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a b s t r a c t

Human Bio-Behavioral Rhythms (HBRs) such as sleep-wake cycles (Circadian Rhythms), and the degree
of regularity of sleep and physical activity have important health ramifications. Ubiquitous devices such
as smartphones can sense HBRs by continuously analyzing data gathered passively by built-in sensors
to discover important clues about the degree of regularity and disruptions in behavioral patterns. As
human behavior is complex and smartphone data is voluminous with many channels (sensor types),
it can be challenging to make meaningful observations, detect unhealthy HBR deviations and most
importantly pin-point the causes of disruptions. Prior work has largely utilized computational methods
such as machine and deep learning approaches, which while accurate, are often not explainable
and present few actionable insights on HBR patterns or causes. To assist analysts in the discovery
and understanding of HBR patterns, disruptions and causes, we propose ARGUS, an interactive visual
analytics framework. As a foundation of ARGUS, we design an intuitive Rhythm Deviation Score
(RDS) that analyzes users’ smartphone sensor data, extracts underlying twenty-four-hour rhythms
and quantifies their degree of irregularity. This score is then visualized using a glyph that makes
it easy to recognize disruptions in the regularity of HBRs. ARGUS also facilitates deeper HBR insights
and understanding of causes by linking multiple visualization panes that are overlaid with objective
sensor information such as geo-locations and phone state (screen locked, charging), and user-provided
or smartphone-inferred ground truth information. This array of visualization overlays in ARGUS enables
analysts to gain a more comprehensive picture of HBRs, behavioral patterns and deviations from
regularity. The design of ARGUS was guided by a goal and task analysis study involving an expert versed
in HBR and smartphone sensing. To demonstrate its utility and generalizability, two different datasets
were explored using ARGUS and our use cases and designs were strongly validated in evaluation
sessions with expert and non-expert users.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The healthcare system in the USA is under-resourced with
atients receiving little care outside of appointments. Patient as-
essments are often infrequent, typically months apart, and often
esult in late diagnoses that worsen their prognoses. Emerging
esearch is exploring the possibility of using sensor-rich smart-
hones that are owned by over 80% of the population1 in the USA,
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to passively detect various illnesses, and gather health behav-
ior and other contextual information. Ailments such as depres-
sion (Wang et al., 2014; Gerych et al., 2019) and influenza (Madan
et al., 2011) can be detected by using sensor data collected from
smartphones and applying machine learning models to them. This
novel paradigm is called smartphone health sensing or smartphone
ailment phenotyping (Onnela and Rauch, 2016) and can be ap-
plied to assess the important health-related habits of smartphone
owners.

Humans are creatures of habit. Human bodies contain many
small ‘‘biological clocks’’ that control various biological processes
and regulate ‘‘Circadian Rhythms’’ (‘‘Circa’’ means about and
‘‘diem’’ means a day) or ‘‘Bio-Behavioral Rhythms’’ (Kreitzman
and Foster, 2011; Abdullah et al., 2017; Roenneberg, 2012;
Matthews et al., 2016). These rhythms typically reflect twenty-
four-hour cycles of human biological processes such as sleep-

wake cycles, hormonal changes and blood pressure changes.
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isruptions in Human Bio-Behavioral Rhythms (HBRs) can have
ignificant medical ramifications such as deteriorating mental
ealth, obesity, and heart disease (Vetter, 2020; Roenneberg et al.,
012). Regularity of sleep and physical activity are also particu-
arly important measures of health and their deviations have been
inked to serious ailments such as psychiatric disorders (Walker
t al., 2020) and are common across different ages and occupa-
ions (Ohayon et al., 2002; Gaultney, 2010). Roenneberg et al.
2012) conducted a large-scale study and found that up to 70%
f the general population suffers from deviations in their sleep
ycles.
Continuous monitoring of HBRs to detect deviations from

ormalcy can inform timely interventions and improve overall
ealth. However, capturing and mining human behavior data
o discover important patterns is challenging, especially in the
eal world. Smartphones are uniquely suited for capturing such
ata because they are ubiquitous and are equipped with multiple
ensors such as accelerometers, gyroscopes, ambient light and
PS that can capture data to provide important clues about a
erson’s behavioral rhythms. For instance, it is a common pattern
or people to not interact with their phones overnight while they
leep. This lack of interaction can be captured by the smartphone
nd provide a useful measure of how much or little sleep peo-
le get (Abdullah et al., 2014). The ability to detect, monitor,
nd mine such patterns can make the smartphone a proxy for
uman behaviors. Smartphone sensing of human behavior has
een used to reliably detect important behavioral changes (Wang
t al., 2018) and monitor subjects’ health and wellness, including
ental health (Rabbi et al., 2011) and academic performance and
tress situations (Wang et al., 2014).
While smartphones can gather very rich human behavior data

uickly, the difficulty of discovering meaningful patterns and
aking sense of such data becomes more difficult as the number
f participants, their duration of participation and the number
f sensor streams analyzed increase. Prior work has largely uti-
ized computational methods such as machine and deep learning
pproaches (Vaizman et al., 2018a,b), which often are not ex-
lainable and present few actionable insights on HBR patterns or
auses. Interactive Visual Analysis (IVA) is a powerful approach
or analysts to make sense of large multivariate data. In this work,
e focus on leveraging IVA to enable human behavior analysts to
iscover and monitor disruptions in HBRs using autonomously-
ollected smartphone behavioral data, with the aim to generate
ctionable insights. We are interested in not only providing a way
o identify HBR disruptions but equally important to explain those
isruptions. We introduce ARGUS, a visual analytics framework
o represent multi-stream, heterogeneous data using intuitive
isual metaphors that enable analysts to make sense of the data
ith ease. ARGUS was designed and implemented for use by a
iverse range of analysts in fields such as psychology, ubiquitous
omputing and data science.
Existing visual analytics frameworks for circadian rhythm are

ffective at detecting deviations in rhythm, but are not interactive
nd lack the ability to generate explainable insights (Geissmann
t al., 2019; Fischer et al., 2016). Existing interactive visual ana-
ytics for human behavior disruptions generally focus on specific
eatures of human behavior (Pu et al., 2011; Senaratne et al.,
017), such as mobility, but are not able to integrate multi-
le channels (sensor types and data streams) of smartphone-
ollected human behavior. In contrast, our approach leverages in-
eractive analysis to provide linked visualization panes that lever-
ge multiple channels to enable behavioral experts to discover
eviations in HBRs as inferred from smartphone sensor data and
xplain them. We develop an intuitive Rhythm Deviation score,
hich then we visualize using a custom glyph which is based

n an established visual metaphor called the z-glyph (Cao et al.,

40
2018). Smartphone gathered data is also visualized in several
linked panes that highlight how often sensor streams and certain
extracted features co-occur. For instance, a locked smartphone
screen combined with sensed low light and quiet conditions could
indicate nights during which the user slept well.

Overall, our contributions are:

1. A novel intuitive HBR ’’Rhythmicity Deviation Score (RDS)’’
computed from autonomously gathered smartphone data
using the Lomb–Scargle periodogram. It captures HBR dis-
ruptions that can be visualized for effective, fast, and reli-
able analysis.

