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A B S T R A C T   

Lower extremity chronic wounds affect 4.5 million Americans annually. Due to inadequate access 
to wound experts in underserved areas, many patients receive non-uniform, non-standard wound 
care, resulting in increased costs and lower quality of life. We explored machine learning clas-
sifiers to generate actionable wound care decisions about four chronic wound types (diabetic foot, 
pressure, venous, and arterial ulcers). These decisions (target classes) were: (1) Continue current 
treatment, (2) Request non-urgent change in treatment from a wound specialist, (3) Refer patient 
to a wound specialist. We compare classification methods (single classifiers, bagged & boosted 
ensembles, and a deep learning network) to investigate (1) whether visual wound features are 
sufficient for generating a decision and (2) whether adding unstructured text from wound experts 
increases classifier accuracy. Using 205 wound images, the Gradient Boosted Machine (XGBoost) 
outperformed other methods when using both visual and textual wound features, achieving 81% 
accuracy. Using only visual features decreased the accuracy to 76%, achieved by a Support Vector 
Machine classifier. We conclude that machine learning classifiers can generate accurate wound 
care decisions on lower extremity chronic wounds, an important step toward objective, stan-
dardized wound care. Higher decision-making accuracy was achieved by leveraging clinical 
comments from wound experts.   

1. Introduction 

Chronic lower extremity wounds (“ulcers”) affect 4.5 million individuals in the United States annually (Frykberg & Banks, 2015). 
These wounds are expensive to treat ($7,439 to $70,000 per wound) with a total annual cost of $25 billion in the U.S. (Sen et al., 2009). 
Chronic wounds have become more widespread due to an aging population (Flanagan, 2013) and the rise of comorbidities, e.g., 
diabetes and cardiovascular disease, that can cause ulcers (Flanagan, 2013). Patients with chronic wounds experience reduced 
mobility, chronic pain, prolonged hospital stays, missed work days (Kirsner & Vivas, 2015; Sen et al., 2009), and negative 
psycho-social effects (Kirsner & Vivas, 2015). Chronic wounds precede 85% of amputations and may even lead to death (Järbrink et al., 
2017). 

Accurate and timely diagnoses can reduce the cost of ulcers (Gillespie, 2010), but that assumes access to wound specialists (Fla-
nagan, 2013). Even if initially assessed by a wound specialist, follow-up analysis and treatment is often completed by non-experts, that 
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is, the majority of domestic wound assessments are conducted by registered nurses who may lack wound expertise (Guest et al., 2015; 
Zarchi et al., 2014, 2015). The result is inconsistent diagnosis and treatment decisions and poor wound care (Kirsner & Vivas, 2015), 
potentially resulting in a non-healing chronic wound with a financial consequence ranging from $10,000 to $15,000 per ulcer (Fla-
nagan, 2013). Existing decision support systems are limited to rubrics or questionnaires that have to be filled out manually to generate 
decisions. Wound care decisions generated autonomously by an ML classifier could provide the necessary support aid for non-expert 
care providers, ultimately improving care decision consistency and reducing costs. To the best of our knowledge, our work is the first to 
research and create a machine/deep learning approach to autonomously generate actionable wound care decisions from wound 
images and assessment notes. 

This research investigated using machine learning (ML) to provide such decision support by classifying wounds as one of three 
decisions: (1) Continue current treatment, (2) Request non-urgent change in treatment from a wound specialist, (3) Refer patient to a 
wound specialist. We also studied (1) whether clinically-validated important visual wound features are sufficient for generating a 
decision and (2) whether adding unstructured text from wound experts increased classifier accuracy. Automated decision support via 
ML classifiers would enable patients to receive standardized wound care from non-expert care providers. 

2. Background 

Our prior research focused on objective analysis of chronic wounds using visual features (Strong et al., 2014; Wang et al., 2013, 
2015, 2016, 2017). Building on this work, we focus on developing a wound Clinical Decision Support System (CDSS), a “smart wound 
specialist”, that is embedded in a smartphone application. Currently, wound care provided by non-experts may be limited to relying on 
manual wound assessment tools and paper rubrics for grading wounds. This CDSS aims to surmount the limitations of manual wound 
assessment by using machine learning and deep learning methods to autonomously recommend actionable chronic wound care 
decisions. 

2.1. Wound assessment tools 

The most relevant recent review (Greatrex-White & Moxey, 2015) of current wound assessment tools (WAT) focuses on manual 
WATs and rubrics, which are clearly different from our machine learning approach to autonomously generate actionable wound care 
decisions. This review of manual WATs states that there exists no single WAT that completely satisfies a nurse’s needs in wound care 
management. The study (Greatrex-White & Moxey, 2015) suggested that in the absence of wound experts, a good WAT is the one tool 
that can help guide non-expert clinicians towards making informed wound care decisions. The most common WATs that are available 
to non-experts are Bates-Jensen Wound Assessment Tool (Bates-Jensen et al., 1992), Leg Ulcer Measurement Tool (Woodbury et al., 
2004), Pressure Ulcer Scale for Healing (Hon et al., 2010), Braden scale (Bates-Jensen et al., 1992), and Photographic Wound 
Assessment Tool (Thompson et al., 2013). Although these tools grade and score wounds, they do not recommend actionable wound 
care steps. Non-experts who use such manual WATs still require additional support and more intuitive wound care guidelines to arrive 
at wound care decisions (Greatrex-White & Moxey, 2015). The additional support from an expert can be provided through remote 
consultation (telemedicine), official wound care guidelines or CDSS tools. However, telecare is difficult due to experts’ time constraints 
and wound care guidelines often require expertise to interpret. Thus, our current study seeks to close this gap by experimenting with 
ML algorithms as the basis for wound decisions in a CDSS tool that provides digital, autonomous, actionable wound care decisions to 
support non-experts. 

