

𝑣=1
𝑧(𝑖,𝑡,𝑣) log

(

𝐴𝑆𝑅(𝐡(𝑖,𝑡))𝑣
)

, (6)

where 𝑧(𝑖,𝑡,𝑣) ∈ {0, 1} indicates if the ground-truth token at time 𝑡 matches the vocabulary index 𝑣, and 𝐴𝑆𝑅(𝐡(𝑖,𝑡))𝑣 is the 
predicted probability for the token 𝑣 at time 𝑡.
We then form a combined adversarial loss by summing or weighting these two terms, 

𝐿𝐴𝐷𝑉 = 𝛼 𝐿𝑆𝑃𝐾 + 𝛽 𝐿𝐴𝑆𝑅, (7)

where 𝛼 and 𝛽 control the relative importance of each adversarial objective. The parameters of  , 𝑆𝑃𝐾 , and 𝐴𝑆𝑅 are updated 
via stochastic gradient descent (Adam optimizer):

(𝜃 , 𝜃𝑆𝑃𝐾 , 𝜃𝐴𝑆𝑅) ← (𝜃 , 𝜃𝑆𝑃𝐾 , 𝜃𝐴𝑆𝑅) − 𝜂 ∇𝜃𝐿𝐴𝐷𝑉 .

This ensures that both the speaker-verification and speech-recognition networks adapt to the pruned architecture, striving to 
recover lost information, while the pruned extractor  continues to suppress sensitive details in each subsequent iteration.

4. Iterative Pruning: This process is repeated for each pruning iteration until either the desired pruning rate or a specified 
convergence criterion is reached. Throughout these iterations, the model continuously adapts to its reduced capacity, 
balancing TBI detection performance with suppressed sensitive information.

Following each pruning step, both  and 𝑇𝐵𝐼  are updated using gradients computed from the 𝐿𝑇𝐵𝐼  objective, and 𝐴𝐷𝑉  is 
updated using the 𝐿𝐴𝐷𝑉  objective. It is crucial to note that this is not a minimax adversarial process, as F is not trained to outperform 
𝐴𝐷𝑉 . Instead, 𝐴𝐷𝑉  is retrained (adapted) at each pruning iteration to learn from the current state of the evolving, privacy-
preserved features. This continuous retraining of 𝐴𝐷𝑉 , starting from its initial training on rich unpruned features, represents a 
highly adaptive adversarial agent. Its reported performance (EER for speaker verification and WER for ASR) at each pruning iteration 
inherently reflects its best attempt to extract private data from the features as they become progressively more anonymized. This 
dynamic evaluation provides a robust indicator of privacy leakage, demonstrating the ongoing challenge an attacker would face, 
effectively simulating a worst-case scenario where the attacker’s model is continuously optimized to extract any remaining sensitive 
information.

3.4. DNN models

Our DNN model extends AM-MobileNet1D (Nunes et al., 2020), a compact Convolutional Neural Network (CNN) utilizing 
additive margin softmax for learning speaker representations. This extension aims to learn common features for TBI detection, 
speaker identification, and speech recognition tasks. The DNN architecture, including the number of CNN blocks, CNN filter size, 
and dropout rate in  , 𝑇𝐵𝐼 , and 𝐴𝐷𝑉 , was optimized using AsyncHyperBand neural architecture searching implemented in the Ray 
Tune library (Liaw et al., 2018). Additionally, other optimization parameters, such as learning rate and decay rate, were fine-tuned. 
The best-performing architectures for TBI detection and privacy preservation have 3 residual blocks in the feature extractor, 2 
blocks of the Fully-Connected layer (FC) in the adversarial networks, and 2 blocks of FC in the TBI detection network. Each residual 
block in the feature extractor is the inverted residual block from MobileNetV2 (Sandler et al., 2018) that implements depth-wise 
convolutions to reduce computational complexity. After the depth-wise convolutions, point-wise convolution is performed using a 
1 × 1 convolution filter to combine the output from each depth-wise convolution. Batch normalization and the ReLU activation 
function were included at the end of each residual block. The configuration of the channel (depth) is reported in Table  1. All nodes 
in the last layer of the feature extractor are flattened to one dimension and an FC layer of 896 channels is applied. A vector of shape 
(1896) is used to extract speech features on which we aim to preserve privacy in this study. Each block in 𝑇𝐵𝐼 , 𝑆𝑃𝐾 , and 𝐴𝑆𝑅
contains a Dropout layer, followed by a single layer of FC, batch normalization, and the ReLU activation function. In the last block, 
the softmax activation function was used instead of ReLU.
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Table 1
Model configuration.
 Parameters Tuned value 
 Model   
  Input channel 32  
  Numbers of residual channels 16,24,32  
  Output channel 896  
  Learning rate 2.2e−3  
 Model 𝑇𝐵𝐼  
  Numbers of channel 56,16  
  Dropout rate 0.24,0.20  
  Learning rate 3.43e−5  
 Model 𝑆𝑃𝐾  
  Numbers of channel 64,60  
  Dropout rate 0.46,0.28  
  Learning rate 3.01e−5  
 Model 𝐴𝑆𝑅  
  Numbers of channel 64,32  
  Dropout rate 0.35,0.24  
  Learning rate 4.2e−5  