2. The ARGUS IVA platform that visualizes our novel RDS
using a glyph metaphor, while also linking other behav-
ioral panes that contextualize the rhythmicity score. To-
gether, ARGUS captures an explainable picture of users’
HBRs. ARGUS not only visualizes deviations in behavioral
rhythms but also provides analysts with the opportunity
to uncover easily potential explanations of those devia-
tions. Argus integrates IVA support for population-level
HBR meta-analyses, easy identification of significant HBR
disruptions, cross-channel exploration and contextualiza-
tion of individual participant HBRs RDSs, and visualization
of corresponding raw sensor values.

3. An expert-led goal and task analysis to articulate the chal-
lenges faced by analysts in the domain of smartphone
health sensing and behavioral rhythms detection and the
visualization goals and tasks to mitigate them.

4. A comprehensive evaluation of ARGUS using both expert
feedback to determine feasible use cases for HBR disruption
analysis, in addition to non-expert evaluation to deter-
mine the understandability of our visual metaphors and the
overall ease of use of our tool.

5. An insightful walk-through along well-designed use cases
by specialists in behavior studies involving two real-world
datasets illustrates our approach and demonstrates its ef-
fectiveness for discovering, visualizing and explaining HBR
disruptions.

This paper is an extension of a short paper (Mansoor et al.,
2020a) that was presented at Eurovis 2020 (Eurovis, 2020) and
was awarded an Honorable Mention in its track. This article has
evolved and expanded upon our initial submission in several key
ways: We provide clearer and more detailed background the-
oretical information about bio-behavioral rhythms, their health
ramifications and the process for determining our novel rhythm
deviation score. In addition, we provide more details about the
rationale behind our design choices and the metaphors used,
including alternative designs. We also provide a deeper review of
the extant literature on the subject of interactive visual analysis
of smartphone sensed data. Finally, we report the results from an
evaluation with non-experts (in addition to an evaluation with an
expert) to determine the efficacy of our visual metaphors and the
ease of use of ARGUS.

2. Related work

2.1. Capturing human behavior using smartphones

IVA is a powerful approach for making sense of human be-
havior data (see Table 1). Gathering and analyzing human behav-
ior data continuously for long periods is challenging in-the-wild.
Smartphone sensing, wherein data from the smartphone’s sen-
sors are continuously gathered and analyzed to infer its owners’
behaviors, has recently emerged as an inexpensive and scalable
method of human behavioral analysis. Smartphone sensing has

been effectively used in inferring depression levels (Saeb et al.,
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016), social anxiety levels (Boukhechba et al., 2018b; Rashid
t al., 2020), students’ Grade Point Averages (Wang et al., 2014),
nd the smartphone owner’s current context/situation (Vaizman
t al., 2018a). Abdullah et al. (2014, 2017) even successfully used
ime periods during which a person’s smartphone screen was
ocked as a reliable proxy for determining when they were asleep.

.2. Visualizing human behavior patterns

Circadian Rhythm refers to how cyclical/regular a person’s
leep-wake cycle and routine is, which has important health
amifications (Vetter, 2020; Walker et al., 2020). As such, mon-
toring these rhythms and intervening, if necessary, is crucial.
martphones can prove extremely useful in this endeavor as they
re ubiquitous and require low intervention. There has been a lot
f research interest in capturing such behavioral patterns using
omputational models applied to smartphone-sensed data (Yan
t al., 2020). Visualizations of human behavioral data can im-
rove the state-of-the-art in this research area as they are useful
or discovering, contextualizing, and understanding disruptions
n circadian rhythms. Fischer et al. (2016) attempted to visual-
ze ‘‘circadian misalignment’’ in shift workers using data from
rist-worn actimeter sensors combined with their sleep logs.
hey devised an intuitive method called ‘‘Composite Phase Devia-
ion’’ which enabled them to generate and visualize density plots
here the area and shape connote the extent of misalignment
nd variability in user behavior. They introduced the concept of
‘islands’’ and ‘‘pancakes’’ to refer to certain areas of the density
lots to find variability in sleep data. Geissmann et al. (2019) cre-
ted ‘‘Rethomics’’, a framework in the R language to analyze circa-
ian rhythms. Their framework also implemented intuitive data
isualizations to present circadian information about animals.
However, unlike our work, these frameworks do not visualize

nd link multiple smartphone information streams to produce
nteractive analysis that enhances sense making and explainability.

.3. Interactive Visual Analysis (IVA) to detect anomalous human
ehavior

Deviation from normal human behavior may be indicative
f health problems (Vetter, 2020). Data visualizations can be
n effective method of identifying anomalous human behaviors
nd making deviations from normalcy clearer, which in turn
nables timely interventions. Examples include the detection of
al-intents such as spreading unverified rumors (Resnick et al.,
000), committing financial fraud (van den Elzen et al., 2013) or
camming people (Koven et al., 2018). Cao et al. (2015) created
argetVue, an intuitive tool to detect anomalous behaviors on
ocial media and detect bots. They introduced the concept of a
-glyph, which is an intuitive visual metaphor, expanded further
n a subsequent work by Cao et al. (2018) to highlight deviations
rom normal behaviors. These prior IVA works are particularly
elevant for detecting changes in human behavior and behav-
oral rhythms (gathered through smartphones) as they show how
ovel interactive visual solutions enable analysts to quickly gen-
rate insights and find useful patterns in digital human data. Our
ork adds to this field by leveraging IVA for in-the-wild human
ehavior disruption that has direct implications on health. Specif-
cally, we use IVA to find disruptions in natural 24-h behavioral
ycles.

.4. Interactive visual analytics of sensor-based health data

Typical IVA tools for health analysis focus on utilizing data
hat was gathered explicitly for the purpose of health monitoring
uch as Electronic Health Records (EHR) records (Abdullah, 2020;
41
Malik et al., 2015; Plaisant et al., 2003; Meyer et al., 2013) or
health-sensing gadgets like Fitbits (Heng et al., 2018; Liang et al.,
2016), carbon monoxide sensors (Polack Jr et al., 2018) and head-
mounted sensors (Garcia Caballero et al., 2019). Polack et al.
(2017) presented a position article in which they outlined several
opportunities and challenges in using interactive visual analy-
sis to advance the state-of-the-art in passive and opportunistic
health monitoring through wearables such as smartwatches and
smartphones. Our work expands on that by focusing more ex-
plicitly on smartphone-sensed data as smartphones are the most
ubiquitously owned device with sensors. Health sensing using
smartphones can be challenging since they were not designed
explicitly for the task of health monitoring. IVA can bridge this
gap by presenting the data gathered from smartphones to pro-
vide additional contextualization whether in terms of fixing data
quality (Mansoor et al., 2019a,b) or giving the analyst the ability
to utilize their human intuition and apply semantic labels to
anonymized data (Mansoor et al., 2020b). Other works have uti-
lized intuitive metaphors like the calendar metaphor (Gupta et al.,
2017) to present daily activity levels and innovative interaction
techniques like alignable daily timelines between daily repeating
events (Zhang et al., 2018) such as meals for patients with dia-
betes. Such works show the utility of applying IVA to enhance
the analysis of such data which typically relies on reliable data
labeling and clear semantic context, both of which are often not
available for in-the-wild collected data.

