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Smartphone health sensing tools, which analyze passively gathered human
behavior data, can provide clinicians with a longitudinal view of their patients’
ailments in natural settings. In this Visualization Viewpoints article, we postulate
that interactive visual analytics (IVA) can assist data scientists during the
development of such tools by facilitating the discovery and correction of wrong or
missing user-provided ground-truth health annotations. IVA can also assist
clinicians in making sense of their patients’ behaviors by providing additional
contextual and semantic information. We review the current state-of-the-art,
outline unique challenges, and illustrate our viewpoints using our work as well as
those of other researchers. Finally, we articulate open challenges in this exciting
and emerging field of research.

THE CURRENT HEALTHCARE SYSTEM is under-
resourced and schedule-driven with patients
receiving little care outside of appointments.

Consequently, patient assessments are infrequent,
typically months apart, and often result in late diagno-
ses that worsen their prognoses. Emerging research is
exploring the use of sensor-rich smartphones that are
now owned by over 80% of the U.S. population,y to
passively detect various ailments, and continuously
gather valuable health behavior information and cor-
responding contexts. Ailments such as depression5,17

and influenza9 can be detected early by analyzing sen-
sor data collected from smartphones using machine
learning models. This novel paradigm is called smart-
phone health sensing or smartphone ailment pheno-
typing. Early detection can significantly improve
health outcomes.z Passive smartphone phenotyping
provides clinicians with an objective, contextualized

picture of their patients’ lives in the real world. Such
evidence can then be used to support treatment deci-
sions as patient self-reports may be inaccurate due to
recall bias and exaggeration. However, analysis of real
world smartphone-sensed health data is challenging.

In addition to traditional issues such as the highly
multivariate and complex nature of such spatio-tem-
poral data, smartphone-sensed data analysis faces
unique challenges such as the need to disambiguate
noisy ground truth labels of health behaviors and con-
text in natural settings. While passive data gathering
in natural settings yields realistic data, it also means
that users often provide wrong or no labels when they
are busy with their lives. Such labeling issues in turn
lead to weak supervision for machine learning model-
ing. Smartphone health inference and phenotyping
also faces unique challenges as user behaviors indica-
tive of health status are often intertwined with other
unrelated real world activities. Ultimately, the smart-
phone user’s specific situations, contexts, and health
status at any point in time are not always clear. More-
over, multiple ailments can have the same smart-
phone signature or phenotype, leading to confounding
effects. Finally, the degree to which users express
each symptom of the same underlying ailment vary a
lot, making intersubject comparisons challenging.

Prior work on IVA for health related data were
typically on structured data from sources such as
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Electronic Health Records (EHRs) with clear defini-
tions of data fields and coding of health related events
and relevant patient information.6,15 IVA systems for
sensor-based health data have visualized low level
health and wellness variables such as meals, sleep
patterns, and step counts, which were gathered using
health wearable devices such as Fitbits.18 We focus on
IVA systems for making higher level inferences [e.g.,
detecting Traumatic Brain Injury (TBI)] passively from
these low level health variables and symptoms cap-
tured in-the-wild using smartphones (Figure 1).

A prior survey by Polack et al. reviewed IVA methods
to analyze Mobile Health (mHealth) data in general.15

Topics covered included the visual representation of
complex and multivariate temporal data, interactive
cohort selection, and trend mining. Our viewpoints are
more focused on specific IVA support for passive smart-
phone health sensing or phenotyping, which typically
utilize machine learning. We add to this exciting and
emerging field by distilling novel viewpoints, defining key
stakeholders, outlining unique challenges arising from
this new method of monitoring health, and providing
concrete examples to illustrate how IVA methods can
provide additional insights and assist specific stakehold-
ers. Our viewpoints focus on the unique challenges that
stem from the weakly and sometimes incorrectly super-
vised nature of in-the-wild smartphone health sensing
studies and the dynamic, ambiguous, and sometimes
confounding behaviors of the monitored user. Aspects
our viewpoints cover include support for correcting
user-provided annotations, enhancing the understand-
ing, contextualization, and sensemaking of smartphone-
sensed health behaviors, and population-level visualiza-
tions and subject health status comparisons.