For initial assessment of our wound images and to generate ground truth labels for our supervised machine learning and deep 
learning methods, we graded wound images using an image-based WAT (Thompson et al., 2013; Houghton et al., 2000), the most 
comprehensive of which is the Photographic Wound Assessment Tool (PWAT) (Thompson et al., 2013). Similar to other available tools, 
PWAT is a rubric for initial wound assessment, mainly describing the characteristics of a wound, but does not recommend a care 
decision. It is a validated, state-of-the-art wound assessment questionnaire designed to provide a consistent and quantitative method to 
represent visual wound attributes evaluated from a wound photograph (see Appendix A) (Thompson et al., 2013). PWAT has moderate 
to excellent reliability with an Intra-class Correlation Coefficient (ICC) of 0.71 for interrater reliability and 0.89 when comparing 
bedside assessment to photographic assessment using PWAT. Due to its ability to assess wound features from an image, and its reli-
ability, we used PWAT to quantitatively grade wound characteristics, the results of which were subsequently used as one of many 
inputs for the ML methods that then autonomously generated wound care decisions. 

PWAT scores eight attributes of wounds, (1) size, (2) depth, (3,4) type and amount of necrotic tissue, (5,6) type and amount of 
granulation tissue, (7) wound edges and (8) periulcer skin viability (Thompson et al., 2013). Each aspect is scored on a scale from zero 
to four (using aspect-specific severity rubrics), yielding eight PWAT sub-scores. The overall wound assessment is a total of the 
sub-scores, ranging from 0 to 32, with 32 indicating severe problems, and 0 indicating no wound issues. A decreasing PWAT score over 
time indicates wound healing. 

2.2. Machine/deep learning classification 

Machine learning (ML) methods are increasingly applied to clinical issues. Using ML ensembles, Econ et al. (2008)E detected 
cardiovascular disease from protein expression levels in blood samples. They found that bagged ensembles were more accurate than 
single classifiers, such as Decision Trees (DTs), Support Vector Machines (SVMs), Multi-layer Perceptron Artificial Neural Networks 
(MLP ANNs) and Bayesian networks. WeAidU, a CDSS that classified images, also found ensembles more accurate than single classifier 
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types for the task of diagnosing myocardial infarction and heart ischemia (Ohlsson, 2004). Brown and Marotta (Brown & Marotta, 
2017) found a gradient boosting ensemble model most accurate in classifying Magnetic Resonance Imaging (MRI). Consequently, in 
addition to single classifiers, we explored ensembles for classifying wounds. 

Deep learning approaches have also been applied to biomedical data. Gao et al. (Gao et al., 2018) used a Hierarchical Attention 
Network (HAN) consisting of two layers of bidirectional LSTMs/GRUs to identify one of 12 possible International Classification of 
Diseases (ICD) codes, as well as determine a histological grade classification for cancer pathology reports. Bidirectional LSTMs/GRUs 
allow retention of past and present contextual information, which is particularly relevant for text data. HANs are used for document 
classification because its hierarchies reflect the breakdown of a document into sentences, then words. Gao et al. (Gao et al., 2018) 
found the HAN more accurate than SVM, Random Forest, extreme gradient boosting, RNN, and CNN for classifying pathology reports. 
Baumel et al. (Baumel et al., 2018) also found a HAN was more accurate (86% accuracy) than SVMs, Continuous Bag of Words (CBOW), 
and CNNs for classifying 10,000 patient reports with ICD codes. Due to success in prior work with similar medical data, we also 
implemented a HAN. 

2.3. Text mining medical data 

To extract information from the unstructured text from wound experts, we explored Natural Language Processing (NLP) and text 
mining techniques used for Electronic Health Records (EHR). Prior work has combined clinical knowledge with ML to improve 
classification accuracy. Zhang et al. (Zhang et al., 2018) leveraged clinical knowledge and ML methods (logistic regression) to produce 
groupings of medical order sets. 

A popular approach in prior NLP work involves tokenizing input text and identifying token frequency. Zheng et al. (Zheng et al., 
2016) identified cases of Diabetes Mellitus (DM) by mapping tokens to DM risk factors, and indicating presence with a binary encoding. 
Castro et al. (Castro et al., 2015) identified polycystic ovarian syndrome by outputting the frequency of tokens. Another approach used 
to transform free text is to use word embeddings. These were used by Gao et al. (Gao et al., 2018) and are considered a powerful tool to 
represent contextual and semantic meaning. We explored both techniques described to extract meaning from textual EHR data. 

3. Methodology 

3.1. Use scenario 

To illustrate the envisioned functionality of our CDSS, and, thus, our ML classifiers, we present a use scenario. We assume a visiting 
nurse or a nursing home nurse is following up with a chronic wound patient who has previously seen a wound specialist and has a 
current treatment plan. The nurse is well-qualified but not a wound expert. The treatments the nurse can provide are limited due to lack 
of wound-specific training or lack of medical resources in remote settings (see Appendix B). Making these assumptions of situation and 
minimal wound expertise allows our CDSS to be used by any nurse in typical visiting nurse settings. However, we acknowledge that 

Table 1 
Treatment types, medical indicators, and wound examples categorized by decision.   

Treatment / Medical Indicators Wound Example 

Decision 1: Continue with current 
treatment. 

No necrotic tissue (wound is clean) 
No debridement needed 
No spreading infection 
No bone or tendon visible 
No ischemia or had a prior vascular treatment 
Size of wound is small enough to not necessitate a 
skin graft 
Does not need offloading 

For a small, uninfected wound, 
apply a gauze dressing. 

Decision 2: Request order for non-urgent 
change in treatment from wound 
specialist. 