2.5. Interactive visual analysis of data gathered from personal digital
devices

The vast proliferation of mobile phones has created many
opportunities to gather rich datasets about human behaviors such
as their mobility patterns and social interactions (Calabrese et al.,
2015; Cuttone, 2017). IVAs can be useful for mining such data,
contextualizing and explaining human behaviors. Pu et al. (2011)
leveraged IVA that combined established visualization techniques
such as parallel coordinates plots with intuitive, novel techniques
such as ‘‘Voronoi-diagram-based’’ data visualizations to analyze
the mobility patterns of three users. Senaratne et al. (2017) use
an IVA approach to analyze spatial and temporal similarities
in human movements using a passively gathered mobile phone
dataset. They employed matrix visualizations of the user move-
ments. These prior works illustrate the usefulness of IVA to ex-
plore and understand human movement (a very important facet
of human life), its variations, patterns and disruptions.

IVA techniques can be further augmented with novel glyphs
and visual metaphors that are useful for representing complex
mobile phone data. Shen and Ma (2008) created MobiVis, an IVA
tool that implemented the ‘‘Behavior Ring’’, a radial metaphor
to represent individual and group behaviors compactly. Their
tool enabled intuitive visual data mining by semantic filtering to
facilitate effective analysis of ‘‘social-spacial-temporal’’ data that
phones gather. This approach illustrates the utility of compact
visual metaphors and IVA to understand complex phone data.

Unlike our method, these methods do not incorporate the
concept of cycles and rhythms and the disruptions thereof. Specif-
ically, we facilitate interpersonal/intergroup analyses in order to
identify users of interest that are then analyzed in greater detail.

3. Goal and task analysis: Interactive visual analytics to mon-
itor bio-behavioral rhythms

Given that this domain contains such diverse and heteroge-
neous datasets from which many features are typically extracted,
Interactive Visual Analytics (IVA) can assist in making sense of
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nteractive Visual Analytics (IVA) works for human behavior analysis.
IVA topic Behavior type Visualized IVA works and aspect visualized IVA techniques

Anomalous behavior

Fraud Dis-information (Resnick et al., 0000) Sankey diagram, timelines
Financial Fraud, scams (van den Elzen
et al., 2013)

Circular chord diagrams, timelines

Social Media and communication Bots and emails (Cao et al., 2015) Interactive glyphs, timelines
Bots (Cao et al., 2018) Interactive glyphs

Suspicious Online Interactions Misuse of admin privileges (Nguyen
et al., 2020, 2018)

Semantic linking

Personal digital device data

Social circle Friend networks, calls, texts (Shen and
Ma, 2008)

Node-link diagrams, timelines

Population level movement patterns Urban mobility patterns (Cuttone,
2017; Senaratne et al., 2017)

Matrix representation and maps

Smartphone-detected mobility (Pu
et al., 2011)

Voronoi diagram, maps

Detected activities Fitbit activity (Gupta et al., 2018a,b) Interactive glyphs, timelines

Health analysis

Electronic health record Patient hospitalizations and
medications (Malik et al., 2015;
Plaisant et al., 2003)

Interactive timelines, discrete event overlay

Renal problems (Abdullah, 2020) Clustering

Smoking Relapse (Polack Jr et al., 2018) Node-link diagrams, interactive timelines

Geriatric care Indoor movement (Payandeh and Chiu,
2019)

Node-linked graphs, circular histograms

Smart home (Le et al., 2014) Stream graph display, circular chord diagrams

Sleep Quality and quantity (Choe et al., 2015) Histograms, emojis
Quality and quantity (Liang et al.,
2016)

Histograms, bubble charts

Medication Medication error (Kakar et al., 2019b) Treemaps, interactive timelines
Drug–drug interactions (Kakar et al.,
2019a)

Force directed layouts
this data and identifying and monitoring people with deviations
in their behavioral patterns.

We conducted goal and task analysis sessions with an expert
n bio-behavioral rhythms who was also experienced in analyz-
ng human behavior gathered using ubiquitous sensing devices.
he expert was particularly interested in rhythms related to
leep behavior and how certain events may disrupt sleep pat-
erns. For instance, the buildup of stress due to uncontrollable,
xternal factors may cause lost sleep, which may have health
amifications.

We discussed how a smartphone may collect data indicative
f disruptions and breakages in patterns. Some of her sugges-
ions included conceptualizing smartphone data as channels of
information, which may provide important clues about a person’s
contextual information. Examples of channels are the state of the
smartphone including screen locked, battery charging, apps being
used and its GPS location. In order to derive how rhythmic a
person is in their daily routines, it may be useful to find rhythms,
disruptions and breaks in these channels.

Given that human behavior is complex and the smartphone
channels used to make behavioral inferences can become over-
whelming, IVA can be useful for making sense of, and correlating
these information channels. Given that a correlation in these
channels may be meaningful, (the expert suggested that correlat-
ing darkness with a lack of sound and screen being locked might
be a useful method of detecting sleep). Such meaningful linkages
and correlations across different channels would be difficult to
show using non-visual statistics. IVA may powerfully augment an
analyst’s ability to make sense of people rhythms by intuitively
overlaying and correlating complex channel data to increase its
interpretability. The expert suggested two broad goals that she
would have as someone analyzing smartphone collected human
behavior data:

• G1: Discover overall levels of behavioral rhythms: and
times during which breaks occur
42
– Synthesizing an overall numerical measure or score to
capture and quantify a person’s bio-behavioral rhythm,
which can then be represented visually to reveal devi-
ations from normalcy.

• G2: Explain and contextualize causative factors: that led to
deviations from normal rhythms across multiple channels:

– The multiple channels of smartphone-gathered data
can provide a multi-faceted view into a person’s be-
haviors. The expert wanted several linked views of
different channels such as a person’s geo-location or
the intensity of their smartphone interactions, which
may explain the reasons for disruptions and breakage
in their patterns. Such multi-view context may also
enable the disambiguation of harmful disruptions in
behavior patterns such as staying up all night (a sign
of depression) versus benign pattern disruptions such
as a person who is traveling for vacation.

We also discussed the specific tasks that the analyst would like
to be able to perform to achieve the goals described above. Given
our collective knowledge of the data in this domain, we devised
the following tasks to achieve the goals described.

• T1, Population-level meta-analysis: Get a quick overview
of the level of rhythmicity of the behavior patterns of all
participants in a study to quickly find the ones with the most
and least rhythms.

• T2, Anomalous HBR identification: Identify participants
with significant disruptions in their behavioral rhythms
quickly.

• T3, Cross-channel HBR exploration: Examine and con-
textualize individual participants’ rhythmicity levels across
multiple ‘‘channels’’. For instance, visualize physical activity
vs geo-location disruptions.
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Fig. 1. The workflow of detecting rhythm deviations and then visualizing them using ARGUS.
t
(

• T4, HBR contextualization: Highlight contextual factors
that might have bearing on rhythm such as day of the week,
or weekday vs weekend.

