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Abstract— Intoxicated driving causes 10,000 deaths annually.
Smartphone sensing of user gait (walk) to identify intoxi-
cated users in order to prevent drunk driving, have recently
emerged. Such systems gather motion sensor (accelerometer
and gyroscope) data from the users’ smartphone as they walk
and classify them using machine or deep learning. Standard
Field Sobriety Tests (SFSTs) involve various types of walks
designed to cause an intoxicated person to lose their balance.
However, SFSTs were designed to make intoxication apparent
to a trained law enforcement officer who manually proctors
them. No prior work has explored which types of walk yields
the most accurate results when assessed autonomously by a
smartphone intoxicated gait assessment system. In this paper,
we compare how accurately Long Short Term Memory (LSTM),
Convolution Neural Network (CNN), Random Forest, Gradient
Boosted Machines (GBM) and neural network classifiers are
able to detect intoxication levels of drunk subjects who per-
formed normal, walk-and-turn and standing on one foot SFST
walks. We also compared the accuracy of intoxication detec-
tion on the ascending (increasing intoxication) vs descending
(decreasing intoxication) limbs of drinking sessions (bi-phasic).
We found smartphone intoxication sensing more accurate on the
descending limb of the drinking episode and that intoxication
detection on the normal walks of subjects were just as accurate
as the SFSTs.

Index Terms— Blood Alcohol Concentration (BAC), Stan-
dard Field Sobriety Tests (SFST), Long Short Term Memory
(LSTM), Convolution Neural Network (CNN), Gramian Angu-
lar Field (GAF)

I. INTRODUCTION

About 11 percent of all pedestrians who die are hit by a
drunk driver [1]. Drunk driving causes over 10,000 deaths
(31 percent of overall driving fatalities) annually [1], making
it important to identify drivers who are intoxicated over the
legal Blood Alcohol Content (BAC) limit of 0.08%. While
breathalyzers are the most accurate method of determining
the intoxication levels of drivers, walk (gait) tests are also
reliable and frequently used by law enforcement officers.

In about two-thirds of DUI incidents, when a law enforce-
ment officer stops a suspected drunk driver, Standardized
Field Sobriety Tests (SFST) are administered by the roadside
to determine if the driver is too drunk to drive [2]. SFSTs in-
volve various types of walks and tests that can be performed
by sober people, but which drunk people find challenging or
impossible to carry out (See figure 1). SFSTs are effective
in identifying people who are too impaired to drive because
alcohol affects the cerebellum, which coordinates voluntary
movements such as walking, posture, balance, and coordina-
tion, causing them to lose their balance [3]. However, even in
a very inebriated state (BAC > 0.15%), most people’s normal

walking gait is only marginally altered by alcohol. SFSTs are
specifically modified walks (e.g. narrowing subject’s stance),
which trigger a loss of balance at intoxication levels that
are close to the legal driving limit (0.08%). Specific types
of walks in the SFSTs include the walk-and-turn (tandem)
gait test (See figure 1) and the standing on one foot tests
that require balance and coordinated motion, making them
challenging in an inebriated state.

Fig. 1: DUI Suspect performing the walk and turn test

The National Highway and Traffic Safety Association and
a team of psychologists created the SFSTs [2] to identify
drivers who are intoxicated over the legal limit. Subjects who
fail these tests are usually arrested. Traditionally, SFSTs have
been administered by a trained professional, who supervises
the subject, corrects their mistakes in performing the tests
and judges if the subject is over the limit. However, man-
ual SFST administration and assessment is subjective and
error prone [4]. To overcome these drawbacks and provide
objective intoxication assessment, smartphone methods of
sensing intoxicated users from their gait, have recently
emerged. Such systems gather motion sensor (accelerometer
and gyroscope) data from the users’ smartphone as they walk
and classify them using machine or deep learning.