3.5. Identification and suppression of sensitive words

While our primary goal is to obscure sensitive linguistic content, our method does not rely on a predefined external lexicon or 
a Named Entity Recognition (NER) system. Instead, we adopt an adversarial approach that treats all spoken words as potentially 
sensitive. Specifically, the adversarial network 𝐴𝑆𝑅 is trained to recognize any intelligible content in the extracted features. During 
pruning, any node or connection that strongly contributes to correct word recognition is considered a candidate for removal. 
Consequently, words that are easily identified by 𝐴𝑆𝑅 are more aggressively suppressed, since their gradient contributions are 
higher. This strategy avoids the need for explicit lists of sensitive terms (e.g., personal names, locations) or more sophisticated NER 
pipelines. Instead, we empirically ensure that features facilitating the recognition of any token, potentially revealing personal or 
private details in context, are pruned. This provides a broader privacy guarantee, especially when conversational or spontaneous 
speech is used and sensitive information may not be captured easily by a static dictionary of keywords.

4. Evaluation method

PPA-Pruning, which employs SHAP and IG as criteria to prune the networks, was evaluated for the TBI assessment task and 
adversarial tasks, including speaker identification and word recognition. Baselines for adversarial learning, involving minimax 
optimization and DP methods applied to different speech features, were considered.

4.1. Speech corpora

4.1.1. Coelho TBI corpus
PPA-Pruning was trained and evaluated for the TBI detection task using the Coelho TBI corpus (Coelho et al., 2002). The dataset 

comprises conversational speech collected during discourses following TBI, which included story retelling, story generation, and 
conversations from 55 native English speakers with non-penetrating head injuries, as well as 52 native English speakers with no 
brain injury (control subjects). Only conversational speech produced by the subjects was considered in this study. Each discourse 
lasted around 10–15 min and was examined by a speech-language pathologist. The conversation was initiated by the examiner with 
the question ‘‘Why are you here at the hospital/rehabilitation center today?’’ and was then continued by either the subject or the 
examiner. The dataset exhibits a diverse demographic range in terms of gender (Male:39, Female:16), age (28.53 ± 12.31), education 
level (13.01 ± 2.38 years), working class (Unskilled:19, Skilled:18, Professional:18), TBI severity (Coma duration: 16.95 ± 22.10 
days) and recording on-set time after the accident (10.35 ± 17.78 months). The causes of brain injury for subjects in this corpus 
include motor vehicle accidents (45 subjects), falls (6 subjects), struck by cars (3 subjects), and others (1 subject). The Coelho corpus 
was utilized to train 𝑇𝐵𝐼  with the binary cross-entropy loss function for classifying TBI and healthy subjects in both pre-training 
and network adaptation. The dataset was also employed during the pruning (calculating attribution scores) of  and the network 
adaptation of 𝐴𝐷𝑉 . The model and optimization details are explained in Section 3.4.