• T5, Raw sensor value drill-down: Visualizing the values
of sensor readings, which may hold important clues about
what a person did around the time of disruptions in their
HBR. For instance, the amount of time they spent interacting
with their smartphone’s screen.

Extant work has shown that smartphone channels such as
hone state measurements are indicative of bio-behavioral trends
hat have significant implications for a person’s health (Mohr
t al., 2017). Abdullah et al. (2014) were able to predict re-
earch participants’ sleeping habits using data about whether
heir smartphone’s screen was locked. Other works have used
mbient light sensor data from smartphones to detect the occur-
ence of sleep (Min et al., 2014; Chen et al., 2013). These channels’
bility to detect very important bio-behaviors (sleep for instance),
ake their co-occurrence, lack of co-occurrence and disruptions

n those channels very interesting.

. ARGUS

To achieve the goals and tasks identified above, we researched
nd developed ARGUS, an interactive multi-pane visualization
ool. Since the data that ARGUS would be dealing with is highly
ulti-variate and heterogeneous, we adopted the ‘‘Visual An-
lytics Mantra’’ proposed by Keim et al. (2008), which states:
‘Analyze First - Show the Important - Zoom, Filter and Analyze
urther - Details on Demand’’. Here we describe our Rhythm De-
iation Score for quantifying the level of regularity of HBRs, and
isualizations we created and the rationale behind our choices.

.1. Rhythmicity deviation score

We now expound on our novel Rhythmicity Deviation Score,
single score we synthesized to quantify the degree of regu-

arity of a person’s circadian rhythm based on data gathered
rom their smartphone sensors. The visualization panes of ARGUS
hen visualize this score along with contextual information. Our
hythmicity Deviation Score is based on the Lomb–Scargle peri-
dogram (Lomb, 1976; Scargle, 1982), a classic method for finding
eriodicity in irregularly-sampled data.

We define ‘‘Channels’’ as sequences of binary variables that
an represent smartphone-inferred or self-labeled/self-reported
ehavioral indicators such as physical activity (instances of time
here the user was walking, sitting, etc.) or objective sensor
eadings such as whether the smartphone was locked, connected
43
to a wireless network, or charging. In order to quantify changes
in channel behaviors we must first define the occurrence ratio,
he length of time for which the channel was a positive instance
i.e., subject were walking) over a certain time scale.

An example of the Lomb–Scargle periodogram for 1 channel
(Sleeping) is shown in Fig. 3. The peak of the periodogram occurs
at 1 day, indicating that this user is relatively cyclic in their sleep
habits on a 24-h cycle.

In order to use the Lomb–Scargle periodogram to identify
disruptions in user behavior, we apply the periodogram on each
individual channel of user behavior.

As we are interested in investigating the users’ circadian
rhythm, which is a 24-h cycle, we choose 1 day to be the time
scale over which this value is calculated. We define the Occur-
rence Ratio as the proportion of the day for which the channel is
positive. The denominator is the total number of instances which
would include both positive (1s) and negatives (0s). For instance,
this would represent the proportion of time spent in the dark,
or spent performing some reported activity. We can also define
the average occurrence ratio, in order to typify the user’s usual
behavior.
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Fig. 2. ARGUS: A multi-pane visualization framework to discover and explain deviations in bio-behavioral rhythms. A: Eyes of ARGUS. This view provides a quick
verview of the levels and breaks in bio-behavioral rhythms across all participants. B: Magnified Eye of Argus. A user can select an eye to magnify and gain a clearer
ook into the rhythm changes. The lighter color represents weekends and the rest are weekdays. C: Co-occurrence View. Provide an overview of how consistently
channel values co-occur to enable analysts to explain behavior in terms of a lack of co-occurrence of frequently co-occurring channels. D: Duration View. A summary
or how much a channel had positive values throughout the day. E: Explainability View. Visualizing and linking multiple channels to gain a greater understanding
bout the causes of breaks in rhythms.
We can now define the circadian rhythm of a given channel:

This definition is based off of Wang et al.’s definition of circa-
dian rhythm (Wang et al., 2018), though ours differs in that we
use the Lomb–Scargle periodogram rather than the power spectral
density as we deal with unevenly sampled data. While this defi-
nition may seem obtuse, it has an intuitive basis. The circadian
rhythm is simply the integral of the periodogram for a small
region around the frequency associated with 24 h divided by a
similar integral taken over a larger range of values. Intuitively, if
nearly all the power of the periodogram is concentrated at the
24 h mark (that is, their rhythm is nearly perfectly described by
a 24-h cycle), then this value should be close to 1. Otherwise,
this ratio goes to 0 (indicating that the user is not rhythmic on
a 24 h cycle for the given channel). We follow the convention
established by Wang et al. (2018), and set ∆t1 to be 1

2 of an
hour, and ∆t2 to be 12 h. In the Circadian Rhythm definition, D
corresponds to the length of 1 day. The Dj in Average Occurrence
Ratio definition is some particular day with length D, and the D
in the average occurrence ratio definition is the set of all days.

Having defined the circadian rhythm, we now define disrup-
tions in the circadian rhythm.
44
The channel rhythm disruption is simply the change in behavior
of a particular channel (that is, changes in the duration of positive
instances of this channel) weighted by the circadian rhythm of
this channel. The reason why we weight the change in behav-
ior by the circadian rhythm is that we only want to identify
meaningful disruptions in behavior. For instance, assume that the
behavior of the channel Ci differs from the average for a given day.
However, the average behavior is meaningless if the user is not
rhythmic for that channel. By weighing the change in behavior
by the circadian rhythm of that channel, the deviations in non-
rhythmic channels will result in only a small channel disruption
score.

Additionally, we wish to quantify disruptions in user behavior
on a scale larger than single channels. For this reason, we define
channel categories.

For our purpose, we group our channels into 3 categories:
objective sensors, geo-location, and activities. More details about
the channels in each category are given in Table 2.
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Finally, we can now define the rhythm deviation, which is
he metric we use to identify individuals who have experienced
ignificant changes in behavior.

Next, we will discuss our IVA framework for investigating
hythm deviation and channel rhythm deviations.

.2. Eyes of ARGUS

The pane shown in Fig. 1A, contains the Eyes of ARGUS (EA).
very glyph plots a person’s average Rhythm Deviation (RD) score
s a black circle ○ (a circle with a larger circumference repre-

sents more overall rhythm) against the daily RD scores ordered
in a clockwise direction. We average the RDS for every day and
all channels for the selected channel category (selectable by the
analyst) and encode it as the black circle — the higher the overall
RDS, the lower the circle diameter. The positive (outward) devi-
ations in the purple line represent days which adhere closely to
the detected rhythm in the selected channel whereas the negative
(inward) deviations represent rhythm disruptions. The strength of
deviations is encoded by inwards distance from the black circle
i.e. the more the purple line is towards the center, the higher
he level of deviation (T2). Towards the top left of every EA is the
ser id and the number of days of participation. EA shows the
eviations from rhythm, one circle per user, for all the days of
articipation.
This glyph is based off the Z-glyph developed by Cao et al.