Change dressing type (if wound is too dry or too 
moist) 
VAC (vacuum assisted closure) (if wound is clean 
but needs closure or granulation assistance) 
Offloading (if in an area where pressure is an issue) 
Compression (if venous ulcer) 
Antibiotic (if signs of infection) 

For a dry wound, apply a moist 
dressing. 

Decision 3: Refer patient to a wound 
specialist. 

Debridement (if wound has necrotic tissue) 
Ascending ischemia (i.e., may indicate a need for 
revascularization) 
Wet gangrene 
Surgery if bone/tendon visible 
Amputation 
Skin graft (if wound is clean but of a large size) 

For a wound needing surgical 
cleaning, recommend debridement.  
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there are many possible scenarios. Thus, to provide a rigorous grounding for our ML algorithms’ evaluation, we experiment under two 
specific clinical decision making scenarios:  

1) ML actionable support is provided with no expert involvement (i.e., there is limited input from a wound expert).  
2) ML actionable support also utilizes as input EHR clinical assessment notes (i.e., free text comments from an expert available as EHR 

data). 

We address scenario 1 by assuming that the only data available is the visible wound. The nurse would capture an image of the 
wound with our CDSS smartphone app and be prompted to enter some wound information such as wound location, appearance, and 
other clinical characterizations that could be easily assessed visually by a nurse. These clinically-validated important visual wound 
features would be the only input to the ML classifier in scenario 1. 

In scenario 2, the wound features are still available to the nurse but we also include our wound care experts’ clinical assessment 
notes that serve the same purpose and contain similar information as EHR notes. These notes simulate a scenario in which an expert has 
previously conducted a remote consultation or assessment that has been documented in the EHR. 

Thus, the final aspect of the use scenarios is the type of actionable care decision that will be autonomously generated by the CDSS 
smartphone app (i.e., by the ML classifiers embedded in the app). With the aid of wound care experts, we established three actionable 
wound care decisions our wound CDSS will recommend, see Table 1. These decisions align with the abilities and roles of various care 
providers within the healthcare system, ensuring standardized wound care, while saving time and money, reducing unnecessary travel 
and the usage of wound specialists. 

For each actionable care decision (target classes), there are typical chronic wound conditions which are shown in Table 1 with 
example wound images, as collected from the wound experts on our research team. Additional examples of wound decisions and the 
classification rationale are in Appendix C. 

3.2. Wound images and ground truth for the ML study 

The 205 wound images used in this study were selected from 2,064 wound images. 1,695 images are from a corpus of IRB-approved 
UMMS patient data, with another 369 publicly available from the Internet (WPI IRB 18–0148). To ensure image quality, images were 
excluded if they were too dark or light, the full wound was not in view, or the image was a duplicate of another image (see Appendix D). 

Fig. 1. Confusion matrix between wound experts’ decision labels.  
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High quality images were integral to ensuring that experts could accurately view images and assess the wound to provide ground truth. 
After exclusion of poor quality or duplicate images, we generated a random subset to use for ML experiments by sampling images 

from four chronic wound types (diabetic foot, pressure, venous, and arterial ulcers) with varied wound characteristics (Kirsner & 
Vivas, 2015). Surgical wounds that began as an ulcer were included as a fifth type since their treatment is similar to that of the other 
four wound types. Image examination by our wound experts was a time-consuming process, so we limited our sample to 205 images. 

Two wound experts, a plastic surgeon (Expert 1) and a dually credentialed podiatric surgeon/vascular Nurse Practitioner (DPM/ 
NP) (Expert 2), provided ground truth by indicating their treatment decision when shown each wound. Ground truth refers to which 
wound decision (1, 2 or 3) a wound expert assigned to each wound. The ML classification model attempts to learn these decisions 
during the model training process. 

During wound decision labeling sessions, the wound experts viewed printed wound images, assigned a decision and explained why. 
To reduce bias, questions were limited to clarifications or requests for further explanation. Each session was video recorded and 
transcribed. The wound expert explanations were used to emulate EHR text content, which became text inputs for our classifiers. 

The two experts provided the same decision for 57% of the wounds (117 images), see the confusion matrix on the left in Fig. 1. 
Extreme disagreement (Decision 1 and 3 selected) occurred for 11% of the wounds. One wound expert explained that decision 
disagreement is common due to the different treatment philosophies. For example, for a large but clean wound, one expert may 
recommend a skin graft to help the wound close more quickly whereas another expert may let it heal on its own. 

We also generated a third set of decision labels from evidence-based clinical guidelines, which provided objective decisions, in-
dependent of our two experts. The middle and right confusion matrices in Fig. 1 show the agreement between clinical guideline 
decisions and the two wound experts. 

To establish ground truth when the wound experts disagreed on decisions, we investigated four policies to assign a final decision 
(decfinal) based on our three decision results (decexp1 = Expert 1’s, decexp2 = Expert 2’s, decclinical = decision from clinical guidelines 
rules). Each decision assigned is given a corresponding numerical value of 1, 2, or 3 (see Table 1). 