SMARTPHONE HEALTH SENSING—
STAKEHOLDERS AND
CHALLENGES

There are generally two groups of stakeholders for
smartphone health sensing or phenotyping: 1) Clinicians
and Health Professionalswho seek to use such systems
to understand their patients’ ailment-related real world
behaviors and symptom trajectories in the real world
better, and identify concerning behaviors early; 2) Data
Scientists who develop computational and machine
learning models to passively detect ailments using
weakly supervised smartphone-sensed data with
noisy labels. Their ultimate goal is to deploy those
models to continuously assess and monitor the
patient and detect ailments early in a comple-
tely unsupervised fashion. These two groups of stake-
holders face different but related challenges, which
we now summarize.

Health Behavior Understanding
Challenges
While inferences about health and contexts made
using machine learning on smartphone data can be
accurate,16,17 they are typically not explainable nor do
they incorporate expert knowledge. For example, while
machine learning can detect sleep duration and qual-
ity accurately using smartphone data,1 it does not cap-
ture a comprehensive picture of potential causes of
sleep disruptions which are important for healthcare
professionals. Such disruptions may be explainable if
additional human understandable information and the
occurrence of comorbidities such as participants’
increased reported stress were visually linked to such

FIGURE 1. During user studies to gather labeled data for developing smartphone health inference models, a user lives in-the-

wild while their smartphone passively gathers data continuously. Periodically, the user provides ground truth labels of their con-

text (situation) and health symptoms on their phone. Users often provide wrong or no labels when they become busy with their

lives, which presents a challenge for supervised machine learning methods. Visual analytics can assist data scientists in correct-

ing wrong or missing labels, cleaning such data before machine learning modeling, and debugging of such models. For clinicians

using the final machine learning-based passive health inference models, IVA provides additional patient context and semantic

information on the health symptoms, and comparisons with other patients, which enhances interpretability and trust of models’

outputs.
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inferences. Clinicians who use smartphone health
sensing systems to monitor their patients as well as
data scientists who develop them both face health
behavior understanding challenges.

Symptom and Health Behavior
Contextualization Challenges
Human life involves multiple, intertwined experiences.
Clinician end users as well as data scientist model
developers typically would like temporal information
regarding their subjects’ situation and trajectory lead-
ing up to a smartphone-sensed assessment, concur-
rently and afterward in order to fully contextualize it.
Health analysts can utilize visual methods to contex-
tualize such information15 to disambiguate confound-
ing scenarios and improve the specificity of
diagnoses. For instance, while reductions in a smart-
phone user’s step count may be caused by depression,
it may also be a short-term reduction caused by
fatigue because the user engaged in strenuous exer-
cise the previous day.

Smartphone Data Labeling Challenges
Data scientists creating smartphone health assess-
ment models using machine learning require
labeled, real world datasets. Typically, an app
installed on users’ smartphones, continuously gath-
ers sensor data as they live their lives. To provide
ground truth labels, users periodically respond to
questions to report their health condition17 symp-
toms, as well as corresponding contexts visited,
activities performed, and social situations experi-
enced.16 Label data collection studies can be disrup-
tive leading to two data science issues: 1) Missing
Labels: participants fail to provide health or context
labels when they are busy or distracted. Participant
response rates to ground truth questions also vary
leading to imbalanced datasets, and 2) Wrong Labels:
participantsmake human errors in providing labels due
to carelessness or recall bias.12

OUR POSTULATIONS ON HOW IVA
CAN ENHANCE SMARTPHONE
HEALTH SENSING

Interactive data visualizations are useful for analyz-
ing multivariate data.7,14 Polack et al.15 previously
highlighted some research directions for IVA for
mHealth data broadly including visualizing its multi-
scale, temporal nature. We build on and extend this
work by summarizing specific Viewpoints on how IVA
can be useful for the different stakeholders of

smartphone health sensing and phenotyping, and
present concrete, illustrative examples.

IVA Support for Data Scientists
V1: Visual support for detecting mislabeled data to
improve the model development. Traditionally, IVA
works for data cleaning in complex domains such as
multimedia, trajectory, and textual data,8 rely on met-
rics such as anomaly scores to alert users of poor
quality data. In-the-wild gathered smartphone-sensed
data is more multicontextual in nature, which makes it
difficult to rely solely on such computational methods
to discover poorly labeled data. IVA is well suited to
present the complex characteristics of smartphone-
sensed health data15 and can leverage multiple visual
metaphors to display automatically derived metrics
and other intuitive cues for anomalous data indicative
of mislabeling effectively. For instance, activities
labeled as occurring simultaneously but which are
unlikely to truly be co-occurring (e.g., standing while
driving) can be visually highlighted to make them easy
to discover.