2018) to effectively visualize deviations from the norm. Their
nalysis showed significant improvements in discerning devia-
ions when using the z-glyph over traditional line glyphs. This is
articularly applicable for this problem as deviations from normal
hythmicity or punctures in rhythms are exactly what ARGUS
ries to highlight. Fig. 2A gives the analyst a quick overview
f the level of bio-behavioral rhythmicity of users in general
G1,T1) and any interesting users that they might want to explore
urther (T2). The z-glyph family implemented both linear and star
circular or radial) metaphors. We decided to use the radial glyph
ecause the results from a user study by Cao et al. (2018) in
he same work established that the study participants preferred
he radial glyph metaphor over the linear glyph metaphor in
erms of efficiency and user comfort. Both the radial and linear
etaphors had comparable results for accuracy of reading and
oth glyphs outperform the traditional glyphs. We gave prefer-
nce to user comfortability which is important as ARGUS targets
ealth experts who will likely not be experts in working with data
isualizations.
Clicking on any EA will magnify it in the Magnified Eye of AR-

US (MEA) pane (Fig. 2B). The underlying circle has the maximum
ossible circumference (i.e. if a person is perfectly rhythmic).
he circle is divided into sectors with each sector representing
ne day of participation. The days are ordered in a clockwise
irection so that contiguous days are next to each other. ARGUS
an work with non-contiguous days of data collection as well.
his is an important consideration since there are cases where
he study participant may turn off data collection on their phone.

he sectors with the lighter color are weekends, while the

gray ones are weekdays (G2,T4). The user is guided by the
45
Fig. 3. The graph of the Lomb–Scargle periodogram of a particular user’s sleep
data. The x-axis represents the time scale (in days), and the y-axis represents the
value of the Lomb–Scargle periodogram evaluated at frequencies corresponding
to the time scales. We see a peak in the periodogram near 1 day, indicating
that this user is relatively cyclic in their sleep habits on a 24-h bases.

RD score and can select multiple days by clicking on the sectors

(selecting a day changes its color to ) to view them in more
detail in Channel Duration view (Fig. 2D) and the Explainability
View (Fig. 2E). Multiple day views are useful as events from a
preceding day may have had an affect on the current day (G2).

The user can also select the channel category to visualize in
the EA and MEA by clicking on the ‘‘Selected Channel Category’’
bar at the top of Fig. 2A (G2,T3). The mean rhythm score across
the three channel categories is available for visualization. The
specific channels for the 2 datasets are described in Table 2. The
‘‘Sensors’’ and ‘‘Geolocation’’ channels are similar across the two
datasets used in that they are passively sensed by the phone.
The ‘‘Activities’’ channels differ between the two datasets. For
StudentLife (Wang et al., 2014), the activities such as walking
or still are predicted by the phone with an on-device detection
and classification algorithm whereas the activities in the Study1b
dataset (our locally collected dataset), are self-labeled by the
study participants i.e. passively gathered sensor is annotated with
activity labels provided by the user.

4.3. Duration view

The Duration View (DV) (Fig. 2D) shows the overall ‘‘duration’’
of occurrences of a channel for every day of the participant’s data.
Duration means the amount of time during each day that the
channel was ‘‘on’’. For instance, the duration of time a phone was
plugged in or being present in a particular geo-location cluster or
labeling/self-reporting the duration of some activity happening
on a smartphone such as being asleep for a few hours. The
panel containing the Duration View is scrollable and the duration
across days is shown separately for every channel present (across
the different channel categories), as bar plots. Every vertical bar
represents a single day of participation and the height of the
bars represents the overall duration per day for the channel. The
horizontal line for every channel is a visual indicator for the mean
duration. It follows the same coloring scheme as the pie layout
in the MEA. In the example, in Figure 2D, the user’s phone is
locked throughout the day generally more than their phone is
charging. This is meant to aid the analyst in explaining rhythm
disruptions by providing the overall duration of various levels of
channel disruption (G2, T2, T5).
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escription of data channels across the 2 datasets. Among the differences between datasets is that activities are inferred in StudentLife while they are user-provided
n Study1b. Additionally, Study1b contains a richer set of activities.
Dataset Channel Inferences/sensing/self-

reports
Frequency Health rationale for collecting

sensor from literature
Rhythm Detection literature

StudentLife

Activities
(inferred)

Still Gathered for 1 min
between 3 min
intervals

Depression (Madan et al., 2011;
Walker et al., 2020),
Sedentary Behavior (Kerr et al.,
2016)

Huang et al. (2018), Wang
et al. (2018) and Matthews
et al. (2016)

Walking
Running
Unknown

Sensors

Phone locked Gathered whenever
interval >1 h
detected

Fatigue (Mohr et al., 2017)
Sleep cycles (Saeb et al., 2017;
Abdullah et al., 2014, 2017; Wang
et al., 2014; Chen et al., 2013)
Concentration (Mohr et al., 2017;
Dingler et al., 2017)

Huang et al. (2018), Wang
et al. (2018) and Matthews
et al. (2016)

Phone charging
Phone in dark

Conversation Gathered for 1 between
3 min intervals (continue
gathering if detected)

Stress, Depression and Affective
State (Wang et al., 2014)

Geolocation GPS coordinates Every 10 min Depression (Saeb et al., 2016),
Social Anxiety (Boukhechba et al.,
2018a)

Saeb et al. (2016), Canzian
and Musolesi (2015)
Boukhechba et al. (2018a),
Rashid et al. (2020), Xu
et al. (2019)

Study1b

Activities
(labeled)

Phone on table, facing down

Sensor data gathered
for 20 s between
1 min
intervals and labels
applied study
participant

Sedentary Behavior (Kerr et al.,
2016),
Sleep (Ciman and Wac, 2019;
Wang et al., 2014)
Fatigue (Mohr et al., 2017)
Mental disorders like
schizophrenia (Ben-Zeev et al.,
2017; Buck et al., 2019)

Huang et al. (2018), Wang
et al. (2018) and Matthews
et al. (2016)

Stairs — Going Down
Sleeping
Stairs — Going Up
Laying down
Phone in bag
Phone in pocket
Typing
Walking
Phone one table, facing up
Exercising
Phone in hand
Sitting
Running
Bathroom
Jogging
Exercising
Standing

Sensors
Phone locked

Every minute

Sleep cycles (Abdullah et al., 2017,
2014; Chen et al., 2013)
Concentration (Mohr et al., 2017;
Dingler et al., 2017)

Huang et al. (2018), Wang
et al. (2018) and Matthews
et al. (2016)

Charging

WiFi connected Infectious Diseases (Madan et al.,
2011)

Geolocation GPS coordinates Depression (Saeb et al., 2016; Xu
et al., 2019), Social
Anxiety (Boukhechba et al., 2018a)

Saeb et al. (2016) and
Canzian and Musolesi
(2015) (Boukhechba et al.,
2018a; Rashid et al., 2020;
Xu et al., 2019)
4.4. Co-occurrence view