Policy 1, Cautious Decision: Select the more cautious decision assigned by the two wound experts Equation (1). Specifically, de-
cision 3 is more cautious than decision 2, which is more cautious than decision 1. Decision 3 is the most cautious because the patient 
would eventually see a wound specialist in person. Equation (1) uses the max function so that the highest numerical value (1, 2, or 3) is 
assigned as the final decision. 

decfinal =max(decexp 1, decexp 2) (1) 

Policy 2, Surgical Decision: Select the decision assigned by the plastic surgeon (Expert 1) as more severe wounds were typically 
referred for surgical treatment Equation (2). 

decfinal = decexp 1 (2) 

Policy 3, Holistic Decision: Select the decision assigned by the dually credentialed podiatric surgeon/vascular Nurse Practitioner 
(DPM/NP) (Expert 2) due to the DPM/NP’s daily interaction with a wide variety of severity of wounds, and experience with limb 
salvage as a podiatric surgeon, and preventative treatments Equation (3). 

decfinal = decexp 2 (3) 

Policy 4, Majority Decision: Select the majority decision among three decisions (Expert 1, Expert 2, clinical guidelines). In cases 
when there is a 3-way tie (e.g., each of the three decisions were assigned and, thus, there are three distinct numerical values), there is 
no majority decision so the most cautious decision is selected Equation (4). For example, if both experts assign a value of 2 (i.e., they 
chose decision 2 for a wound), but the clinical guidelines recommend a value of 3 (i.e., decision 3), then the majority decision is 
assigned which would be 2. In another example, there may be three different decisions assigned (e.g., a 1, 2, and 3). In this case, since 
there is no consensus, we assign the most cautious decision which is the max value. Thus, the final decision assigned in a 3-way tie 
would be decision 3. 

Table 2 
Set of visual features.  

Wound Type PWAT sub-scores PWAT 
Total 
Score 

Diabetic 
foot 

Venous Arterial Pressure Surgical Sub- 
score 1 

Sub- 
score 2 

Sub- 
score 2 

Sub- 
score 4 

Sub- 
score 5 

Sub- 
score 6 

Sub- 
score 7 

Sub- 
score 8 

Total 
score 

0 or 1 0 or 1 0 or 1 0 or 1 0 or 1 0–4 0–4 0–4 0–4 0–4 0–4 0–4 0–4 0–32  
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setdec ={decexp 1, decexp 2, decclinical} (4) 

The decision disagreement policies resulted in some class imbalance. Policy 2 had the most balance among classes, followed by 
Policy 3, then Policy 4, and finally Policy 1. We hypothesize that Policy 4 may be the best representation of the truth since it accounts 
for both experts’ opinions as well as clinical guidelines. Additionally, it prioritizes consensus among these three decision-makers, but in 
cases of disagreement, the final decision assigned is the most cautious. In this way, Policy 4 balances decision-maker consensus with 
caution for wound cases that may be more difficult to determine a decision. 

3.3. Visual feature extraction 

In envisioned use scenario 1 in which there is no expert involvement, a nurse would rely on the wound features that are visually 
discernible in-person. In this ideal use case, the smartphone wound app (our CDSS) would automatically extract visual features (via 
image analysis) and the nurse would provide supplemental information such as odor. Thus, the wound app would have a set of visual 
features as input to the ML classifiers that would generate an actionable decision. These visual features are based on clinically- 
validated important wound attributes as specified by the PWAT wound grading rubric (See Appendix A). In our experiments, we 
manually extracted the visual features and scored each wound to generate these PWAT sub-scores used as input to the ML classifiers. 
However, longer term, we are researching and developing deep learning methods to automatically analyze the wound image and 
extract these clinically-validated visual features (PWAT sub-scores) as well as wound type (diabetic foot, venous, arterial, pressure, or 
surgical wounds). Wounds could be labelled with one or more wound types (mixed wounds). PWAT sub-scores and total score were 
calculated as the average of three independent investigator scores. Table 2 show a comprehensive overview of the visual features that 
we used in our experiments and the values accepted. 

3.4. Feature extraction from expert comments/notes 

Comments collected from experts simulated observations a clinician might record in the EHR. For each wound, experts’ comments 
were merged and split into sentences. Text cleaning, labelling of negated terms, tokenization, stop word removal and stemming were 
performed, examples of which are in Table 3. 

The Term Frequency Inverse Document Frequency (TF-IDF) approach (Afzal et al., 2018; Castro et al., 2015; Zhang et al., 2018; 
Zheng et al., 2016) was used to vectorize each comment, generating text features. Similar to bag-of-words, TF-IDF weights how 
frequently a term occurs in the entire corpus. Data was scaled to unit variance so that each feature had a mean value of zero, ensuring 
unit independence. Lastly, Principal Components Analysis (PCA) was used for dimensionality reduction to potentially improve clas-
sification accuracy. 

3.5. Visual classification tasks and experimental datasets 

Our two classification tasks generated four datasets.  

1. Visual Classification Task: Classify a wound as one of three actionable decisions using visual features as input.  
• VIS (Visual): Dataset was generated by processing only visual features – 8 PWAT sub-scores, 1 PWAT total score, and 5 wound 

types (14 features total).  
2. Visual and Text Classification Task: Classify a wound as one of three actionable decisions using visual features and textual EHR 

features as input.  
• B (Basic): Dataset was generated by processing text using TF-IDF then combining with visual features (638 features resulting).  
• NEG (Negated terms marked): Dataset was generated by processing text using TF-IDF and labeling of negated tokens (capturing 

some token context), then combining with visual features (722 features resulting). 
• PCA (Principal Components Analysis): Dataset was generated by processing text using TF-IDF then combining with visual fea-

tures but transformed using PCA (159 features resulting), representing the original sparse text data more succinctly. 

3.6. Machine learning classification 

The SMOTE (Synthetic Minority Over-sampling Technique) (Castro et al., 2015) was applied to balance the dataset, reducing bias. 
Single classifiers, specifically Decision Tree (DT), Support Vector Machine (SVM), and Multi-layer Perceptron (MLP), were investigated 
(Eom et al., 2008; Ohlsson, 2004). We also implemented bagged (bootstrap aggregated) DT and SVM classifiers by training multiple 
single classifiers on separate training sets (generated through oversampling and bootstrapping), and then aggregating predictions 
(Breiman, 1996). Aggregation occurred using two voting methods adapted from (Eom et al., 2008): 1) Majority voting (most frequent 
class was predicted), and 2) Weighted majority voting (classifiers weighted in proportion to accuracy on training set). 
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We also explored (1) a Random Forest classifier, with automatic feature importance ranking and selection, to handle the sparsity of 
the text features and (2) gradient boosted trees, using extreme gradient boosting (XGBoost), which iteratively creates multiple weak 
learners to learn the error from the previous learner thus improving learning performance. 

