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 A B S T R A C T

Alcohol intoxication is one of the leading causes of death around the globe. Existing approaches 
to prevent Driving Under the Influence (DUI) are expensive, intrusive, or require external 
apparatus such as breathalyzers, which the drinker may not possess. Speech is a viable modality 
for detecting intoxication from changes in vocal patterns. Intoxicated speech is slower, has 
lower amplitude, and is more prone to errors at the sentence, word, and phonological levels 
than sober speech. However, intoxication detection from speech is challenging due to high 
inter- and intra-user variability and the confounding effects of other factors such as fatigue, 
which may also impair speech. This paper investigates Wav2Vec 2.0, a self-supervised neural 
network architecture, for intoxication classification from audio. Wav2Vec 2.0 is a Transformer-
based model that has demonstrated remarkable performance in various speech-related tasks. 
It analyzes raw audio directly by applying a multi-head attention mechanism to latent audio 
representations and was pre-trained on the Librispeech, Libri-Light and EmoDB datasets. The 
proposed model achieved an unweighted average recall of 73.3%, outperforming state-of-the-art 
models, highlighting its potential for accurate DUI detection to prevent alcohol-related incidents.

1. Introduction

Motivation: Alcohol is one of the most widely abused substances (Jacob & Wang, 2020), often consumed as a coping mechanism 
and recreational substance. However, alcohol impairs neuronal transmission and significantly alters consciousness (Taylor et al., 
2010), attention and behavioral control of drinkers (Lin et al., 2022). Driving Under the Influence (DUI) of alcohol is particularly 
dangerous as it also interferes with visual accuracy, perception, and psychomotor functions (Jovanovic, Jovanovic, Vukovic, & 
Jevremovic, 2000). While the legal driving limit is 0.08% in most states in the US, a Blood Alcohol Concentration (BAC) of as small 
as 0.02 can slow down a driver’s reaction times and decision-making processes (Hingson, 1996). Over 30% of vehicular accidents 
are caused by drivers intoxicated by alcohol (National Highway Traffic Safety Administration, 2023). Initiatives to reduce alcohol-
related traffic fatalities include a minimum legal drinking age and legal action against DUIs (Hingson, 1996). However, existing 
measures are intrusive, reactive, or require the acquisition of additional apparatus to identify intoxicated drivers. Alcohol impairs 
the drinkers’ speech (Hollien, DeJong, Martin, Schwartz, & Liljegren, 2001); intoxicated speech is slower, has lower amplitude, and 
is more prone to errors at the sentence, word and phonological levels than sober speech (Pisoni & Martin, 1989).

Specific Problem: We propose a neural networks framework for detecting alcohol-induced speech impairment and inebriation 
by using machine learning methods, transforming it to an audio classification problem.

Challenges: Include person-to-person variability in alcohol tolerance and speech impairment, and confounding by other factors 
such as fatigue or substance use (e.g., marijuana). Additionally, there are few publicly available intoxicated speech datasets. 
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Fig. 1. Overview of pipeline for speech intoxication.

This study uses the Alcohol Language Corpus (Schiel, Heinrich, Barfüßer, & Gilg, 2008), which contains 15,180 recordings of 
conversational and scripted speech in both sober and intoxicated states. Despite being one of the largest datasets available, its 
size remains a challenge for training deep learning models effectively.

Proposed Approach: We fine-tune Wav2Vec 2.0, a state-of-the-art, self-supervised model pre-trained on large speech corpora, 
for intoxication detection. Fig.  1 illustrates its real-world application. Wav2Vec 2.0 has excelled in speech tasks such as Automatic 
Speech Recognition (ASR), speaker verification, and mispronunciation detection (Baevski, Zhou, Mohamed, & Auli, 2020; Hsu et al., 
2021; Peng, Fu, Lin, Ke, & Zhan, 2021). Fine-tuning allows adaptation to domain-specific problems, particularly for small datasets. Its 
self-supervised design enhances generalizability (Zhang et al., 2024), crucial given our dataset size. The model extracts features from 
audio waveforms via transformer blocks optimized for temporal sequences (Baevski et al., 2020). A classification head then predicts 
intoxication. Pre-trained on large datasets such as Librispeech and Libri-Light, and fine-tuned on EmoDB for emotion recognition, 
Wav2Vec 2.0 is further fine-tuned for intoxication detection.