The co-occurrence prevalence between certain channels is
lso interesting for researchers as a break in co-occurrence may
ndicate or explain a break in behavioral rhythm. Clicking on
user’s EA shows the Co-occurrence View (Fig. 2C). This view
as a list of all channels available for the selected user. Clicking
n a channel bar shows in an ordered format (left to right, top
o bottom) the most commonly co-occurring channels bars, that
s channels that were ‘‘on’’ at the same time as the selected
hannel. For example, being in the dark coinciding commonly

ith the phone being charged simultaneously. The gray fill
in the bars is proportional to the frequency of co-occurrence. For
instance, for this person, the phone being locked mostly coincided
i.e. happened at the same time as the person was detected by
their phone as being ‘‘still’’, being in the ‘‘dark’’ and being in
‘‘silence’’. This is meant to let the analyst understand further
the causes of a break in rhythms as the absence of channel co-
occurrence among mostly co-occurring channels in interesting
46
(G2,T5). To link the occurrence of co-occurring channels, hovering
over a commonly co-occurring bar highlights the durations of
the selected channel and the hovered over the channel in the
Explainability view. An example of how this occurs is illustrated
in Fig. 4.

4.5. Explainability view

The Explainability View (EV) (Fig. 2E) aims to provide a finer
day-level view of the collected data to assist analysts in figuring
out potential causes of a change in a subject’s rhythm (G2,T5).
The lines show the variation in the channel data available for the
phone data. The height of the lines represents if the channels’
average channel values per hour. The first plot shows the aver-
age channel values across the entire period of collection. Every
plot after that represents a specific day chosen in the MEA. For
instance on 14th April (Fig. 2E), the phone was charging through
the night into the morning. As this is laid out on a horizontal
timeline against a common scale, changes over hours are easily
noticeable. The colored bars over the lines represent the durations
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Fig. 4. In the co-occurrence View, the user can select a channel in A to see its most commonly co-occurring channel bars (shown in B), ordered from left to right,
top to bottom in terms of frequency of co-occurrence. The vertical gray fill in bars in B is proportional to frequency of co-occurrence with A. Hovering over any
of the bars in B highlights the duration of the channel selected in A across the Explainability View in light blue while the hovered over bar’s channel gets

ighlighted in light yellow . The durations in the Explainability View with a light green overlay are when the 2 channels co-occur.
Fig. 5. Hovering over a day sector brings up a tool-tip that shows the human readable date and any other day related information (if any provided). The analyst
can clearly see a disruption in rhythm and the reduction of sleep duration and quality leading up to a day with two deadlines.
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of time for which they were in the same geographic cluster. Both
the datasets we utilize in our case studies contained geo-locations
of the participants throughout the day (whenever available). We
ran a clustering algorithm called DBSCAN (Ester et al., 1996)
to find geo-clusters for the participants. Behavioral rhythms, in-
cluding patterns of presence at different locations, differ across
people due to several factors such as differences in schedules
and social requirements (Vetter, 2020; Saeb et al., 2016). In ad-
dition, even for data gathering among co-located people such as
students at the same institution or employees at the same work-
place, location presence may vary widely. Therefore we utilized
a within-subjects approach for clustering, meaning every par-
ticipant’s geo-location data was clustered separately from other
participants. The granularity of the clustering was set at 300 m.
The clusters are encoded with colored bars (legend shown at the
top of the EV. Given limited visual real estate we only show the
top 6 clusters in which the participant was present for most of
the time. The legend (Fig. 2E) shows the colors for the lines and
the clusters. The colors were selected using a 10-class qualitative
palette from ColorBrewer (Brewer and Harrower, 2010) to ensure
that they were discernible. The human-understandable categories
for the clusters were gathered by running the cluster coordinates
against the Foursquare API (Foursqaure, 0000).
47
5. Illustrative use cases

To illustrate the usability of ARGUS, we introduce Emma, a
graduate student in psychology who specializes in human behav-
ioral rhythms and their effects on human health, especially for
college students. Emma has access to two different real-world
datasets that she is able to visualize using ARGUS.

5.1. Dataset 1: StudentLife

The first dataset we used for evaluating ARGUS is an open
ource dataset gathered from a smartphone sensing project called
tudentLife (Wang et al., 2014). Smartphone sensor data was
ollected and analyzed to infer various participant behaviors in-
luding their GPA and physical state (e.g. still vs walking). The
udio of scenes the user visited was also analyzed to make in-
erences such as whether the person was in a silent environment
ersus a noisy environment, or conversing. The dataset contains
nformation for 49 students at Dartmouth College in the USA,
ho were enrolled in a specific mobile computing class for a
0-week academic term. This dataset records only significant
urations (greater than or equal to 1 h) when the phone was in
dark environment, charging and the screen was being locked.
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Fig. 6. May 13th and May 14th have disruptions in rhythm and both days have deadlines. Exploring these days further in the Explainability View reveals that the
participant’s dark, conversation, screen locked and phone charging channels are all off along with the fact that they are in a lab from around the beginning of day
on May 13th.
Fig. 7. There are 3 Deadlines on 30th April. In the preceding days, we is much less conversation than average. Such breaks in social activities are highly interesting
for Emma.
The data contains geo-location (whenever available) of the device
throughout the day.

The StudentLife project also collected subject responses to
aily mental health questionnaires with wellness information
uch as their sleep duration (‘‘How many hours did you sleep last
ight?’’), sleep quality (‘‘How would you rate your overall sleep
ast night?’’), and stress levels etc. The answers to such questions
ere given on varying scales, which were provided in the doc-
mentation for the StudentLife (Wang et al., 2014) dataset and
ranscribed in human- understandable form (E.g. ‘‘Very Good’’,
‘Fairly Good’’, ‘‘Fairly Bad’’ for quality of sleep) for interpretable
iewing on ARGUS. Data was gathered from the beginning of a
0-week academic term and the entire collection time period
as approximately 10 weeks. Analysis of this dataset provides a
learer understanding of how student behavior changes over the
ourse of an academic term.
Emma’s visualization of the bio-rhythms of StudentLife stu-

ents using ARGUS :

• Identifying and contextualizing bio-rhythm disruptions caused
by deadlines: Emma is particularly interested in exploring
changes in student behavior around more stressful times
such as project due dates and deadlines (G1). The students
were asked to provide the academic deadlines that occurred
during their the days they participated in the StudentLife
study. Emma takes a look at the eyes to see if there is any
participant that sticks out (T1). She notices that participant
u57 has a large inward spike (T2), indicating a large devia-
tion of their bio-rhythm from normalcy. She clicks on it to
magnify it in the MEA (Fig. 5). When she hovers over the day
sectors for which the RD score was high, she noticed that
the participant had low sleep duration and quality for three
straight days (April 5th, 6th, and 7th) leading up to April 8th,
which had two deadlines (G2, T4). After these two dead-
lines passed on the 8th, their sleep duration and quality,
48
as well as their Rhythm Deviation score all improved. This
leads Emma to believe that the stress caused by imminent
deadlines disrupted the participant’s bio-rhythm (G2). Sim-
ilarly, as these deadlines passed, participants bio-rhythms
returned to normal. Visual overlay of multiple panes human-
understandable data along with objective rhythmicity scores
and objective calculations in ARGUS, made this insight easy
for Emma.