We transformed text input into word embeddings, numerical one-dimensional vectors that capture semantic meaning. We used 
Word2Vec, a neural network model that predicts the next word (context) given the current word. Given our small text corpus, we used 
pre-trained word embeddings from the Google News corpus containing 3 million words and trained on ~100 billion words. 

To capture greater semantic meaning and context from textual features (i.e., the simulated EHR data) with the word embeddings as 
input, we evaluated a Hierarchical Attention Network (HAN) model that contained two layers of bidirectional LSTMs (Long Short Term 
memory, bi-LSTM) or bidirectional GRUs (Gated Recurrent Units, bi-GRU) (Gao et al., 2018). With two hierarchies in the HAN, the 
word embeddings were fed to the lower hierarchy, then weighted with an attention mechanism to create a sentence embedding. This 
was then weighted with another attention mechanism to create a document embedding. Finally, the document embedding was 
concatenated with the visual features and fed into a Dense network layer to produce the final decision. We experimented with different 
hyperparameters, such as the type of bidirectional cells (bi-LSTM or bi-GRU), the number of nodes in each layer, the number of nodes 
in the hidden attention layer, and dropout rate. 

All single and ensemble classifiers were trained using nested 10-fold Cross Validation (CV) to find optimal hyperparameters and to 
determine generalizability of classifiers. We used sequential-model based optimization, comparing two types of surrogate functions: 
Gaussian process and gradient boosted regression trees. We experimented with the hyperparameter values in Table 4 (see Appendix E 
for further explanation). 

4. Results 

Our results below are averages of five iterations of 10-fold cross validation. Each classifier’s performance was evaluated for each of 
the four decision policies using weighted F-score Equations (5)–(7), which was weighted using the number of true instances of each 
class. 

precision=
Tpos

Tpos + Fneg
(5)  

recall=
Tpos

Tpos + Fpos
(6)  

F1 = 2*
precision*recall

precision + recall
(7) 

The baseline classification method was a majority classifier, OneR (or One Rule), which predicts the most frequently occurring class 
label across the dataset as its output. OneR demonstrated that our classifiers performed better than random guessing. For our data, 
OneR predicted Decision 3 as its output. 

Table 3 
Text mining process with example comment.  

Text Mining Step Example Comment 

Original comment “I don’t see tendon. This is about 25% necrotic tissue. Thin, white, grey necrotic.” 
(Step 1) Mark negation “I don’t_NEG see_NEG tendon_NEG. This is about 25% necrotic tissue. Thin, white, grey necrotic.” 
(Step 2) Remove non-alphanumeric 

characters 
“I don’t_NEG see_NEG tendon_NEG This is about 25 necrotic tissue Thin white grey necrotic” 

(Step 3) Lowercase “i don’t_NEG see_NEG tendon_NEG this is about 25 necrotic tissue thin white grey necrotic” 
(Step 4) Tokenize [“i”, “don’t_NEG”, “see_NEG”, “tendon_NEG”, “this”, “is”, “about”, “25”, “necrotic”, “tissue”, “thin”, “white”, “grey”, 

“necrotic”] 
(Step 5) Remove stop words [“see_NEG”, “tendon_NEG”, “25”, “necrotic”, “tissue”, “thin”, “white”, “grey”, “necrotic”] 
(Step 6) Stemming [“see_NEG”, “tendon_NEG”, “25”, “necrot”, “tissu”, “thin”, “white”, “grey”, “necrot”]  
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4.1. Visual Classification Task 

As illustrated in Table 5, all classifiers performed better than the baseline classifier (random guessing) using the VIS dataset as 
input. Across all policies, the DT ensemble (with weighted majority voting, noted as w in Table 5 with m being majority voting) had the 
worst performance and the single SVM had the best performance. The ensembles outperformed the single classifiers only in Policy 2. 
Ensembles are designed to generate a stronger prediction by utilizing single classifiers that learn differently. However, with such a 
small feature set, the single classifiers compiling the ensemble may have been highly correlated (i.e., producing very similar pre-
dictions) and, thus, less useful in determining the final prediction. We hypothesized that SVM would perform well on such a small 
dataset given its ability to handle misclassified instances, or the support vectors. 

4.2. Visual and Text Classification Task 

As illustrated in Table 6, the ensembles generally performed better than single classifiers on the datasets including both visual and 
textual features. For Policy 1 and 2, Random Forest performed best while Policy 3 and 4 had XGBoost as the optimal classifier. This is 
probably due to the sparse textual feature matrix, since feature and instance selection (inherent to the classifier) is useful when there 
are many more features than instances. XGBoost had the best performance achieved across all experiments for Policy 4. 

We also analyzed performance between the B dataset (combination of textual and visual features with no further preprocessing 
aside from scaling to unit variance), the NEG dataset (negated terms in text were marked), and the PCA dataset (Principal Components 
Analysis applied). The NEG dataset produced the best performance for all but Policy 3, which had the highest performance with the 
PCA dataset. Preprocessing the text by marking negation was an important step in distinguishing wound experts’ comments. The Visual 
and Text Classification Task produced better performance compared to the Visual Classification Task (see Appendix F for details), 
which answers one of the research questions. 

Table 4 
Hyperparameters tuned.   