2. Background and related work

Human-Level Accuracy in Detecting Alcohol Intoxication:  Baumeister and Schiel evaluated human performance in recognizing 
alcohol intoxication through speech, and the accuracy averaged at 63.1%  (Baumeister, Heinrich, & Schiel, 2012). Humans usually 
utilize visual and scent clues to determine intoxication.

Unweighted Average Recall (UAR) is a metric commonly used for this dataset. It balances performance across imbalanced classes 
expressed as UAR = Sensitivity+Specificity

2 ,  where sensitivity (true positive rate) and specificity (true negative rate) measure correct 
class identifications.

Audio Features used in baseline models include those from OpenSMILE, Praat, and Mel spectrograms (Berninger, Hoppe, & Milde, 
2016; Bone et al., 2011; Bonela et al., 2023; Hönig, Batliner, & Nöth, 2011). OpenSMILE extracts features such as MFCCs, PLPCCs, 
pitch, and formant frequencies. Mel spectrograms represent audio visually, enhancing classification.

2.1. Prior machine learning approaches

2.1.1. Intoxication detection machine learning models proposed at interspeech 2011
Bone et al. achieved a UAR of 70.54% (Bone et al., 2011) using a pipeline with pause removal, feature extraction via OpenSMILE 

and Praat, iterative speaker normalization, and classifying GMM supervectors with an SVM.

2.2. Prior deep learning approaches

Deep learning research on this dataset is still limited. Table  1 summarizes related work. Bonela et al. developed the Audio 
Based Deep Learning Algorithm to Identify Alcohol Inebriation (ADLAIA). They transformed audio into log Mel spectrograms for a 
ResNet-18 model pre-trained on ImageNet, applying a weighted loss for class imbalance, achieving a UAR of 68.09% (Bonela et al., 
2023). Berninger et al. used 40-D FBANK features with a BiRNN, achieving the highest UAR (71.03%) (Berninger et al., 2016).

3. Methodology

In this paper, we fine-tune a pre-trained Wav2Vec 2.0 model for speech representation learning. Wav2Vec 2.0 is a self-supervised 
framework designed to extract meaningful representations from raw speech audio without requiring extensive labeled data. It 
comprises a convolutional feature encoder, a Transformer-based context network, and a quantization module (Baevski et al., 2020) 
as shown in Fig.  2. The masked latent representations are passed through a Transformer-based context network, which builds rich 
contextual embeddings of the audio. The model is trained using contrastive loss, where the objective is to distinguish the true latent 
representation from distractors. Further, discrete speech units are learned via the Gumbel Softmax approach (Baevski et al., 2020).
2 
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Table 1
Previous work related to the ALC dataset.
 Authors Name of paper Summary of approach Best UAR 
 Bone et al. (2011) Intoxicated speech detection by 

fusion of speaker normalized 
hierarchical features and GMM 
supervectors

The winning INTERSPEECH paper combined 
speaker-normalized hierarchical features and Gaussian 
Mixture Model (GMM) supervectors as their features. They 
used an SVM with linear kernel, L2 regularization, and L2 
loss.

70.54%  

 Bonela et al. (2023) Audio-based Deep Learning 
Algorithm to Identify Alcohol 
Inebriation (ADLAIA)

This paper used log Mel spectrogram representations of the 
audio recordings and trained a Convolutional Neural Network 
with a ResNet-18 model pre-trained on the ImageNet dataset.

68.09%  

 Berninger et al. (2016) Classification of Speaker 
Intoxication Using a Bidirectional 
Recurrent Neural Network

The paper achieving the highest accuracy so far used 
40-dimensional FBANK features by the CMU Sphinx speech 
recognition toolkit and a Bi-directional Neural Network.

71.03%  

Fig. 2. Illustration of the Wav2Vec 2.0 framework showing the self-supervised pre-training process (Baevski et al., 2020).

3.1. Feature encoder

The feature encoder is a multi-layer convolutional neural network which processes raw audio inputs and outputs latent speech 
representations (Baevski et al., 2020). The raw input is denoted as 𝑋, and 𝐿 is the length of the audio signal. The audio is first 
normalized to have zero mean and unit variance: 𝑋 = 𝑋−𝜇

𝜎  where 𝜇 and 𝜎 are the mean and standard deviation of the signal. The 
normalized signal 𝑋 is then passed through convolutional blocks. Each block consists of:

(1) A temporal convolution layer with kernel size 𝑘, stride 𝑠, and number of channels 𝐶.
(2) Layer normalization to stabilize training.
(3) A GELU activation function for non-linearity.