The efficacy of SFSTs is well studied when manually
administered by a human proctor as shown in figure 1.
However, their efficacy in the context of autonomous sens-
ing using a smartphone has never been previously studied.
Specifically, it is currently unknown what accuracy can be
achieved using smartphone sensing when subjects perform
the different SFST walk types. In this paper, we compare
the accuracy of smartphone intoxication sensing for sub-
jects performing 1) a Normal/natural walk 2) the walk-
and-turn SFST test, and 3) the standing on one foot SFST
test. We believe a smartphone intoxication sensing system
can detect sudden maneuvers by an intoxicated subject to
regain imbalance (hopping, stretching out arms) triggered
by SFSTs. Smartphone sensing of intoxication is possible



because contemporary smartphones, which are now owned
by 77% of Americans, have motion sensors (accelerometers
and gyroscopes) that can be used to detect and classify
subjects’ movements as sober or intoxicated. They also
have powerful, programmable processors for analyzing the
motion data and running powerful machine or deep learning
algorithms. Smartphone sensors are so precise that they can
detect subtle gait changes due to intoxication, which may not
be observable by a human proctor.

We also investigate a second research question related to
intoxication detection in this paper. Alcohol drinking ses-
sions (e.g. at a bar or party) typically consists of two phases
(bi-phasic): 1) Ascending limb (increasing intoxication):
during which the subject’s BAC increases up to a peak value
for that session, and 2) Descending limb (decreasing intoxi-
cation): during which the subject’s BAC decreases from its
peak value for the session till they become sober (0 BAC).
We investigate whether smartphone intoxication sensing from
gait is more accurate (or consistent) using gait data gathered
during the ascending or descending drinking limbs. This
question explores the possibly differential effects of alcohol
on motor skills during the ascending and descending limbs.

Our Contributions: Using data gathered from motion
sensors on a smartphone carried by intoxicated subjects in an
IRB-approved controlled study, we investigate the following
research questions in the context of smartphone sensing of
intoxication from gait during SFSTs:

• We compare the accuracy of BAC regression for normal,
SFSTs - walk-and-turn and standing on one foot using
the LSTM, CNN with GAF encoding, random forest and
Gradient Boosted Machines (GBM) machine learning
regression algorithms.

• We compare the accuracy of BAC regression for the
ascending and descending limbs for the normal, walk-
and-turn and standing on one foot SFSTs using the
LSTM, CNN with GAF encoding, random forest and
GBM machine learning regression algorithms.

We found the intoxication detection more accurate on the
descending limb of the drinking session, which is encour-
aging as most DUIs occur when subjects drive right after
they have stopped drinking. We also found that the normal
walks of subjects were just as accurate or slightly more
accurate than other SFST walks, which implies that accurate,
pervasive intoxication sensing while a drinker socializes at a
party or bar could be possible.

II. RELATED WORK

Most smartphone intoxication sensing approaches involve
sampling the motion sensors (accelerometer and gyroscope)
on the users smartphone as they walk and classifying this
data using machine or deep learning algorithms [5], [6],
[7]. Traditional machine learning approaches classify hand-
crafted features engineered to capture the dynamics of intox-
icated human gait [5] [8]. Subjects in all prior work of this
type only performed their natural/normal walk and no SFSTs
(Walk-and-turn or standing on one foot) walks. Differences

in classification on the up and down limbs of drinking were
also not investigated.

Aiello and Agu [5] extracted statistical, time and frequency
domain features including sway area, sway volume, kurtosis
and skew from smartphone accelerometer and gyroscope
data and classified the users intoxication into four BAC
ranges: [0.00-0.08), [0.08-0.15), [0.15-0.25), [0.25+). Kao et
al [6] proposed a smartphone sensing system that classifies
users as drunk or sober (2 classes) using accelerometer
features as inputs. Arnold et al. [9] classified sensor data
from smartphone accelerometers and gyroscopes to predict
the number of drinks a person had consumed but did not
explicitly infer a BAC level. In Virtual Breathalyzer, Nassi
et al [8] used FFT, statistical, histogram and gait features
to train machine learning models such as Lasso, Gradient
Boosted Machines, Regression Trees and AdaBoost, which
were then used to regress the BrAC (Breath Alcohol Con-
centration) level of subjects. Gharani et al [7] utilized
Artificial Neural Networks to detect the smartphone users
BAC level. They extract features such as energy, mean and
standard deviation from the raw accelerometer and gyroscope
data, which they used to train a Multi-layer Perceptron
(MLP) Bayesian Regularized Neural Network (BRNN) for
regressing the users BAC level.