Hyperparameter Value 

Decision Trees Criterion 
Max depth 
Min leaf samples 
Min samples split 

entropy, gini 
5–20 
2–10 
2–10 

SVM Kernel 
C 
Gamma 

linear, polynomial, rbf 
0.001–1000 
0.0001–100 

MLP Number of layers 
Number of neurons 
Dropout 
Activation 
Weight initialization 

3–7 
50–500 
0.0–1.0 
relu, selu 
he_normal, random_uniform 

Random Forest Number of estimators 
Criterion 
Max Depth 
Min leaf samples 
Min split samples 

10–100 
entropy, gini 
2–20 
2–10 
2–10 

XGBoost Number of estimators 
Eta (learn rate) 
Max delta step 
Min child weight 
Max depth 
Gamma 
Subsample 
Colsample by tree 
Lambda (L2 regularization) 

20–100 
0.01–0.5 
1–10 
1–10 
5–20 
1.1–1.0 
0.5–10 
0.5–1.0 
1–5 

HAN Type of RNN unit 
Number of RNN units in each layer 
Number of neurons in attention layer 
Number of neurons in dense layer 
Dropout 

bi-LSTM, bi-GRU 
10–500 
50–300 
10–300 
0.0, 0.5  
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4.3. Hierarchical Attention Network 

Based on results from hyperparameter optimization, we used an architecture of 117 bi-LSTM cells with an attention context of 178 
nodes, and 49 dense nodes to process the concatenated document embedding and visual features. During the optimization process, bi- 
LSTM was chosen more often than a bi-GRU cell. In order to ensure that the model generalized, dropout of 0.5 was used. 

We hypothesized that using pre-trained word embeddings would aid in leveraging semantic information found from the free text 
and enhance the performance of the HAN model. We took advantage of SMOTE to mitigate the small sample size and balance our 
augmented dataset. Using SMOTE we generated training sets with 336, 279, 231 and 324 samples for Policies 1 through 4, respec-
tively, with an equal testing set of 41 data samples for all the policies. As shown in Table 6 above, our HAN model achieved an average 
F-score of 0.601 across all four policies compared to the baseline (F-score = 0.445). The highest F-score obtained was 0.657 for Policy 
4. This was expected as we hypothesized in section 3.2 that Policy 4 represents the truth best since it integrates both experts’ opinions 
and clinical guidelines. Compared to the prior study (Gao et al., 2018) that utilized HAN for only clinical text classification to predict 
the primary site of cancer given the content of the 942 cancer pathology reports, our HAN model produced an overall average F-score 
of 0.601 across all policies whereas the other study achieved an average F-score of 0.594. However, for their histological grade 
classification task (predict the histological grade of a cancer given the cancer pathology report) their model achieved a higher average 
F-score of 0.822. This suggests that in addition to the number of training samples the complexity of the classification task and the 
content and length of the textual features may also affect the performance of HAN model. We argue that higher performance for the 
classification of complex chronic wound decisions can be achieved using our HAN with sufficient training data (comments and visual 
features), which will be investigated in future work using this technique with additional training data. 

4.4. Feature importance 

Feature analysis for the best performing classifiers, Random Forest and XGBoost, revealed the most important words for each 
Policy, separated by Decision class. Random Forest and XGBoost demonstrated that across classifiers and policies, visual features had 

Table 5 
Visual Classification Task results (grouped by decision policy).  

Classifier Policy 1 Policy 2 Policy 3 Policy 4 Average 

Baseline 0.548 0.409 0.304 0.517 0.445 
Single Classifiers 
DT 0.647 0.556 0.506 0.659 0.592 
SVM 0.743 0.612 0.584 0.766 0.676 
MLP 0.699 0.622 0.569 0.725 0.654 
Ensemble Classifiers 
DTm 0.652 0.631 0.581 0.714 0.645 
SVMm 0.720 0.626 0.552 0.736 0.659 
DTw 0.603 0.514 0.477 0.656 0.563 
SVMw 0.654 0.578 0.520 0.703 0.614 
Random Forest 0.707 0.660 0.576 0.750 0.673 
XGBoost 0.713 0.619 0.545 0.729 0.652  

Table 6 
Visual and Text Classification Task results (grouped by decision policy).  

Classifier Policy 1 Policy 2 Policy 3 Policy 4 

B NEG PCA B NEG PCA B NEG PCA B NEG PCA 

Baseline 0.548 0.409 0.304 0.517 
Single Classifiers 
DT 0.627 0.606 0.605 0.560 0.576 0.497 0.578 0.574 0.577 0.710 0.719 0.628 
SVM 0.758 0.764 0.752 0.660 0.671 0.634 0.706 0.688 0.683 0.782 0.785 0.770 
MLP 0.761 0.754 0.729 0.628 0.616 0.590 0.644 0.636 0.632 0.735 0.753 0.737 
Ensemble Classifiers 
DTm 0.703 0.712 0.707 0.642 0.646 0.618 0.660 0.687 0.717 0.761 0.772 0.716 
SVMm 0.456 0.780 0.722 0.678 0.674 0.598 0.712 0.712 0.670 0.787 0.781 0.747 
DTw 0.514 0.602 0.597 0.562 0.561 0.486 0.581 0.580 0.558 0.655 0.687 0.635 
SVMw 0.760 0.756 0.724 0.662 0.675 0.601 0.703 0.697 0.675 0.775 0.777 0.740 
Random Forest 0.778 0.781 0.769 0.689 0.717 0.645 0.706 0.706 0.675 0.797 0.802 0.782 
XGBoost 0.743 0.732 0.768 0.671 0.659 0.648 0.705 0.702 0.727 0.805 0.810 0.764 
Deep Learning Classifier (Average across policies = 0.601) 
HAN (SMOTE) 0.646 0.560 0.541 0.657  
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greater importance in determining a decision (Fig. 2). While the total PWAT score was the most important feature, particular textual 
features played a large role, such as “offload” and “clean”. Extrapolating from medical knowledge, the term “offload” can indicate a 
Decision 2 (particularly for a diabetic foot ulcer or a pressure ulcer) and “clean” may indicate a healing wound (i.e., a Decision 1). This 
suggests that while visual features are most important, textual features derived from expert comments are able to improve the accuracy 
of decisions. 