The total stride of the encoder determines the number of time steps 𝑇  given by 𝐿/𝑠 which are input to the transformer. The output 
of latent speech representation is represented by 𝑍 = 𝑧1,… , 𝑧𝑇 . The pre-trained model used in this study contains 7 convolutional 
blocks with 512 channels and respective strides, 𝑠, of (5, 2, 2, 2, 2, 2, 2) and kernel sizes, 𝑘, of (10, 3, 3, 3, 3, 2, 2) (Baevski et al., 
2020).

3.2. Transformer context network

The output of the feature encoder is fed to a context network, which follows the Transformer architecture. The context network 
stacks 12 Transformer blocks, each with model dimension 𝑑𝑚𝑜𝑑𝑒𝑙 = 768, inner dimension 𝑑𝑖𝑛𝑛𝑒𝑟 = 3072 and 8 attention heads. Instead 
of fixed positional embeddings which encode absolute positional information, the model uses a convolutional layer, which acts as 
relative positional embedding. The output of the convolution is added followed by a GELU to the inputs and then layer normalization 
is applied (Baevski et al., 2020). Each of the 12 Transformer blocks processes these normalized inputs. First, the input sequence needs 
to go through a feature projection layer, to increase the dimension from 512 to 768. The transformer uses attention to boost the speed 
in which models can be trained. The transformer contextualizes the masked representations and generates context representations 
𝐶 (Baevski et al., 2020).

3.3. Quantization module

The quantization module is used to discretize latent speech representations 𝑍 into 𝑄 using product quantization. Product 
quantization involves choosing quantized representations from multiple codebooks and concatenating them. Given 𝐺 codebooks 
3 
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(or groups), with 𝑉  entries 𝑒 ∈ R𝑉 × 𝑑
𝐺 , one entry is chosen from each codebook and concatenated with resulting vectors 𝑒1,… , 𝑒𝐺

and a linear transformation is applied R𝑑 → R𝑓  to obtain 𝑞 ∈ R𝑓  (Baevski et al., 2020).
To allow the selection of codebook entries in a fully differentiable way, the Gumbel softmax is used. The module uses the 

straight-through estimator to compute gradients and setup 𝐺 hard Gumbel softmax operations. The feature encoder output 𝑧 is 
mapped to 𝑙 ∈ R𝐺×𝑉  logits and the probabilities for choosing the v-th codebook entry for group 𝑔 are

𝑝𝑔,𝑣 =
exp

(

𝑙𝑔,𝑣 + 𝑛𝑣
)

∕𝜏
∑𝑉

𝑘=1 exp
(

𝑙𝑔,𝑘 + 𝑛𝑘
)

∕𝜏
,

where 𝜏 is a temperature parameter controlling the smoothness of the distribution, 𝑛 = − log(− log(𝑢)), and 𝑢 ∼  (0, 1) are uniform 
random samples. During the forward pass, the selected codeword 𝑖 for group 𝑔 is determined by 𝑖 = argmax𝑗 𝑝𝑔,𝑗 , while in the 
backward pass, the gradients of the Gumbel softmax outputs are used (Baevski et al., 2020). There are 𝐺 = 2 codebooks in the 
Quantization module, each containing 𝑉 = 320 with a size of 128.

3.4. Pre-training

To pre-train the model, certain proportions of time steps in the latent feature encoder space are masked. The representations in 
the audio are learned through a contrastive task 𝐿𝑚, which needs to identify the accurate quantized latent audio representation in 
a set of distractors. 𝐿𝑚 is augmented by a codebook diversity loss 𝐿𝑑 that encourages the model to use the codebook entries equally 
often. The loss is defined as 𝐿 = 𝐿𝑀 + 𝛼𝐿𝐷. Given context network output 𝑐𝑡 centered over masked time step 𝑡, the model needs 
to identify the true quantized latent speech representation 𝑞𝑡 in a set of 𝐾 + 1 quantized candidate representations 𝑞𝑡 ∈ 𝑄𝑡 which 
includes 𝑞𝑡 and 𝐾 distractors, the contrastive loss is defined as: 

𝐿𝑀 = − log
exp(sim(𝑐𝑡, 𝑞𝑡)∕𝑘)

∑

𝑞∼𝑄𝑡
exp(sim(𝑐𝑡, 𝑞))∕𝑘

(1)

where the cosine similarity between context representations and quantized latent speech representations is computed. And the 
diversity loss is defined as: 

𝐿𝐷 = 1
𝐺𝑉

𝐺
∑

𝑔=1

𝑉
∑

𝑣=1
𝑝̄𝑔,𝑣 log 𝑝̄𝑔,𝑣, (2)

which maximizes the entropy of the average softmax distribution 1 over the codebook entries for each codebook 𝑝̄𝑔 across a batch 
of utterances and encourages of the use of 𝑉  entries in each of the 𝐺 codebooks.

