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Abstract—Diabetic foot ulcers represent a significant health is-
sue. Currently, clinicians and nurses mainly base their wound as-
sessment on visual examination of wound size and healing status,
while the patients themselves seldom have an opportunity to play
an active role. Hence, a more quantitative and cost-effective exami-
nation method that enables the patients and their caregivers to take
a more active role in daily wound care potentially can accelerate
wound healing, save travel cost and reduce healthcare expenses.
Considering the prevalence of smartphones with a high-resolution
digital camera, assessing wounds by analyzing images of chronic
foot ulcers is an attractive option. In this paper, we propose a novel
wound image analysis system implemented solely on the Android
smartphone. The wound image is captured by the camera on the
smartphone with the assistance of an image capture box. After
that, the smartphone performs wound segmentation by applying
the accelerated mean-shift algorithm. Specifically, the outline of the
foot is determined based on skin color, and the wound boundary
is found using a simple connected region detection method. Within
the wound boundary, the healing status is next assessed based on
red–yellow–black color evaluation model. Moreover, the healing
status is quantitatively assessed, based on trend analysis of time
records for a given patient. Experimental results on wound im-
ages collected in UMASS—Memorial Health Center Wound Clinic
(Worcester, MA) following an Institutional Review Board approved
protocol show that our system can be efficiently used to analyze the
wound healing status with promising accuracy.

Index Terms—Android-based smartphone, mean shift, patients
with diabetes, wound analysis.

I. INTRODUCTION

FOR individuals with type 2 diabetes, foot ulcers constitute
a significant health issue affecting 5–6 million individuals

in the US [1], [2]. Foot ulcers are painful, susceptible to in-
fection and very slow to heal [3], [4]. According to published
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statistics, diabetes-related wounds are the primary cause of non-
traumatic lower limb amputations with approximately 71 000
such amputations in the US in 2004 [5]. Moreover, the cost of
treating diabetic foot ulcers is estimated at $15 000 per year
per individual. Overall diabetes healthcare cost was estimated
at $245 billion in 2012 and is expected to increase in the coming
years [5].

There are several problems with current practices for treat-
ing diabetic foot ulcers. First, patients must go to their wound
clinic on a regular basis to have their wounds checked by their
clinicians. This need for frequent clinical evaluation is not only
inconvenient and time consuming for patients and clinicians,
but also represents a significant health care cost because patients
may require special transportation, e.g., ambulances. Second, a
clinician’s wound assessment process is based on visual exam-
ination. He/she describes the wound by its physical dimensions
and the color of its tissues, providing important indications of
the wound type and the stage of healing [6]. Because the visual
assessment does not produce objective measurements and quan-
tifiable parameters of the healing status [7], tracking a wound’s
healing process across consecutive visits is a difficult task for
both clinicians and patients.

Technology employing image analysis techniques is a poten-
tial solution to both these problems. Several attempts have been
made to use image processing techniques for such tasks, includ-
ing the measurement of area, or alternatively using a volume
instrument system (MAVIS) [8] or a medical digital photogram-
metric system (MEDPHOS) [9]. These approaches suffer from
several drawbacks including high cost, complexity, and lack of
tissue classification [9].

To better determine the wound boundary and classify wound
tissues, researchers have applied image segmentation and super-
vised machine learning algorithm for wound analysis. A French
research group proposed a method of using a support vector
machine (SVM)-based wound classification method [10], [11].
The same idea has also been employed in [12] for the detection
of melanoma at a curable stage. Although the SVM classifier
method led to good results on typical wound images [10], it is
not feasible to implement the training process and the feature
extraction on current smartphones due to its computational de-
mands. Furthermore, the supervised learning algorithm requires
a large number of training image samples and experienced clin-
ical input, which is difficult and costly.

Our solution provides image analysis algorithms that run on
a smartphone, and thus provide a low cost and easy-to-use de-
vice for self-management of foot ulcers for patients with type 2
diabetes. Our solution engages patients as active participants in
their own care, meeting the recommendation of the Committee
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on Quality of Health Care in America to provide more infor-
mation technology solutions [13]. The widely used commodity
smartphone containing a high-resolution camera is a viable can-
didate for image capture and image processing provided that the
processing algorithms are both accurate and well suited for the
available hardware and computational resources. To convert an
ordinary smartphone into a practical device for self-management
of diabetic wounds, we need to address two tasks: 1) develop
a simple method for patients to capture an image of their foot
ulcers; and 2) design a highly efficient and accurate algorithm
for real-time wound analysis that is able to operate within the
computational constraints of the smartphone.