While the Coelho corpus is highly relevant for assessing clinical speech, its limited size poses challenges for training complex 
models and could impact the generalizability of our models. We partially mitigate this constraint through a multi-stage approach: 
first, we pre-train our adversarial networks using the much larger Librispeech dataset, which contains read speech from over 
a thousand speakers. This pre-training step enables the learning of robust speaker and linguistic representations, exploiting the 
extensive and varied speaker characteristics present in Librispeech.
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4.1.2. Librispeech
The Librispeech corpus (Panayotov et al., 2015) comprises a collection of audiobooks with 1166 speakers (564 females, 602 

males) and has been widely utilized for pre-training and evaluating various speech processing tasks, including speaker identification 
and ASR. In this study, the Librispeech corpus was employed to pre-train the adversarial model 𝐴𝐷𝑉  due to the limited number of 
speakers and vocabulary in the Coelho corpus. For the ASR task, the vocabulary size (V) was derived from the Librispeech corpus, 
consisting of approximately 10,000 subword tokens (SentencePiece).

Nevertheless, we acknowledge a potential domain mismatch: Librispeech contains read, audiobook-style utterances, whereas the 
Coelho corpus features spontaneous speech that inherently differs in fluency, disfluency patterns, and lexical richness. To reduce 
the impact of domain mismatch, all networks are fine-tuned during each pruning step on the Coelho corpus.

4.1.3. Audio pre-processing and data splitting
All audio files were initially downsampled to 16 kHz. In the Coelho corpus, noise suppression was applied to reduce background 

noise, utilizing the minimum mean square error estimated from the spectral amplitude from the MATLAB Voicebox toolbox. The 
Coelho corpus provides a timestamp, which was used to eliminate non-speech segments and split pathologist and subject speeches. 
Finally, the speech from each subject was divided into chunks of 200 ms, with a 10 ms overlap. In both datasets, speech samples 
were split using subject-wise five-fold cross-validation, with test subjects excluded from the training set.

4.2. Evaluation metrics

4.2.1. TBI detection
Balanced Accuracy (BA), computed as BA = Sensitivity+Specificity

2 , was used to assess the classification performance of privacy-
preserving feature extractors  and the binary classification network 𝑇𝐵𝐼  for the TBI detection task. The accuracies of positive and 
negative classes were given equal weight. The accuracy was subsequently averaged over five-fold cross-validation, with the standard 
error calculated using Standard Error =

∑5
𝑖=1(𝑚𝑖−𝑥)2

√

5
, where 𝑚𝑖 represents the performance of the validation fold 𝑖 out of 5 folds.

4.2.2. Speaker verification
The model 𝑆𝑃𝐾 was initially trained for speaker classification using the Librispeech corpus for pretraining and the Coelho corpus 

(training set) for network adaptation. However, we assessed 𝑆𝑃𝐾 for the speaker verification task using the Equal Error Rate (EER) 
on the test set of the Coelho corpus. This choice was made because testing subjects were excluded from the training set.

For each test sample, we treated the output to the last layer of 𝑆𝑃𝐾 after each pruning iteration as a d-vector representing 
the speaker’s voice. This d-vector was then used to compute the cosine similarity to the ten reference d-vectors extracted from 
the same speaker. The averaged cosine similarity was considered as the speaker probability in EER. EER is the point where the 
False Acceptance Rate (FAR) is equal to the False Rejection Rate (FRR). In other words, it represents the threshold at which the 
probability of incorrectly accepting a different speaker is the same as the probability of incorrectly rejecting the true speaker. In 
order to illustrate the performance comparison between speaker verification and TBI detection, we also calculated the BA at the 
EER point.

4.2.3. Automatic speech recognition
Word Error Rate (WER), computed as 𝑆+𝐷+𝐼

𝑁  was used to evaluate speech recognition network (𝐴𝑆𝑅), the adversarial model. 
WER takes the number of substitutions (S), number of insertions (I), number of deletions (D) and the total number of words (N) in 
the ground truth into account. A lower WER indicates a smaller difference between the generated output and the ground truth and 
better ASR system performance.

4.2.4. Privacy budget
Privacy budget (𝜖) is a parameter in DP that controls the level of privacy loss. A mechanism 𝑀 or network is 𝜖-differentially 

private if Eq.  (1) holds for all measurable sets 𝑆 in the range of 𝑀 . The equation can be rewritten to estimate 𝜖 as

𝑒𝜀 ≥ Pr[𝑀(𝐷) ∈ 𝑆]
Pr[𝑀(𝐷′) ∈ 𝑆]

where 𝐷′ is a dataset that differs from the dataset 𝐷 by one entry. The privacy budget is computed for the proposed method and 
baselines, where 𝑆 is the label in speaker identity and speech recognition.