3.5. Adaptation for fine-tuning

The pre-trained models are fine-tuned for speech recognition. This is performed by adding a randomly initialized linear projection 
on top of the context network representing the vocabulary. The model used in this study was trained on LibriSpeech and Librilight, 
and further fine-tuned for classification on the German EmoDB dataset (Burkhardt et al., 2005). Fine-tuning Wav2Vec 2.0 is 
essential as the pre-trained model captures general speech features, while fine-tuning adapts it to German and task-specific speech 
characteristics. Prior research (Baevski et al., 2020) showed fine-tuning significantly improves domain adaptation and performance. 
Finally, for our classification purposes, a lightweight classifier head consisting of a dropout layer, regularizing the model to prevent 
overfitting, followed by a linear layer maps the encoder’s output to the desired single output.

4. Evaluation

The evaluation metrics used in evaluating the model and baselines include accuracy, unweighted average recall (UAR), 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). UAR was specifically chosen as the 
dataset is heavily imbalanced, and the metric has been utilized to evaluate prior ALC work.

4.1. Baseline models

Models containing numerical and image-based features, as well as self-supervised models, were trained in combination with 
traditional machine learning methods as well as deep learning models such as CNNs, which are used in cutting edge speech 
classification studies. A list of these baselines as well as their inputs are highlighted in Table  2.

4.2. Datasets

4.2.1. Pre-training datasets
To generate a robust model, Wav2Vec 2.0 is pre-trained on a diverse mix of datasets:

(1) LibriSpeech – 1000 h of audiobook speech, aiding phonetic and linguistic pattern learning.
(2) Libri-Light – 60,000+ hours of unlabeled speech with a smaller labeled subset, enhancing robustness to accents and noise.
(3) EmoDB – 535 German utterances across seven emotions, improving prosody, pitch, and emotional variation modeling relevant 

to intoxication detection.
4 
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Table 2
A list of models used as baselines, along with their model type and inputs.
 Input Model Model type  
 Self-Supervised MERT-v1-95M (Li et al., 2024) Transformer  
 HuBERT-base-ls960 (Hsu et al., 2021) Transformer  
 
Image

AST-base384 (Gong, Chung, & Glass, 2021) Vision Transformer 
 EfficientNet (Tan & Le, 2020) CNN  
 ResNet (He, Zhang, Ren, & Sun, 2015) CNN  
 
Numerical

Naive Bayes (Ng & Jordan, 2001) Classical ML  
 SVM (Hearst, Dumais, Osuna, Platt, & Scholkopf, 1998) Classical ML  
 Random Forest (Breiman, 2001) Classical ML  

Table 3
Distribution of ALC Classes showing heavy class 
imbalance.
 Class Number of recordings 
 Sober 10 540  
 Intoxicated 4640  
 Total 15 180  

4.2.2. The Alcohol Language Corpus (ALC) dataset
The ALC dataset (2007–2009) contains recordings of 162 German speakers (78 female, 84 male, aged 21–75) in intoxicated and 

sober states. Speech types include digit reading and conversation. Intoxication levels were self-chosen and measured via breath and 
blood samples. Each speaker contributed 30 intoxicated and 60 sober samples, totaling 15,180 validated recordings. As we see in 
Table  3, the classes are heavily imbalanced.

We opted for a stratified sampling approach. This method allowed us to maintain similar distributions across the training, test, 
and validation sets based on Blood Alcohol Concentration (BAC) levels which were classified as follows:

- 0: 𝐵𝐴𝐶 = 0.0
- 1: 0.01 ≤ 𝐵𝐴𝐶 ≤ 0.019
- 2: 0.02 ≤ 𝐵𝐴𝐶 ≤ 0.049
- 3: 0.05 ≤ 𝐵𝐴𝐶 ≤ 0.079
- 4: 0.08 ≤ 𝐵𝐴𝐶
The subsets are speaker-disjoint, ensuring no speaker appears in both training and test/validation sets. A speaker is intoxicated if 

their BAC is over 0.05. The data was divided into training, validation, and testing sets in a 60:20:20 ratio, respectively. While BAC 
level distributions remain similar, exact matching is unattainable due to data constraints. To mitigate class imbalance, the minority 
class was upsampled to a 7:10 ratio with the majority class, selected based on validation performance.