4.5. Error analysis 

We examined the confusion matrices from Policy 4 from our top ensemble models. Both Random Forest and XGBoost had very 
similar confusion matrices regarding decision predictions. The success, as compared to other ensemble methods, can be attributed to 
inherent feature and instance selection. 

Both Random Forest and XGBoost misclassified a wound image with a total PWAT score of 15, with scores of 3 or higher for the four 
sub-scores relating to necrotic and granulation tissue. Despite unknown depth and presence of necrosis, Decision 1 was assigned by 
wound expert and clinical guidelines. This suggests that additional visual features may need to be provided (such as specific wound 
location and specific wound size) as well as other similar cases to learn from. Additionally, having access to wound healing progression 
over time may provide essential information; if wound size decreases significantly compared to a previous wound measurement then it 
indicates that the wound is healing (Snyder et al., 2010). 

4.6. Decision disagreement resolution policy analysis 

Policy 4 produced the best performance (average weighted F-score) across all policies and datasets, followed by Policy 1, Policy 3 
and Policy 2. Additionally, the best performance for each classification task was with Policy 4 (0.766 for the Visual Classification Task 
with a Support Vector Machine classifier, and 0.810 for the Visual and Text Classification Task with an XGBoost classifier). This 
suggests that adding the generation of ground truth decisions using clinical guidelines (Policy 4) mitigated the subjective opinions of 
the wound experts (Policies 1–3). 

5. Discussion 

5.1. Findings 

The Visual Classification Task demonstrated that it is possible to achieve reasonable accuracy (weighted F-score = 0.766) with a 
SVM classifier. Additional visual features, such as specific wound location that is important for wound care decisions, could be added in 
future work to improve the accuracy of classifying wounds solely based on an image. 

Including textual EHR features in addition to visual features generally increased the accuracy of wound decision classifiers. 

Fig. 2. Average feature importance from Random Forest and XGBoost.  
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Classification of wounds with visual and textual features achieved up to 81% accuracy with an XGBoost classifier, about 6% higher 
than the performance achieved with only visual features. Feature importance analysis also revealed that visual and textual features 
were both important. Marking negated terms during preprocessing improved performance. Comparing performance on the three 
experimental datasets which included textual features, the majority (6/8) of best performances (for each policy) were from training on 
the dataset with negated terms marked. 

5.2. Machine learning classification 

Evaluation of all machine learning classifiers across decision policies and datasets demonstrated the following outcomes:  

• SVM had the best overall performance (highest F-score) when using only visual features as input.  
• Ensemble classifiers outperformed single classifiers (based on weighted F-score) when using visual and textual input.  
• XGBoost had the highest accuracy for all combinations of models, experimental datasets and decision policies. 

The HAN did not perform as well as the ensemble classifiers (and single classifiers in some cases), probably due to the complex 
content of medical notes and lack of comments from wound experts for some wound images, as well as the generally small size of the 
dataset. 

5.3. Decision disagreement resolution policy discussion 

Establishing ground truth was an important and challenging step. Policy 4 performed best (weighted F-score) across all classifier 
models and classification tasks. This could be attributed to the addition of labels generated from evidence-based clinical guidelines, 
demonstrating that objective measures from clinical guidelines improves the accuracy of decision-making. In the future, ground truth 
should be generated not only on wound experts’ opinions but also the most current evidence-based clinical guidelines. 

6. Conclusion 

This research demonstrated that actionable wound care decisions could be classified given a combination of visual and text features 
with 81% accuracy. The envisioned smartphone wound assessment system has the potential to be used as a CDSS to aid a registered 
nurse in deciding what treatment a chronic wound requires, thereby standardizing wound care. 
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A. Photographic Wound Assessment Tool 
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Fig. A1 Rubric from the revised Photographic Wound Assessment Tool (PWAT)  
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B. Assumptions about Care Provider Core Medical Competencies 

Table B.1 
Assumptions about Care Provider Core Medical Competencies  

Care Provider Core Medical Competencies 

Registered Nurse Standard wound care (dressing change) 
General lavage (i.e., cleaning of the wound surface and periwound area) 
Application of compression dressing 
Application of vacuum assisted closure (VAC) dressing 
Ability to administer oral antibiotic 
Aid for patient in reducing pressure on wound area (i.e., offloading or moving patient) 

Wound Specialist Debridement 
Surgery (for debridement, amputation, skin graft) 
Infection assessment, diagnosis and design of treatment plan 
Vascular evaluation  

C. Wound Decision Examples  

Table C.1 
Wound Decision Examples (with an associated treatment and reason for classification)  

Decision 1 Example 

Example Wound Type of Treatment /Indicator Reason for Classification 
Continue applying a standard wound 
dressing  

• Clean wound (no necrotic tissue), not too moist or dry  
• Wound edges are blending with granulation tissue  
• Small enough wound size 

Decision 2 Examples 
Example Wound Type of Treatment /Indicator Reason for Classification 

Offloading (foot put in a cast to 
reduce pressure)  

• Etiology: diabetic foot ulcer  
• Wound located over bony prominence 

Compression  • Etiology: venous ulcer 

(continued on next page) 
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D. Wound Exclusion Examples  