Numerous experiments have previously been conducted
to measure the effect of alcohol consumption on motor
performance[10] [11]. For a given BAC, the impairment is
more significant in the ascending limb than the descending
limb. In studies where drinkers performed a motor skill and
an information-processing task at the same BAC, drinkers
displayed impairment on both tasks during the ascending
limb, but only motor skills are significantly impaired on
the descending limb [12]. Smartphone intoxication sensing
systems currently do not distinguish whether the subject is
on the ascending or descending limb, often using a single
machine learning model to predict intoxication on both
limbs, which might be yielding wrong BAC estimates.

In summary, our work is novel in two main ways. First,
prior smartphone intoxication sensing using machine or
deep learning, utilized data gathered from participants who
performed only their natural (normal) walk. Secondly, prior
work also did not consider the bi-phasic nature (ascending
and descending limbs) of alcohol consumption. We perform
BAC regression on data gathered from intoxicated subjects
who performed their natural/normal walking gait as well as
the SFSTs (standing on one foot stand and the walk-and-
turn), and compared accuracies. We also investigated how
accurate intoxication sensing is on the ascending and de-
scending limbs of alcohol consumption, determining whether
a single machine learning model can predict BAC accurately
on both limbs.

III. BACKGROUND

Human walking: involves shifting a person’s Center of
Mass (CM) back to front and also from side to side. When
humans walk, the base of the support (distance between the
feet) in the sagittal (back to front) and the lateral planes



are wide. Consequently, the person’s weight has a greater
moment arm, which provides greater resistance to their
shifting CM and stops them from toppling. When the base
of the support is narrower, toppling is easier and the human
tries to align their CM with the base of their support.

A. Standardized Field Sobriety Tests (SFST):

Ataxia, a degenerative disease of the muscular disease and
alcohol both affect the cerebellum causing uncoordinated
movements, slurred speech and difficulty with eye move-
ments. Doctors have created tests to uncover subtle forms of
ataxia and alcohol intoxication. These tests try to disrupt a
person’s natural balance. While a healthy person who has
control over their muscle movement can overcome these
disruptions and maintain their balance, an ataxia patient or
intoxicated person fails the tests.

The Standardized Field Sobriety Tests (SFSTs) were de-
veloped by the National Highway Traffic Safety Administra-
tion (NHTSA) in collaboration with the Southern California
Research Institute to provide a protocol that police officers
can use to objectively identify drivers under the influence of
drugs or alcohol. Specific SFST tests include the walk-and-
turn test and the standing on one foot test. These are both
divided attention tests, which emulate a motor cognition task
similar to driving.

1) Walk and turn: The walk-and-turn test requires the
person to concentrate, paying attention to oral instructions
issued by the officers while also performing physical tasks
prescribed in those instructions. For proper assessment dur-
ing the walk and turn test, the subject is made to walk nine
heel-to-toe steps along a line with their arms at their sides.
After completing the nine steps, the subject turns and repeats
nine heel-to-toe steps in the opposite direction.

The aerial footprint of the tandem gait is shown in figure
2 (left). L and R denote the left and right feet respectively
and the numbers denote the steps. Figure 1 shows a driver
performing the walk and turn test, under the supervision
of law enforcement officers. The drastic reduction in the
subjects’s lateral support makes maintaining their balance
during the walk and turn test challenging. When subjects are
about to lose their balance, to decrease the moment of inertia
they naturally spread their arms perpendicular to their body,
failing the test. As such, only sober people or those without
ataxia have adequate muscle coordination (controlled by the
cerebellum) to successfully perform this walk, making it a
simple, effective method of detecting intoxication and ataxia.