COntext Mislabel EXplorer (COMEX)11 is an IVA
framework that facilitates the discovery of mislabeled
smartphone sensed data by incorporating visuals that
provide additional context. COMEX analyzes continu-
ously gathered, in-the-wild smartphone data16 with
participant-provided ground truth health and context
labels. COMEX combines the visualization of com-
puted label anomaly scores with visual metaphors
designed to address the multicontextual and continu-
ous nature of real world, labeled smartphone sensor
data. For instance, COMEX highlights unlikely co-
occurrence of activities as a clue for discovering
wrong labels [e.g., “Driving” while “Indoors” Figure 2(A)
and (B)], alerting analysts about potential mislabels.
Unlikely context and activity durations can also pro-
vide another clue for wrong user labels [e.g., “Walking”
for 15 h, Figure 2(C)]. However, users tend to label data
at frequencies that vary over time, providing more
labels when they are free and less when busy. Conse-
quently, detecting the start-end and continuation of
contexts over time can be confusing. COMEX deals
with temporal variations in labeling frequency by pre-
senting visual indicators (“chunks”) of contextual con-
tinuity to make them easy to identify continuing
contexts, compare user-reported context durations,
and identify likely wrong reports. The intuitive use of
simple metaphors to highlight suspicious context co-
occurrence and duration demonstrate that IVA is well-
suited to assist in label correction of smartphone
sensed data.
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V2: Visual support for labeling unlabeled data to
improve the model development. In order to discern
the likely labels of unlabeled data, some IVA methods
integrate contextual visual cues of multivariate data
to enable analysts to assign labels to data more confi-
dently.3 However, such approaches require data with
verifiable ground truth labels, which is not the case in

in-the-wild smartphone data, where the user may not
have provided labels and exact ground truth labels are
not known. In cases where smartphone data are par-
tially labeled, a semisupervised visual paradigm can be
utilized, wherein the probable labels of unlabeled data
are discerned from their visual similarity to labeled
data. To make labeling easy, IVA tools can provide
contextual details from passively sensed data and
highlight similarities between labeled and unlabeled
data. For instance, time periods during which the
smartphone logs show calls have been received as
well as high noise levels can be labeled as “conversa-
tion” based on similarity between features corre-
sponding to this time period and other instances of
data labeled as “conversation.”

Detecting Erroneous Labels using Feature-linking
Insights (DELFI) (see Figure 3)12 is an IVA framework
to highlight unlabeled data, suggest similarities to
labeled data instances in terms of sensor feature val-
ues, and facilitate the assignment of labels with confi-
dence. DELFI utilized a Multi-Feature Similarity Linking
paradigm (inspired by Nguyen et al.14) to visually link
feature-similar data with an overlay of contextual
information, enhancing intuition. Interacting with con-
tinuous “chunks” of labeled or unlabeled data shows
the most feature-similar chunks (based on Euclidean
distance between feature values) for visual linking
[see Figure 3(A)], to discover potentially mislabeled
data and assign labels to unlabeled data. The values
of soft sensors such as the apps running, call, and
SMS logs, and charging status add another layer of

FIGURE 2. COMEX. (A) Showing labels across participants,

ordered by occurrence. Hovering over a circle shows its most

commonly co-occurring labels with the fill being proportional

to co-occurrence. (B) Clicking on a circle shows Chunks of

the selected label with length encoding time. The chunks are

ordered by duration and their opacity encodes their average

anomaly score. Clicking on a chunk shows its details as a his-

togram. The bars above the histogram are the co-occurring

labels for the sessions.

FIGURE 3. DELFI: (A) Habit View : Shows every user’s participation days as Continuous Context Chunks. Hovering over a chunk

hides all others except those that are most feature similar. (B) Chunk Detail View : Shows chunk details like the labeling mecha-

nism (these labels were provided using “History”). The labels making up the context are split as bars and the lines show the

respective anomaly scores or probability values (for unlabeled data) for the comprising data. The two gray bars represent the

charging status (first bar) and app usage status (second bar) for the data sessions. (C) Unlabeled chunk. The labels with the

highest average probability values are shown and the lines in the bars represent probability values for individual sessions.
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explainability. For instance, around the time the phone
was plugged in, the unlabeled chunk in Figure 3(C) had
an increased likelihood of having the label “Table up”
(phone position) and a decline for the label “In pocket.”
Visual overlays increase the analyst’s confidence
by presenting intuitive contextual information to
enhance interpretation. Such intuition is difficult to
generate with nonvisual and purely computational
methods.