4.3. Baseline

4.3.1. Adversarial using minimax optimization
Srivastava et al. (2019) previously proposed an adversarial loss function for ASR privacy preservation. The training objective 

is to enhance the performance of ASR models  and 𝐴𝑆𝑅 relative to adversarial networks and the speaker identification model 
𝑆𝑃𝐾 using min ,𝐴𝑆𝑅 max𝑆𝑃𝐾 𝐴𝑆𝑅 − 𝛼𝑆𝑃𝐾 The parameter 𝛼 is employed to control the degree of privacy preservation, where a 
high value degrades ASR performance. However, the speaker identification model 𝑆𝑃𝐾 might struggle to converge if the 𝛼 value 
is excessively small. This study substituted the ASR task in the adversarial baseline with the TBI detection task.
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4.3.2. Laplace noise method
In order to incorporate differential privacy into our baseline Bag-of-Audio-Words (BOAW), Low-Level Descriptor (LLD), and 

Formant-based feature sets, we add Laplace noise to each dimension of the extracted feature vectors. Specifically, for each original 
feature vector 𝐱 ∈ R𝑑 , we compute the noisy version 𝐱′ as:

𝐱′ = 𝐱 + 𝐧, where 𝐧 ∼ 
(

0, 𝛥
𝜖

)

.

Here, (0, 𝛥𝜖 ) denotes the Laplace distribution with mean 0 and scale parameter 𝑏 =
𝛥
𝜖 , where 𝛥 is the global sensitivity of the feature 

vector and 𝜖 is the privacy budget. After noise is added, we then train our TBI detection model on the noise-infused features. Please 
note that these baselines are not evaluated for speaker verification and ASR. The three speech feature sets are as follows:

Acoustic feature: A collection of Low-Level Descriptor (LLD) from COMPARE 2016 acoustic features (Schuller et al., 2013) was 
extracted from speech using the OpenSMILE library (Eyben et al., 2010). A total of 130 LLD features, including energy, spectral, 
and voicing features, were extracted over 20 ms audio length with a 10 ms time step. To obtain a trade-off between the BA of TBI 
detection and privacy, the DP method was applied with a range of privacy budgets from 0.01 to 500. Principal Component Analysis 
(PCA) of 12 components, experimentally tuned, was used to reduce the feature dimension after the DP method.

Bag-of-Audio-Word (BOAW): The BOAW technique clusters the extracted COMPARE features into groups also called audio 
words. Next, histograms of these audio words are constructed to count the occurrences of common audio words in each speech 
sample. In this study, BOAW is employed as an alternative to PCA for dimensionality reduction. After extracting COMPARE 2016 
features, two BOAW codebooks, each containing 1000 audio words, were generated using OpenXBOW (Schmitt and Schuller, 2017). 
These codebooks were then used to vectorize the COMPARE 2016 features. Due to the clustering method employed, DP could not 
be applied. The privacy budget was estimated from BOAW, inherently preserving privacy as it only involves the histogram of the 
reference point.

Formant coordinations: The Praat software was employed for extracting the first three formant tracks from speech. Following 
the procedures outlined in Williamson et al. (2019), we constructed a matrix of correlation and covariance coefficients for the first 
three formants across four time-delayed scales: 10 ms, 30 ms, 70 ms, and 150 ms. In the final step, total power and entropy constant 
values were estimated and incorporated into the feature set. PCA was then applied to reduce the dimensionality of the data, resulting 
in 8 components. Both DP and PCA were applied in the same manner as in the acoustic feature extraction process.

4.4. Experimental setup

The evaluation was performed using the tuned model for the TBI detection task, treating speaker identification and automatic 
speech recognition as adversarial tasks. PPA-Pruning operates iteratively, pruning one node in the network at a time. We evaluated 
the method across a range of pruning rates, from 0% to 30%, representing the ratio to the total nodes in the feature extractor  , 
with increments of 5. In the first experiment, we evaluated the proposed pruning method for its impact on decreasing TBI detection 
accuracy and gaining privacy budget in each iteration of pruning, followed by comparisons to the baselines. Dropout was also 
considered a pruning method that randomly removed nodes. It is important to note that the measured privacy budget depends on 
the array of features rather than the specific adversarial tasks. Subsequently, we report the relationship between the privacy budget 
in DP and speaker identification as well as speech recognition.