Fig. 2: Walk and turn test (left), One-leg stand (right) test

2) Standing on one foot: The one-leg balancing test was
designed to take advantage of the fact that a persons ability
to balance on one leg provides insights into their brains

functional capability. During the one-leg stand test, starting
from a standing position with their feet close together and
their arms by their side, the subject is then required to raise
one of their legs six inches off the ground, point their foot
and then extend the raised foot till both arms are legs are
straight. With their arms still by their sides, the subjects are
required to count out loud from 1001 to 1030, or until they
lose their balance (fail the test). Figure 2 (right) shows a
subject performing the one-leg stand with their legs straight
and their arms close to their body.

With just a single leg on the ground for support, the lateral
width of the subject’s base reduces to the width of a foot.
As subjects are instructed to keep their arms by their sides,
their body’s moment of inertia is reduced, making them less
able to resist forces/imbalances about their body’s lateral or
sagittal axis. Inebriated subjects tend to lose their balance. In
order to regain their balance, subjects hop, spread out their
arms or put their foot down. These compensatory movements
are sudden and jerky maneuvers, which we believe can be
detected by their smartphone’s accelerometer and gyroscopes
if placed on their body.

B. Biphasic nature of Alcohol Consumption:

Fig. 3: BAC vs Walk ID.
The ascending limb of the Blood Alcohol Concentration

(BAC) curve is the part where the subject’s BAC increases
from the sober state up till the peak BAC reached during
the drinking session. The peak BAC value reached and the
number of drinks required to reach this peak depends on
the the subject’s sex, how much blood the person has, and
various other factors including medication, food consump-
tion, rate of consumption (e.g. gulping vs. sipping). IRB-
approved alcohol studies usually exclude subjects taking
strong medications and study protocols try to ensure that
subjects consume alcohol at the same rate and at the same
intervals of time.

The descending limb starts from the peak BAC value
reached during a drinking session, after the person stops
consuming alcohol. The subjects BAC value decreases from
this peak BAC value down to the sober state during the
descending limb. The liver breaks down alcohol, a process
that is regulated by an enzyme called alcohol dehydrogenase
(ADH), which is secreted by the liver [13]. The descending
limb is nearly linear with a slope that depends on the
subject’s metabolism and how much ADH they secrete.



IV. METHODOLOGY

A. Data Collection

Screening Recruitment for this study included Facebook
ads and local posters. During the initial phone contact, callers
completed the eligibility screen. Eligible individuals were
scheduled for an individual 4-5 hour study session and given
a list of instructions in advance (no water at least 2 hours
prior to arrival, no food or other drinks at least 4 hours prior
to arrival, no alcohol or marijuana at least 24 hours prior
to arrival). A total of 65 participants provided consent and
completed all study activities. The details of subjects who
were a part of the study are listed below in table I.

TABLE I: Subjects Information

Category Value
Gender Ratio (female:male) 8:5
Weight 74.646 kg±12.290 kg
Height 172.07 cm±7.10 cm
Age 30.787 years±12.010 years

Upon arrival at the study office, individuals completed
Informed Consent and a brief eligibility check to confirm
their age (21-65 y.o determined by checking a valid id),
weight(85-230 lbs), walking disabilities, pregnancy status,
absence of recent alcohol-related medical treatment, absence
of recent drug use determined by urine toxicology and breath
alcohol concentration (BAC) = 0. Urine toxicology was
assessed using a self-contained test cup (Screeners Dip Drug
Test with the Integrated Screeners Autosplit KO12B); preg-
nancy (for women) was assessed with an hCG dipstick test
(Alere, San Diego, CA); BAC was assessed using a handheld
Alcosensor IV Breathalyzer (Intoximeters Inc., St. Louis,
MO). If found ineligible, participants were compensated for
their time and did not continue with the study session. All
participants received Hurricane Beer, 8.1 % alcohol content,
starting with either 3 or 4 ounces of alcohol, depending on
weight (men over 150 lbs and women over 160 lbs received 4
ounces initially) and subsequently varying the amount based
on the rate of BAC ascent.