V3: Visual clustering of smartphone-sensed data to
improve scalability and steer the development of
machine learning classifiers for health applications.
Groups of data similar in terms of sensor feature val-
ues can be visualized with overlays of analyst-under-
standable semantic information that can help in
building classification models. For instance, grouping
days with poor sleep reports can help identify user
phenotypes and patterns in smartphone-sensed data
features that can be predictive of them. In addition, as
the scale of such studies grows, Population level anal-
ysis becomes necessary for understanding differences
between groups and subpopulations of people. IVA is
well-suited for the task of cohort selection and com-
parison as noted by Polack et al.15 For instance sleep
problems in late shift workers versus early shift work-
ers can be contextualized based on the distribution of
sensor-detected sleep hours, and can help analysts in
assigning chronotypes (groups with similar sleep-
wake cycles)1 (e.g., morning person versus night owl)
to participants. Presenting inferred as well as reported
symptom data with contextual information such as
phone interactions, mobility patterns, and days of the
week can enable analysts to understand the differen-
ces in sensed data between participants and allow for
larger scale, longer term analyses.

Prior work enabled unsupervised analysis of multi-
feature data by presenting results from multiple clus-
tering and dimension reduction algorithms.7 We are
researching and developing INTeractive Observation
of Smartphone Inferred Symptoms (INTOSIS), an IVA
tool which adopted a similar approach for a large-
scale smartphone-sensed dataset in an ongoing study.
The data include sensors such as anonymized geolo-
cation and activity levels along with sparse daily and
weekly symptom labels. A ranked list of clustering
results (based on quality of clustering) was generated
using various algorithms such as K-Means and spec-
tral distancing [see Figure 6(E)] from clustering all
days across users based on sensor features. The clus-
ters are then visualized across a plane using t-distrib-
uted stochastic neighbor embedding (t-SNE), a visual
dimension reduction technique. This enables analysts
to see similarity of features between symptomatic

days and provide explanations for the distributions of
clusters. In addition, this shows the sensor-detected
factors that may be indicative of symptoms. For exam-
ple, a cluster with several days labeled as “Poor sleep”
may be correlated with less time at the participant’s
primary location at night.

The “Feature Averages Heatmap” [see Figure 6(D)]
shows the feature value distribution, ordered by their
importance (ANOVA F-statistic). This shows the defin-
ing characteristics of clusters [e.g., purple cluster
shows days with more than usual time spent at home,
Figure 6(D)] and assign semantic meaning to objective
sensor data. IVA enables easier interpretation of such
unsupervised data in a way that lets analysts make
such important associations.

IVA Support for Health Professionals
V4: Visualizing anomalous, passively sensed unhealthy
patterns of user behaviors. Deviations from routines
can provide health analysts with clues about causes of
symptoms/concerning behaviors. Human Bio behavioral
Rhythms (HBR) such as sleep–wake cycles or circadian
rhythms and their disruptions have health ramifications
and are detectable from smartphone data.1 While such
computational approaches are accurate, they usually
provide little explainability, which is an issue as the
scope of such studies grows and as users provide more
sparse labels with increased study durations. Alternate
nonvisual analysis methods exploit the multiscale tem-
porality of behavioral rhythms derived from smart-
phone-sensed data. IVA techniques can combine
multiple views that facilitate contextualization of multi-
scale temporal data for trend and pattern mining, which
can reveal important, health-relevant information15

such as sleep patterns and stress levels during hectic
times such as weekdays versus more relaxed times
such asweekends, etc.