• Explanations of bio-rhythm shifts using the Explainability View
(EV): After observing the effect that deadlines had on stu-
dents’ sleep patterns, Emma wants to see if she can observe
a reduction in the quantity and quality of their sleep during
days when participants did not respond to sleep questions.
While exploring the data for u31, she notices a disruption
in bio-rhythm towards the end of the term (T2). Hovering
over the 2 days during which the bio-rhythm was dis-
rupted revealed that there was a deadline on both days
(Fig. 6A). Emma clicked on the 2 day sectors to view them
in the Explainability View (EV) and the duration average
view. In the duration view, she notices that the partic-
ipant had lower levels of the ‘‘Still’’ state on May 13th
(Fig. 6C). The participant had much lower levels of screen
locked and being in a dark environment in EV (Fig. 6B).
She also noticed that the participant was in a ‘‘Lab’’ in
the very early hours of the morning. The participant was
again recorded as being in the lab for the early hours of
the morning and then being in a ‘‘Residential’’ loca-
tion where they plugged their phone and were in a dark
environment for a significant amount of time. The detailed
and comprehensive system of overlaying various channel
data in ARGUS enabled Emma to pinpoint, contextualize
and understand a potentially concerning disruption in the
students’ bio-rhythm.

• Detecting changes in other sensor channels: Emma is also in-
terested in the social behaviors of students around stressful
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times. She notices u19 who does not have a high overall
rhythm in their data (T2). As she explores their data, she
notices a day with three deadlines. She explores the day and
the days leading up to it in the EV and notices a steep drop in
the amount of conversation this student was having (Fig. 7)
(T4, T5). Emma is interested in discovering changes in social
behavior rhythms caused by academic stress (G2).

• Exploring the relationship between geo-location and
bio-rhythms: Small disruptions in students’ bio-rhythm dur-
ing a term may not be a major cause for concern (Vet-
ter, 2020). Emma wants to investigate how students’ geo-
locations affect the rhythmicity of their bio-scores. She
selects ‘‘Geo-location’’ (T3) in the Rhythm Selector (in the
top pane in Fig. 2A) and notices u46 had a large deviation in
their geo-location rhythm. Based on the color of the under-
lying slides, Emma notices that this large deviation occurred
on the weekend (T4). She clicks on the non-rhythmic days
(Friday, Saturday, and Sunday) and notices in the EV that the
participant had a small geo-location recording showing that
they were at a ‘‘hotel’’ and more geo-location readings
for the 2 weekend days (Fig. 8). This leads Emma to believe
that this was not a cause for major concern as it was an
isolated incident related to traveling. The visual overlay of
these various channels allowed Emma to disambiguate a
potentially concerning rhythm disruption as merely being
an innocuous one.

5.2. Smartphone sensor data gathered locally from our campus —
Study1b

The second dataset we utilized to evaluate ARGUS was gath-
red around our own campus and will be referred to as Study1b.
t contains smartphone sensor data for 103 people. Our approach
as different because we did not constrain ourselves to a term

ike StudentLife and gathered data over a number of time dif-
erent periods. Our participant population was also more di-
erse demographically and included teen-aged undergraduates
o middle-aged campus office workers. We also had a shorter
verage period of participation (two weeks). We used a modified
ersion of the ExtraSensory Android application, developed by
aizman et al. (2018a). The application gathered sensor data for
0 s of every minute. Unlike StudentLife, this app did not suggest
ny inferred activity and just let the user provide activity labels
or themselves in the wild as they lived their lives. Users could
rovide 18 different labels for activities such as ‘‘Walking’’ and
‘Sitting’’, as well as phone location such as ‘‘Phone in Pocket’’
r ‘‘Phone in Hand’’. The participants varied in terms of the
umber of labels they provided. The application collects several
imilar channels such as screen locked, battery charging and
eo-location.
Emma’s visualization of the bio-rhythms of study1b partic-

pants using ARGUS:
Emma visualizes this dataset in ARGUS. As this study was

onducted in the wild, subjects had to continuously label their
martphone-sensed data with ground-truth labels of their actual
ctivity to facilitate supervised machine learning later. Emma be-
ieves that students’ bio-rhythms affected the quality/accuracy of
abels they provided and used ARGUS to explore this hypothesis.

• Investigating the effectiveness of analyzing sensor rhythm val-
ues in the absence of human provided ground truth labels:
She analyzes participant 47450B. She notices quickly in the
Duration View (DV) that the participant has done an incon-
sistent job of providing self-reported labels for their data.
This means that she will have to rely on objective sensor
values to make sense of this data. She clicks on the channel
49
rhythm selector (top pane of Fig. 2A) to select ‘‘Sensors’’ as
the channel category (T3) as these channels do not require
human labeling. She notices a day where the rhythm is off
(Fig. 9). She visualizes it in the EV and notices that the
user was in the ‘‘Frat House’’ cluster (a type of on
campus residence common in universities in the USA). She
notices in the DV that the participant provided no labels for
‘‘Lying down’’ or ‘‘Sleeping’’. She clicks on the ‘‘Lying down’’
bar in the co-occurrence view and notices that the top co-
occurring positive values for ‘‘Lying down’’ are ‘‘Sleeping’’,
‘‘Phone on table’’ and ‘‘battery’’ (Fig. 9B). She hovers over the
co-occurring bars for ‘‘Sleeping’’ and ‘‘Phone on table’’ and
notices these labels were also not provided. She hovers over
the battery and notices the light yellow overlay (Fig. 9C)
for ‘‘battery’’ but no light blue overlay for ‘‘Lying down’’.
She notices that the screen was also locked and that the
rhythm disruption for objective sensor values in this day
was caused by other deviations later on in the day, which
may not be that interesting (T4,G2). Overlaying and link-
ing this multi-faceted data allowed her to dismiss this day
from her concern, which may not have been possible using
traditional statistical analyses.

• Detecting erroneous labels based on unlikely co-occurrence
using ARGUS: Emma is also aware that some people may
have carelessly provided labels (van Berkel et al., 2020)
which would make it difficult for her to accurately de-
termine rhythms and deviations therein. She chooses the
sensors category (T3) for the rhythms and notices a user
1AACA1 who has some bio-rhythm disruptions. She clicks
on the sector for September 8th and she notices in the
EV that the user had their screen unlocked for some time
after midnight. She clicks the ‘‘Sleeping’’ bar in the co-
occurrence view and can see that the most commonly co-
occurring channels are ‘‘Phone on table’’, ‘‘WiFi’’ and ‘‘bat-
tery’’ (Fig. 10). Hovering over ‘‘‘Phone on table’’ shows that
the two channels do not co-occur on this day. Further,
sleeping and phone usage while the screen was unlocked is
unlikely to have occurred. This view leads Emma to believe
that this may have been an instance of mislabeling and there
was in fact a disruption in this person’s bio-rhythm (T4, G2).
Calculating the rhythm score separately for various objective
sensor values enabled this as humans are error prone.