Ascending Limb: All eligible subjects started the study
in a sober state and performed all the walk tests (normal
walking gait, and the standing on one foot and the walk-
and-turn SFST tests) at baseline. After a baseline walk, the
participant was administered their first drink. The subjects
waited 15 minutes after completing every drink before the
next BAC was taken. Immediately after, and at approximately
5 and 15 minutes after completing the drink, the subject
was instructed to rinse their mouth with water and spit, to
purge any remaining mouth alcohol. After each breathalyzing
(BAC recorded) the subject is instructed to perform all walk
types until their BAC reached a peak value of 0.1 (ascending
limb). The walks were performed along a corridor at Butler
Hospital, where a 75-foot tape line was placed in a straight
line. For the normal/natural walk, participants started their
walk in the middle of the line, and were instructed to walk
at their normal pace to the end of the line, turn, walk

to the other end, turn, and return to their starting point.
Each walk lasted 45-60 seconds. At the end of this walk,
the SFSTs were administered. The walk-and-turn SFST was
administered at all the walks; the standing on one foot was
administered when the BAC was .02, .04, .06, .08 and .10.
Study staff were trained in the field sobriety tests by watching
YouTube videos for each task, having a local policeman meet
with and validate this training, and having staff observe each
other to develop administration consistency.

As different subjects get drunk at different rates, the
actual number of drinks required to reach a BAC of 0.1
varied from subject to subject, however all participants were
administered alcohol in the same manner (3-4 ounces at
a time, a BAC check 15 minutes later, and another 3-4
ounces until a BAC of 0.1 was reached). During all walks,
a Google Pixel smartphone running an Android sensor data
gathering app was used to collect accelerometer, gyroscope
and compass data continuously. Before the subjects walked,
the data gathering app was turned on and the smartphone
was placed in a harness strapped to the subject’s hip, close to
their center of mass. The sensors have a sampling rate of 200
Hz, with a resolution of 0.0012 rad/s and 0.0024 m/s2 for
the gyroscope and accelerometer respectively. More details
regarding the sensor characteristics can be found in [14]

Descending Limb: Once subjects reached the peak BAC
value of 0.1, participants were allowed to eat as they wanted.
Every 7 minutes they were breathalyzed and instructed to
perform all walk types, but no more alcohol was given (de-
scending limb). Data for the descending limb was collected
until the subject reached a level of sobriety that does not
hinder their cognitive and motor skills (approximately 0.2).
This point was determined by the battery of SFSTs (standing
on one foot, walk-and-turn) that are conducted every seven
minutes and the BAC value recorded.

As waiting for the subject BAC to return to 0 may take
between 4 hours to a day, subjects were discharged when
their motor cognition was back to normal. All participants
were provided cab rides to and from the study session;
no study participant was allowed to drive themselves. The
data corresponding to a single subject when sober and when
inebriated is shown in figure 4. Figure 4a is a plot of data
collected when a subject executed their normal walking gait,
figure 4b corresponds to the walk-and-turn test and figure 4c
corresponds to the standing on one foot test. The graphs show
a relatively greater difference in the signals corresponding to
the One-foot stand test.

B. Machine/Deep Learning Intoxication Regression Models

We explored both machine learning models using hand-
crafted features as well as neural networks (deep learning)
on raw sensor data.

1) Machine Learning (Random Forest and Gradient
Boosted Machine (GBM): We extend Aiello and Agu’s [5]
work on classifying manually engineered accelerometer and
gyroscope features that capture gait dynamics and imbalance
caused by alcohol. We include additional features utilized
by Nassi et al [8] in their virtual breathalyzer research.
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(a) Normal walking gait
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(b) Walk-and-turn test
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(c) One-foot Stand test

Fig. 4: Accelerometer and Gyroscope signals

The features we extracted included postural sway features,
zero crossing rate, signal magnitude area, energy, skewness,
kurtosis, range, standard deviation and frequency peaks.

We computed a total of 95 features for each 8-second
segment using data from 65 subjects for each walk type. We
then trained Random forest and Gradient Boosted Machine
(GBM) regressors to predict the BAC value for each walk.
We utilized the XGBoost implementation of GBMs [15].
Overfitting is a common problem when using decision trees,
which random forests and GBMs can reduce. To further
mitigate overfitting we performed feature selection and di-
mensionality reduction on our 95 features using the backward
elimination and PCA algorithms. Thus, we were able to
select and use only the most relevant features for BAC
regression from smartphone sensor data.