ARGUS10 is an IVA framework that displays smart-
phone-sensed HBRs and disruptions in them, using
multiple visual concepts to assist analysts in not only
identifying but also explaining HBR disruptions.
ARGUS utilizes a novel Rhythm Deviation Score (RDS)
that quantifies the degree of periodicity of the under-
lying sleep wake-cycle based on sensor data. Each
participant day is assigned an RDS score, which can
then be visualized effectively in conjunction with other
contextual information. ARGUS uses a glyph based on
the Z-glyph,4 a visual metaphor to present disruptions
from the norm. The black circle [see Figure 4(A)] repre-
sents the overall rhythm (larger circle means more
rhythmic) and the dips in the purple line represent
days with disruptions. Bigger dips toward the center
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indicate bigger HBR disruptions. Contextual data
about possible causes of HBR disruptions such as aca-
demic and project deadlines and the places visited are
overlaid on the glyph. Presenting additional contextual
information such as the type of places visited enables
analysts to assign contextual meaning to the sensed
HBR (see Figures 4 and 5).

For instance, a university student’s17 smartphone-
sensed rhythm was disrupted for two days by dead-
lines [see Figure 4(A)]. Exploration shows that they
were in a “Lab” during the early hours of the 2 days
[see Figure 4(B)]. Such detailed visual analysis not only
shows concerning data, but also helps to explain and
contextualize it. Nonvisual methods are limited in their
ability to make use such connections in order to
explain the degree of HBR periodicity.

V5: Visually overlay health markers and symptom
reports to assign semantic values to objective sensor
data for health analysis. Smartphone-sensed data are
often anonymized, with loss of information that can
potentially explain symptoms. For instance, not know-
ing semantic information about a participant’s work-
life routine may make it harder to explain depressive
symptoms since staying longer at work has been
linked with depression.2, 13 Consequently, the ability to
semantically label unlabeled/anonymized smart-
phone-sensed data can be valuable (e.g., labeling the
place where a participant “Stays” most as their
home5). IVA can provide views to show temporal
trends in smartphone-sensed data15 that can enable
semantic labeling of objective sensor data. INTO-SIS
utilizes the same large-scale dataset from the ongoing
study previously mentioned, to visualize day-level
mobility features, based on location data per day [daily
values shown for a user in Figure 6(A) and (C)]. Figure 6
(B) shows a list of the geoclusters (clustered using
DBSCAN), sorted by the duration of participants’
“Stays” in them. For each geocluster, the average 24-h

distribution of presence is shown (flatter lines indicate
uniform presence). Days with positive symptom
responses can be highlighted [see Figure 6(A)] for drill-
down. For instance, the user was in geocluster 0
approximately every day [see Figure 6(B)], with uniform
distribution, suggesting this is a residence. They are in
geocluster 3, the second longest amount of time. This
geocluster is likely their workplace, as they were never
in that geocluster before 12 pm nor on weekends and
also not since mid-March, when social distancing
went into effect in the U.S. due to COVID-19 and work-
places were closed. Also, after mid-March, there was a
decrease in location entropy, which measures how
much the user visited popular locations. The ability to
flexibly define and assign semantic labels can help
analysts assign meaningful/ predictive labels to unla-
beled data and improve inference.

CALL TO ACTION: OPEN
RESEARCH CHALLENGES

While significant progress has been made toward real-
izing the vision of using IVA to enhance smartphone-
sensed health assessment tools, several open chal-
lenges still need to be solved. Asthesize of studies
grow, data scientists and health experts will need to
address challenges associated with increases in both
the duration of studies and the number of users moni-
tored including

› Scalable visualizations: As the scope of in-the-
wild studies broadens and larger groups of
smartphone users are analyzed, visual scalability
must be considered. Specifically, the ability to
visualize larger numbers of users with more data
and over longer periods of time becomes impor-
tant. The wealth of data available on the current
COVID-19 pandemic is a case in point. While this
may be tackled by using longer time windows
(weeks instead of days) for analysis, this could
inversely affect the quality or precision of the
inferred results as ailments may not manifest

FIGURE 4. (A) Larger black circle means more rhythm. The

purple line shows daily disruption in rhythm (closer to center

means higher disruption). Every slice is a day, with the beige sli-

ces being weekends. Days can be selected for analysis in (B).

(B) displays the daily distribution across sensor values (lines)

along with durations spent in geoclusters (colored bars over

lines are place types).

FIGURE 5. Contextualizing a rhythm break by showing

human understandable information. For instance there was a

large break in rhythm detected over a weekend where we see

the participant in a “Hotel.”
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clearly on larger time scales. The visualization
techniques themselves have to be scalable and
interactive. While some of our work has begun to
address this challenge, more research is
required.15 Visual clustering can also be used
along with multiscale visual interactive techni-
ques such as zooming, filtering, and details on
demand which can facilitate drill-downs, high-
level meta views, and inter and intragroup analy-
sis as the number of participants grows.