The Wav2Vec 2.0 model was pre-trained on LibriSpeech, Libri-Light, and EmoDB. Audio was preprocessed by removing pauses 
and noise, then sampled at 16 kHz. A binary classification head was added for intoxication detection. Fine-tuning was performed 
using AdamW and Binary Cross Entropy with Logits loss, incorporating weighted loss to prioritize the minority class. A low learning 
rate of 1𝑒 − 6 was chosen after extensive hyperparameter tuning.

5. Results

The performance on the test split and the comparison to a variety of baselines are highlighted in Table  4.
Wav2Vec 2.0 outperforms all models and baselines, achieving superior UAR compared to prior research on the ALC dataset. 

However, its performance in FPR and PPV is lower, indicating confusion likely due to class imbalance in the binary task, where the 
minority class is underrepresented. This leads the model to prioritize accuracy and recall over precision and false positive control.

Confusion matrices show good performance with slight confusion. As seen in Fig.  3, the diagonal is strong, indicating solid 
performance, with more True Positives and True Negatives than False Positives and False Negatives. However, False Positives and 
False Negatives occur at nearly equal rates.

6. Discussion

The Wav2Vec 2.0 model outperforms baselines, achieving a UAR of 73.3%, surpassing the best baseline by 7%. This highlights 
the effectiveness of self-supervised learning and pre-training on large speech datasets, facilitating transfer to intoxicated speech 
classification. In spite of class imbalance and fine-grained class boundaries, the model maintains balanced performance with 
sensitivity (0.73) and specificity (0.74). It outperforms prior deep learning and machine learning approaches, surpassing the best 
reported UAR on the ALC dataset by 2%. Unlike previous studies relying on hand-engineered features, self-supervised learning 
enhances feature extraction and adaptation to complex datasets.

Challenges remain in fine-grained intoxication detection. While achieving high UAR, the model exhibits nearly equal False 
Positives and False Negatives, likely due to class imbalance and subtle speech variations.
5 
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Fig. 3. The model’s confusion matrix on the test dataset.

Table 4
Comparison of baselines with the Wav2Vec 2.0 results. The entries in this table are sorted by accuracy in descending order. The 
best entry for each metric is bolded.
 Model Accuracy UAR Sensitivity PPV NPV  
 Wav2Vec 2.0 73.31% 0.736 0.732 0.574 0.848 
 MERT-v1-95M 66.21% 0.669 0.688 0.491 0.809 
 AST-base384 63.76% 0.619 0.566 0.459 0.76  
 HuBERT-base-ls960 60.35% 0.599 0.536 0.575 0.625 
 EfficientNetB3 59.80% 0.592 0.52 0.569 0.619 
 EfficientNetB0 59.90% 0.59 0.475 0.578 0.612 
 ResNet18 59.50% 0.588 0.501 0.568 0.614 
 ResNet50 58.07% 0.575 0.503 0.548 0.604 
 Naive Bayes 58.10% 0.555 0.235 0.617 0.573 
 SVM 57.20% 0.54 0.145 0.656 0.562 
 Random Forest 55.60% 0.522 0.096 0.607 0.552 

Limitations include dataset size and computational demands. The controlled recording environment and limited speaker 
diversity may reduce real-world robustness. Additionally, Wav2Vec 2.0’s size impacts real-time feasibility and raises overfitting 
concerns on small datasets.

7. Conclusion

Current DUI prevention methods are costly, intrusive, or require external devices like breathalyzers. This study explored Wav2Vec 
2.0 for intoxication detection from audio, leveraging self-supervised learning and pre-training on large speech datasets. The model 
achieved a UAR of 73.3%, surpassing state-of-the-art methods, demonstrating its potential for DUI detection to prevent alcohol-
related incidents. Challenges remain, including class imbalance, dataset limitations, and computational complexity. Future work 
should focus on expanding dataset diversity, addressing imbalance, and exploring smaller, efficient models. This research contributes 
to safer communities by advancing intoxication detection technology.
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