All training and evaluations were performed on an NVIDIA A100 GPU using the PyTorch library version 1.12 (Paszke et al., 2019). 
The Adam optimizer was used with different learning rates for each network, as reported in Table  1. Pre-training was performed 
for up to 100 epochs with an early stop when loss values stopped improving for 10 epochs. Model adaptation was performed for 
one epoch at the end of the pruning iteration.

5. Results and discussion

5.1. Model tuning

The size of the DNN architecture was limited by the size of the Coelho corpus, which is considerably small for the TBI and 
speaker identification tasks and extremely small for the word recognition task. Pre-training using an external corpus (Librispeech) 
was employed for the feature extractor and adversarial block with fine-tuning on the Coelho corpus, but overfitting occurred rapidly. 
We selected the network with the lowest TBI and adversarial errors, equally normalized using GradNorm. The two lowest trials came 
from the same architecture, comprising 3 feature blocks, 2 TBI detection blocks, and 2 adversarial blocks, as illustrated in Fig.  3.

5.2. Privacy-preserving features using pruning method

The TBI detection accuracy decreases as the pruning rate increases from 0% to 30%. As illustrated in Fig.  4, these trends vary 
based on the pruning schemes employed. In the result without model adaptation, pruning more than 5% of all nodes significantly 
damages the TBI detection model; BA is not better than a random guess. This highlighted the need for model adaptation. In the 
results of pruning with model adaptation, pruning based on SHAP yields higher TBI accuracy but does not preserve privacy as well as 
pruning based on IG. However, pruning based on IG demonstrates a large standard error in the privacy budget. Overall, the proposed 
PPA-Pruning performs better than the dropout baseline, which was previously considered a privacy-preserving method (Scheliga 
et al., 2023), on both metrics. In the comparison between DP and TBI accuracy, each method demonstrates a noticeable plateau on 
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Fig. 3. Selected trials of tuning for model architecture before the pruning.

Fig. 4. TBI balanced accuracy and privacy budget of DP at different pruning rates of three pruning methods. TOP: the proposed pruning method with model 
adaptation between each pruning iteration; BOTTOM: the proposed pruning method without model adaptation.

the DP plot, but such a plateau is not evident on the TBI accuracy plot. This suggests that the pruning methods had a more stabilized 
behavior in privacy budget than the TBI accuracy.
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Fig. 5. Trade-off between TBI balanced accuracy and privacy budget of the proposed PPA-Pruning and the baselines.

The trade-off between TBI BA and privacy budget is depicted in Fig.  5 for the proposed adversarial pruning method and all the 
baselines. When considering SHAP and IG, their TBI BAs are competitive when the privacy budget is higher than 0.6. However, 
IG outperforms SHAP by achieving a lower privacy budget when the privacy budget is below 0.6. These results were derived from 
pruning rates ranging between 0.01 and 0.3. To further investigate the trade-off in TBI BA, we conducted a Wilcoxon signed-rank 
test across all cross-validations to assess the significance of the difference in TBI BA when nodes are pruned compared to the 
results without any pruning (no privacy-preservation). A privacy budget of 0.7 and 0.1 can be employed to maintain a 𝑝-value of 
0.05 and 0.1, respectively. In comparison to all baselines, both IG and SHAP pruning achieve a higher BA and a lower privacy 
budget, signifying more privacy preservation in the extracted features. Despite the training instability in adversarial training using 
minimax, the adversarial training baseline outperforms DP methods applied to Low-Level Descriptor (LLD), formant coordinations, 
and Bag-of-Audio-Word (BOAW).

Although this approach provides differential privacy guarantees compared to the local-DP baseline, where Laplace noise is 
added to the Bag-of-Audio-Words (BOAW), Low-Level Descriptor (LLD), and Formant-based features, it notably degrades diagnostic 
accuracy. At a comparable privacy budget 𝜖, our proposed pruning-based method outperforms the Laplace baseline by up to 11% 
in TBI detection accuracy. This result underscores the fact that selectively pruning nodes to remove speaker- and content-specific 
information preserves health-related features more effectively than indiscriminate noise addition.