Optimal model parameters that yield the lowest Root Mean
Square regression Error (RMSE) across folds were selected
using an exhaustive grid search. We trained the models about
30 times on different folds of the train and test data splits to
ensure consistency.

2) CNN + GAF: Convolutional Neural Networks (CNNs)
have performed well on many object detection and image
analysis tasks and are invariant to translation, rotation, and
scale. We converted the raw sensor data into an image-based
representation, which we analyzed using a CNN. The most
common way to visualize a time-series signal as an image is
to create a color-coded spectogram by converting the signal
into the Fourier domain. We instead encoded segments of the
accelerometer and gyroscope signals as a two-dimensional
image using the Gramian Angular field (GAF) [16][17].
GAF is a technique used to encode time-series data as
images, which has been found to yield more accurate results
than Fourier transforms when using CNNs [16][17]. The
time-series data is normalized and the cosine angles are
calculated. The radius of a given angle is the corresponding
time stamp of the data. The time-series data is converted
into a polar representation and then into a Markov transition
matrix as discussed in [16][17]. Fig.5 shows the polar and
corresponding GAF representations of a signal.

We utilize a shallow CNN architecture (figure 7)to classify
the GAF-encoded accelerometer and gyroscope data in order
to preserve spatial information of the small GAF feature
map while obtaining a good receptive field for contextual
understanding of the segment.

Fig. 5: The GAF representation of a signal.

3) LSTM: Learning long-term data dependencies is in-
tractable using Recurrent Neural Networks (RNN) [18] [19]
. Hochreiter et al developed Long Short-term Memory
(LSTM) networks [20] that can learn long term dependencies
quite effectively. Similar to RNNs, LSTM networks have
recurring LSTM cells that pass information through time and
have a memory about previous states. LSTM has gates that
can control the amount of information that each cell adds
(input gate) to the memory (cell state) and also the amount
of information each cell’s outputs (output gate).

In this paper we use a variant of the classic LSTM
cell developed by Zaremba et al [21] that has a dropout
mechanism controlled by a forget gate that controls how
much information to forget. The architecture of our LSTM
is shown in figure 8. The green cells shown in the network
are LSTM cells developed by Zaremba et al [21]. Xt denotes
the input vector to the LSTM cell at timestep t, Ct is the cell
state at timestep t that acts like a conveyor belt (from which
gates add and remove information) and ht is the output of
the cell at timestep t that is passed on to the next cell. FC
denotes dense layers, and ReLU is the Rectified Linear Unit
activation.

We trained the deep learning networks to minimize the
objective function L shown below:

L =
√

∑
i
(ŷi − yi)2/N (1)

V. EVALUATION

We used the Root Mean Square Error (RMSE) as our
metric for determining the performance of the machine
and deep learning regression algorithms evaluated. First we
divided all sensor data collected such that each walk type was
a separate dataset. We further sub-divide each of the walk
types into three datasets - up (ascending limb data only),



Fig. 6: The data collection and testing framework

Fig. 7: The CNN architecture.

Fig. 8: The LSTM architecture.

down (descending limb data only) and all (a combination of
the ascending and descending limbs).

For the Random Forest (RF) and Gradient Boosted Ma-
chines (GBM) we segmented the each signal into 8-second
segments with 50% of each segment overlapping the next
segment. We then extracted features for each segment. We
used backward elimination to eliminate features with low
importance (pvalue < 0.05), normalized the data and trained
RF and GBM on the normalized data.

For the deep learning models, to obtain adequate data we
segmented the raw sensor data into 4-second windows with
50% overlap and converted the segments into the GAF matrix
for every axis of the sensors. We used this feature map to
regress the BAC using the CNN architecture shown in figure
7. We also trained the LSTM shown in figure 8, using the raw
segments to reduce the L2 loss between the predicted and
the true BAC. The results of our models on the individual
datasets can be found in table II.