6. Evaluation

Our evaluation of ARGUS was two-fold: First, we invited the
same expert, a professor in psychology to interact with the final
version of ARGUS and give feedback on our use cases and the
feasibility of our approach in contrast to purely autonomous
models. For the second part, we invited 5 graduate students (with
a computer science-related background) to interact with ARGUS
and provide feedback about the understandability and ease of use
of the tool itself.

The expert, who helped lead the goal and task analysis, was
asked to go through the same use cases as Emma. After a brief
tutorial, she was asked to interact with ARGUS and not to con-
strain herself to only the use cases provided. She liked our use
of the Z-glyph, noting that it was easy for her to discern HBR
disruptions, using the EA and the MEA. She appreciated the
ability to juxtapose human provided, valuable information such
as academic schedules, and types of locations that gave her the
ability to discern ‘‘predictable’’ i.e., around academic deadlines vs
‘‘unpredictable’’ breaks that require further contextualization. She
noted how ‘‘everyone has their weird behavior at times, especially
students which is not necessarily concerning overall’’. Presenting

multiple channels of smartphone-sensed data in linked views
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Fig. 8. There is a major disruption in bio-rhythm starting from Apr 26th, which is a Friday. Towards the end of this day, the available geo-location indicates that
this person was at a hotel. The subsequent two days which are Saturday and Sunday, there are longer time periods of geo-location indicating that they are at a
hotel.
Fig. 9. Clicking the ‘‘Lying down’’ bar shows the most frequently co-occurring channels which are ‘‘Phone on table’’, ‘‘Sleeping’’ and ‘‘battery’’. Hovering over the
‘‘battery’’ bar shows the occurrence of that channel but also see no coincidence with ‘‘Lying down’’. However, the screen is locked throughout the highlighted period
indicating a high probability of ‘‘Sleeping’’. Showing co-occurrences like these highlights the issues with such datasets and enables analysts make smarter decisions.
Fig. 10. Study participants may also do a poor job of self-labeling smartphone gathered data. This person usually co-labels ‘‘Phone on table’’ and ‘‘Sleeping’’ but not
or this day. In addition, there is time period after the start of midnight for which the screen was unlocked that is unlikely to co-occur with ‘‘Sleeping’’. IVA makes
hese important aspects of the data human understandable.
elped her understand those breaks. Overall, she deemed our
se cases to be relevant and found the ARGUS interactive visual
nalytics approach useful.
We invited 5 volunteers to interact with ARGUS and pro-

ide feedback. The volunteers were all graduate students, with
ome computational background. They were given a short tutorial
bout the project, datasets and ARGUS. They were then asked
o interact with ARGUS and go through the same use cases that
mma did. At the end of the evaluation session, they were asked
o fill out a questionnaire about the understandability and the
ase of use of ARGUS’ visual metaphors. We were interested in
etting their feedback on the ability to complete the core tasks
hat the expert had summarized for us. Questions 1–5 (11) corre-
pond to assessing the capabilities of ARGUS to achieve Tasks (T)
–5. The questionnaire and results are presented in Figs. 11 and
2.
50
The evaluators gave the highest scores for Questions 1 and 2
which were meant to quantify the ability of a user to discern
and gauge deviations in HBRs, using our implementation of the
Z-glyph (Cao et al., 2018). This replicated findings from Cao et al.
(2018) who also quantified and reported significant ease in the
viewers’ ability to discern deviations from the norm. For Ques-
tion 3, the evaluators generally wanted a clearer explanation of
‘‘channels’’, along with labels in the Duration View (Fig. 2D that
were indicative of units that were being presented. For instance,
minutes vs. hours of being still, minutes vs. hours of being in dark,
etc. which would then enable them to apply their own human in-
tuition to better understand the data. These modifications will be
added to future iterations of ARGUS. The high scores for Questions
4 and 5 show that the evaluators were able to utilize the inter-
active features in ARGUS to gain a clearer human-understandable
view and assign semantic meaning to such objective smartphone
data and human provided reports. Overall, the evaluators found
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Fig. 11. The questionnaire to evaluate ARGUS. We use a standard 7 point Likert scale (Likert, 1932) for the possible responses. Each question was designed to assess
the effectiveness and ease of use of each of our visual metaphors.
Fig. 12. Questionnaire results.
ARGUS intuitive and were generally able to understand the visual
metaphors that we designed.

7. Limitations and future work

While promising, the work we have presented has several
limitations including:

• Limits of person-level monitoring: As the number of partici-
pants increases in size, along with longer durations of time
and more complex symptom labels, person-level monitoring
of smartphone-sensed behavioral rhythms may become un-
feasible. One approach of grouping people together for co-
hort analysis might be to sort people into chronotypes (Roen-
neberg, 2012) which is basically a person’s sleep-wake cycle
and the habit of going to bed and waking up at particular
times each day. In addition, data aggregation along with
longer time scales (for instance weeks instead of days) may
allow analysts to accommodate longer time periods of data
collection.

• Missing human-provided ground truth activity and context la-
bels (as in the case of our Study1b dataset) may also become
an issue (van Berkel et al., 2020) as larger deployments of
51
studies may not be able to depend upon participants to pro-
vide accurate labels. In addition, longer and larger studies
may also be subjected to more stringent privacy require-
ments which may limit the amount and type of information
that is gathered such requiring the anonymization of geo-
coordinates. In such cases, additional visual contextualiza-
tion may be necessary to enable analysts to establish ground
truth from partial labels. We plan will investigate using
existing machine learning-based human behavior models on
objective and anonymized sensor data like accelerometer
and gyroscope data collected to detect and visualize users’
contexts and inferred health patterns.

8. Conclusion

In this paper, we presented ARGUS, a visual analytics frame-
work that allows analysts to not only identify disruptions in
smartphone-gathered Human Bio-behavioral Rhythms (HBRs) but
also to contextualize and explain them. To guide our designs,
we conducted a detailed goal and task analysis with an expert
smartphone-sensed health to understand the use cases that they
would have while analyzing such data. We devised an intu-
itive Rhythm Deviation Score (RDS) that quantified the degree
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f rhythmicity in participants’ bio-rhythm, which was then vi-
ualized using a glyph visual metaphor that enabled easy iden-
ification of disruptions in bio-rhythms. ARGUS provided addi-
ional overlays including multi-sensor channel and geo-location
verlays and multiple linked visualization panes, which facil-
tated contextualization and reasoning about participants’ bio-
hythm scores. ARGUS integrates IVA support for population-level
BR meta-analyses, easy identification of significant HBR disrup-
ions, cross-channel exploration and contextualization of individ-
al participant HBRs RDSs, and visualization of corresponding raw
ensor values.
We provided an extensive walk-through of illustrative use

ases to show how multiple linked panes provided a clearer look
nto the occurrences and causes of disruptions in bio-behavioral
hythms. In addition, results from evaluation sessions with ex-
erts and non-experts show that ARGUS is well-suited for pre-
enting smartphone-sensed bio-behavioral data and can aid ana-
ysts in meaningful analysis.
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