5.3. Effects of privacy budget in speech processing task

Introducing noise to the features input to the DNN layer, which involves modifying the input through a product of weights, can 
contribute to preserving data privacy. The privacy budget, determining the extent of private information preservation, is influenced 
by both the input and classification functions. The privacy budgets required to achieve the minimum BA for TBI detection, speaker 
identification, and speech recognition are presented in Fig.  6. The WER in the speech recognition task is reported separately in 
Fig.  7 demonstrating that at the same privacy budget, different pruning methods yield different WER values. Note that in our 
context, higher WER is preferred because it indicates that more linguistic content has been suppressed, which is beneficial for 
privacy preservation. The model successfully achieves a perfect score for speaker verification without privacy concerns by utilizing 
the threshold at EER. A notable gain in preserving information about speaker identity occurs between a privacy budget of 0.1 and 
5, accompanied by a significant decrease in accuracy at a privacy budget of 0.5. The performance of speech recognition decays the 
most between a privacy budget of 0.5 and 5. In summary, at a privacy budget of 5, minor privacy preservation can be achieved 
without any performance loss in TBI assessment. The range between a privacy budget of 0.5 and 5 exhibits a trade-off that can be 
leveraged when designing a privacy-preserving health assessment system based on spontaneous speech.

5.4. Relationship between pruning and privacy budget

While our experimental results (Fig.  4) show a trade-off between TBI detection accuracy and the privacy budget 𝜖, the exact 
relationship between the number of pruned nodes 𝜖 is not governed by a simple closed-form expression. following the definition 
of DP, in this work, we rely on an empirical measurement of 𝜖 after each pruning iteration. Specifically, we compute the ratio 
of probabilities for the adversarial tasks (speaker identity and word recognition) on adjacent datasets, thereby quantifying how 
effectively pruning reduces the model’s capacity to encode personal data.

Despite the intuitive expectation that removing more nodes should result in stronger privacy protections (i.e., a smaller 𝜖), the 
non-linear nature of deep neural networks makes it difficult to derive a direct formula linking pruning rate to privacy budget. 
Empirically, we observe that pruning gradually lowers 𝜖, but the rate of decrease can vary depending on which nodes are removed 
and how they contribute to speaker or linguistic information.
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Fig. 6. Effects of privacy budget in preserving privacy in TBI detection, speaker recognition and word recognition balanced accuracy. Balanced accuracy for 
speaker recognition is computed from 1-EER.

Fig. 7. Word error rate using the PPA-Pruning.

5.5. Limitations and future work

First, the proposed PPA-Pruning method only works on an end-to-end DNN that allows the computation of contribution scores 
at the feature level, which restricts its application to DNN-based feature extractors. It also considers only SHAP and IG as pruning 
criteria. While other variants of gradient analysis or contributions of nodes to network prediction have been previously proposed, 
they are often specific to tasks or network architectures. Future work may involve revisiting the criteria for network pruning, in 
addition to SHAP and IG.

More rigorous analyses could estimate the upper and lower bounds on 𝜖 by leveraging information-theoretic approaches 
or analyzing how the global sensitivity 𝛥 shifts as the feature-space dimension decreases. Furthermore, a dimensionality-based 
sensitivity model may help formalize how pruning affects local or global DP guarantees. Our current study lays the groundwork for 
such work by proposing and demonstrating an empirical approach for measuring these changes. We plan to explore more formal 
theoretical approaches in future work.

6. Conclusion

The proposed PPA-Pruning aims to preserve personal data related to both speaker identity and speech content. This pruning 
method removes nodes and all their connections in the DNN, which significantly contributes to the recognition of personal data 
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during adversarial tasks. Notably, the pruning method exhibits more stability during training and outperforms adversarial training 
that utilizes minimax optimization. Additionally, it surpasses handcrafted features with noise introduced by DP. When comparing 
the pruning criteria of SHAP and IG, IG preserves more privacy than SHAP and baselines while achieving the same TBI detection 
accuracy. These results underscore the effectiveness of the proposed method for privacy preservation, which can be utilized to 
mitigate the risk of data leakage when collecting and analyzing speech data.
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