VI. DISCUSSION

Table II shows our test RMSE obtained for each of the
limbs for each walk type. We used subject-level splitting
such that all entire data gathered for a given subject was
part of either the train or the test set but not both. We make
the following observations from our results:

1) BAC Regression on the Descending Limb is more ac-
curate: the regression models gave a lower RMSE on
the descending limb when compared to the ascending
limb or all the data. This is very important when using

smartphone sensing to detect intoxicated drivers in
order to prevent Driving Under the Influence (DUI)
incidents. In most cases, people usually decide to drive
after they have terminated their alcohol consumption
session. Marczinski and Fillmore [22] examined the
willingness of subjects to drive in the inebriated state in
the ascending and descending limb and found out that
for a given BAC, subjects in the descending limb are
significantly more willing to drive. Amlung et al. [23]
attributed this to the reduction in perceived danger in
the descending limb compared to the ascending limb.

2) Intoxication sensing using normal walk is as accurate
as the SFST walks: From table II we can conclude that
BAC sensing using data gathered during the Normal
Walk is as good or slightly better than the results
obtained from data gathered during the SFSTs. Even
though SFSTs are preferred and very effective when
manually proctored by a trained law enforcing officer,
normal walks are just as good for smartphone sensing.
This implies that pervasive, continuous, smartphone
intoxication sensing can be done as a drinker walks
about their drinking venue (e.g. to the bathrooms, to
interact socially or get more drinks). The precision
of accelerometers and gyroscopes on modern smart-
phones combined with the power of deep learning yield
results on normal walks that are just as precise and
robust as SFSTs. We envision that future smartphone
intoxication sensing systems can possibly run as a
background process on the phone as the person per-
forms their normal daily activities or interacts socially.

3) LSTM performs the best: Random Forest and Gradient
Boosting algorithms require manual feature engineer-
ing and for a large dataset, engineering features that are
able to capture variances in the data corresponding to
change in BAC is challenging. Thus using handcrafted
features that have been proven to work well for alcohol
intoxication, gives us a very high error as shown in
II. Using CNNs to predict based on the Markovian
Transition Matrices of the data gives more accurate
results as the features extracted are tuned using the
error between the predicted BAC and the true BAC.
The LSTM performs the best as the network learns
robust representations of motion sensor data and tem-
poral transitions that are predictive of BAC.



(a) LSTM (b) CNN with GAF (c) Gradient Boost (d) Random Forest

Fig. 9: Experimental Results on the different walk-types and limbs

Model
Dataset

Normal Walk One-foot Stand Walk and turn
Up Down All Up Down All Up Down All

LSTM 0.0237 0.0170 0.0180 0.0257 0.0200 0.0211 0.0256 0.0210 0.0177
CNN + GAF 0.0240 0.0173 0.0188 0.0250 0.0175 0.0198 0.0225 0.0187 0.0211
Random Forest 0.0385 0.0249 0.0311 0.0380 0.0248 0.0329 0.0367 0.0239 0.0311
Gradient Boosting 0.0350 0.0249 0.0306 0.0381 0.0250 0.0333 0.0365 0.0245 0.0302

TABLE II: RMSE of models on different datasets (regression)

VII. CONCLUSION AND FUTURE WORK

In this paper, we compared smartphone sensing of intoxi-
cated subjects from data gathered as they performed their
normal walk as well as the walk and turn and standing
on one foot SFST tests. We also compared the accuracy
of intoxication detection on the ascending and descending
limbs of drinking episodes. We found the intoxication detec-
tion more accurate on the descending limb of the drinking
episode, which is encouraging as most DUIs occur after
subjects drive right after they have terminated drinking. We
also found that the normal walks of subjects were just as
accurate or slightly more accurate than the SFST walks,
which implies that accurate, pervasive intoxication sensing
while a drinker socializes at a party or bar could be possible.
In future work, we hope to conduct larger scale evaluations
in real life social drinking settings. Prior work found that the
impairment of motor skills due to intoxication were generally
more pronounced than impairment of cognitive skills in both
the ascending and descending limbs [12]. This implies that
even though an intoxicated person is able to walk steadily
and is predicted to have a low BAC value by an intoxication
sensing system, their mind may not be prepared to coordinate
a dynamic, cognitive activity such as driving. Future work
could also explore differences in the impairment of motor
and cognitive skills based on BAC values sensed by an
smartphone intoxication sensing system.
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