Table C.1 (continued ) 

Decision 1 Example 

Change to vacuum assisted closure 
(VAC) or a moist occlusive dressing  

• Clean wound bed  
• Wound bed is dry or needs closure assistance 

Change to a dry dressing  • Moist wound bed with macerated islands of granulation 
tissue  

• Indicates healing with epithelium (new skin) 

Antibiotic  • Clean tissue but looks inflamed surrounding the wound 

Decision 3 Examples 
Example Wound Type of Treatment /Indicator Reason for Classification 

Debridement  • Almost no granulation tissue visible in the wound bed 

(continued on next page) 
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Table C.1 (continued ) 

Decision 1 Example 

Ischemia  • Toe turning black indicates critical limb ischemia 

Wet gangrene  • Presence of wet gangrene indicates immediate 
attention 

Surgery (bone or tendon revision)  • Tendon visible, which requires surgical revision 

Amputation  • Toe looks ischemic and red indicates vascular issues 

Skin graft  • Wound has clean, beefy, red granulation tissue  
• Size of wound is large  
• Complications could ensue later based on wound 

location over Achilles tendon if wound is not properly 
treated   
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Table D.1 
Wound Exclusion Examples  

Example Wound Exclusion Criteria 

Poor lighting conditions (i.e., image was too dark or too light to see the wound clearly) 

Poor camera angle which prevented the full wound being in view 

Detail of wound image was limited due to the distance at which the image was captured (either the 
camera was positioned too close or too far away) 

Wound was covered (e.g., a bandage obstructed view of the wound) 

(continued on next page) 
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E. Hyperparameter optimization process 

SMBO (including Bayesian optimization) is typically viewed as more efficient than a grid search because the next set of hyper-
parameters are chosen based on approximating improvement from the previous set of hyperparameters. A grid search, as the name 
suggests, will experiment with all combinations of hyperparameters even if the search in a certain hyperparameter space is unnec-
essary. SMBO consists of the following components: an objective function (the weighted F-score we want to minimize as validation 
error), domain space (possible range of hyperparameter values), optimization algorithm (also known as the surrogate, or the specific 
method/model used to choose the next hyperparameter values), and the results (results from hyperparameters and the objective 
function scores). The surrogate model is used because the objective function is very expensive to evaluate. We used two versions of 
SMBO, namely the sci-kit optimize package implementation of gp-minimize and gbrt-minimize. These offer two options for the sur-
rogate: Gaussian process (gp-minimize) and gradient boosted regression trees (gbrt-minimize). Both were tested for each classifier, 
comparing the convergence (i.e., how many iterations it took to find an optimal score) and the final objective score to determine which 
was a better fit for this dataset and features. 

We used nested 10-fold cross validation to accomplish this. For the neural network models, MLP and HAN, 10-fold cross-validation 
and 5-fold cross validation was used, respectively with an 80-10-10 train/validation/test split due to the length of time to accomplish 
hyperparameter tuning and cross-validation especially for HAN model. No hyperparameters were chosen based on evaluation on the 
test set (only a validation set). Process:   

1. Perform 10-fold cross validation split (i.e., 90/10 training/test split).  
2. Conduct hyperparameter optimization on the training set by performing another 10-fold cross validation split (use both Gaussian 

process and gradient boosted regression trees) with 50 iterations and 10 random restarts.  
3. Save best configuration of hyperparameters (based on performance on inner loop test set).  
4. Train a classifier on the full training set with the hyperparameters from Step 3. 

F. Classification task evaluation 

We conducted confidence interval analysis between the results from the two classification tasks. We used the weighted F-score from 
the Visual Classification Task (Task 1) and the highest weighted F-score (from one of the three datasets, either B, NEG, or PCA) for the 
Visual and Text Classification Task (Task 2). We constructed a 95% confidence interval (with n = 205, Zn = 1.96) as shown in 
Equations F.1 and F.2 (the subscript indicates the number of the classification task). 

If the confidence interval contains zero, this indicates that the difference in error could be zero, and thus, the models are not 
statistically significantly different. In Table F.1 we present these results with bolded values indicating an interval containing zero. 
Notably, all intervals where models were not statistically significantly different can be found with DT classifiers (either the single 

Table D.1 (continued ) 

Example Wound Exclusion Criteria 

Duplicate images of the same wound captured at approximately the same time   
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classifier or weighted ensemble). This indicates that DT may perform better with the subset of visual features, which is much smaller 
than the sparse text matrix produced from adding textual EHR features. 

d = error2 − error1 (F.1)  

d ± Zn

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
error2(1 − error2)

n
+

error1(1 − error1)

n

√

(F.2)   

Table F.1 
Classification Task evaluation  

Classifier Policy 1 Policy 2 Policy 3 Policy 4 

Single Classifiers 

DT (-0.073, 0.113) (-0.117, 0.075) (-0.168, 0.024) (-0.150, 0.029) 
SVM (-0.591, − 0.424) (-0.376, − 0.190) (-0.382, − 0.198) (-0.632, − 0.470) 
MLP (-0.546, − 0.375) (-0.344, − 0.156) (-0.307, − 0.119) (-0.562, − 0.392) 
Ensemble Classifiers 
DTm (-0.454, − 0.273) (-0.370, − 0.184) (-0.390, − 0.207) (-0.571, − 0.402) 
SVMm (-0.584, − 0.416) (-0.396, − 0.212) (-0.356, − 0.172) (-0.605, − 0.440) 
DTw (-0.300, − 0.110) (-0.173, 0.020) (-0.155, 0.037) (-0.403, − 0.219) 
SVMw (-0.501, − 0.326) (-0.346, − 0.160) (-0.316, − 0131) (-0.565, − 0.395)  
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