› Visualizing causative presymptom patterns: To
facilitate retrospective analysis and the discov-
ery of behaviors that caused illness, it may be
useful to support visual lookbacks on data and
highlight users’ behavior patterns that occurred
frequently leading up to specific symptom
reports. These can serve as clues for potential
ailment causes. For instance, it may be informa-
tive to display a pattern of higher than usual
activity levels on days preceding the time when
a subject reported fatigue.

› Visual encodings that align with experts training
and build on domain knowledge. Many users of
IVA tools for smartphone sensing such as psy-
chiatrists, doctors, and nurses will already have
substantial prior domain training that they could
bring to bear in interpreting various visual clues.
Working with experts to develop visual encod-
ings that build on their domain knowledge is
important. For instance, psychologists and
health experts are trained that a patient’s behav-
ior differs on weekdays versus weekends. In our
work with them, they liked encodings of user

behaviors on weekdays versus weekends along
with specific smartphone sensed patterns such
as mobility or app usage during day versus night.
Such visuals will enable the experts to apply
their domain expertise to the analysis task.
Therefore, any data visualizations for smart-
phone data should explicitly encode contextual
information accepted by the health domain.

› Multifacet aggregation of contextual variables.
A smartphone user’s context has multiple fac-
ets including their activity, app being used and
the type of place they are at. Displaying these
disparate bits of information as separate visual
streams across long periods of time can quickly
become overwhelming. Future work may con-
sider multicontext visual metaphors that repre-
sent analyst-specified aggregations of various
sensor channels or those accepted by the
health domain in a human-understandable
fashion. For instance, aggregating low user
activity, and environmental light and sounds
levels as well as information that the user
stayed at the same geolocation at nights to be
visually displayed as “sleeping at night.” Once
labeled, subsequently collected data can then
be automatically labeled with the “sleeping at
night” label as appropriate.

› User-friendly visual metaphors for variable visu-
alization literacy among health experts and
general public. Smartphone-sensed health
detection is a multidisciplinary topic, including
researchers with varying levels of visualization,
computer, and data science literacy. Future

FIGURE 6. INTOSIS: Interacting with a geocluster distribution (B) shows the days where the user was in that cluster for some

time with a black stroke. Flatter lines mean even presence for all hours of the day. Specifying a symptom (A) shows days with

positive instances with a red stroke. Based on sensor features, data were analyzed using multiple clustering and dimension

reduction techniques (E) to project each day (circle ¼ day) of data across all participants on a 2-D plane. The clustering results

are ordered by quality. Average feature value distribution across clusters is shown as a heatmap. Red and blue represent high

and low values, respectively (D).
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work can develop universally comprehensible
visual metaphors to lower the learning curve for
researchers across the spectrum of expertise in
the health domain, who use IVA frameworks.
Additionally, smartphone-sensed studies may
also benefit from deploying on-device, user-
friendly visualizations, and gamification strate-
gies to increase participant compliance such as
encouraging accurate and frequent labeling.
Visualizing smartphone-sensed health data on
a personal level may also mitigate the privacy
issues that are inherent in most smartphone
data gathering projects by giving participants
access to their own data. Likewise, health rec-
ommendations generated by automated mod-
els can be provided to the user without analyst
intervention.

CONCLUSION
Smartphones-sensed human behavior and health
data are rapidly increasing in both quantity and com-
plexity. Smartphone health sensing and phenotyping
analyses try to utilize objective data to passively
assess the health of the smartphone user and derive
meaningful insights. However, labeling issues and the
complex nature of smartphone-sensed, real world
data present challenges to analysts who utilize pre-
dominately computational approaches. Interactive
data visualizations are a viable alternative that can
assist health professionals in such phenotyping anal-
ysis and improve the understanding and contextuali-
zation of health behaviors. IVA can also provide data
scientists with valuable tools for mitigating data
labeling issues and debugging machine learning
health inference models during model development.
In this visualization viewpoints article, we posited
that interactive data visualization is an exciting
approach to empower health scientists to discover
smartphone-sensed human behaviors and symptoms
that are predictive of health ailments and presented
illustrative examples.
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