Our solution for task 1) was specifically designed to aid pa-
tients with type 2 diabetes in photographing ulcers occurring
on the sole of their feet. This is particularly challenging due
to mobility limitations, common for individuals with advanced
diabetes. To this end, we designed and built an image capture
box with an optical system containing a dual set of front sur-
face mirrors, integrated LED lighting and a comfortable, slanted
surface for the patients to place their foot. The design ensures
consistent illumination and a fixed optical path length between
the sole of the foot and the camera, so that pictures captured at
different times would be taken from the same camera angles and
under the same lighting conditions. Task 2) was implemented
by utilizing an accurate, yet computationally efficient algorithm,
i.e., the mean-shift algorithm, for wound boundary determina-
tion, followed by color segmentation within the wound area for
assessing healing status.

In our previous work [14], the wound boundary determina-
tion was done with a particular implementation of the level set
algorithm, specifically the distance regularized level set evolu-
tion method [15]. The principal disadvantage of the level set
algorithm is that the iteration of global level set function is too
computationally intensive to be implemented on smartphones,
even with the narrow band confined implementation based on
GPUs [15]. In addition, the level set evolution completely de-
pends on the initial curve which has to be predelineated either
manually or by a well-designed algorithm. Finally, false edges
may interfere with the evolution when the skin color is not
uniform enough and when missing boundaries, as frequently
occurring in medical images, results in evolution leakage (the
level set evolution does not stop properly on the actual wound
boundary). Hence, a better method was required to solve these
problems.

To address these problems, we replaced the level set algo-
rithms with the efficient mean-shift segmentation algorithm
[16]. While it addresses the previous problems, it also creates ad-
ditional challenges, such as oversegmentation, which we solved
using the region adjacency graph (RAG)-based region merge
algorithm [17]. In this paper, we present the entire process of
recording and analyzing a wound image, using algorithms that
are executable on a smartphone, and provide evidence of the ef-
ficiency and accuracy of these algorithms for analyzing diabetic
foot ulcers.

This paper is organized as follows: Section II-A provides an
overview of the structure of the wound image analysis soft-
ware system. Section II-B briefly introduces the mean-shift

algorithm used in our system and related region merge methods.
Section II-C introduces the wound analysis method based on
the image segmentation results including foot outline detection,
wound boundary determination, color segmentation within the
wound and healing status evaluation. In Section III, the GPU op-
timization method of the mean-shift segmentation algorithm is
discussed. Section IV presents the image capture box designed
for patients with diabetic foot ulcers to easily use the smartphone
to take an image of the bottom of their foot. Experimental results
are presented and analyzed in Section V. Finally, Section VI
provides an overall assessment of the wound image analysis
system. A preliminary version of this paper has been reported
in [18].

II. WOUND ANALYSIS METHOD

A. Wound Image Analysis System Overview

Our quantitative wound assessment system consists of several
functional modules including wound image capture, wound im-
age storage, wound image preprocessing, wound boundary de-
termination, wound analysis by color segmentation and wound
trend analysis based on a time sequence of wound images for a
given patient. All these processing steps are carried out solely by
the computational resources of the smartphone. The functional
diagram of our quantitative wound assessment system is shown
as in Fig. 1 and explained later. Note that the words highlighted
in italics in the text correspond to specific blocks in figures
with block diagrams. While the image capture is the first step
in the flowchart, the image capture box is not one of the image
processing steps and is therefore presented later in Section IV.

A Nexus 4 smartphone was chosen due to its excellent
CPU + GPU performance and high-resolution camera. Al-
though there are likely performance variations across the cam-
eras of modern smartphones, such a study was considered
beyond the scope of this paper. After the wound image is cap-
tured, the JPEG file path of this image is added into a wound
image database. This compressed image file, which cannot be
processed directly with our main image processing algorithms,
therefore needs to be decompressed into a 24-bit bitmap file
based on the standard RGB color model. In our system, we use
the built-in APIs of the Android smartphone platform to ac-
complish the JPEG compression and decompression task. The
“image quality” parameter was used to control the JPEG com-
pression rate. Setting “image quality” to 80 was shown empir-
ically to provide the best balance between quality and storage
space. For an efficient implementation on the smartphone alone,
no method was used to further remove the artifacts introduced
by JPEG lossy compression.

In the Image preprocessing step, we first downsample the
high-resolution bitmap image to speed up the subsequent image
analysis and to eliminate excessive details that may compli-
cate wound image segmentation. In our case, we downsample
the original image (pixel dimensions 3264 × 2448) by a factor 4
in both the horizontal and vertical directions to pixel dimensions
of 816 × 612, which has proven to provide a good balance
between the wound resolution and the processing efficiency.
In practice, we use the standard API for image resize on the
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Fig. 1. Wound image analysis system software system.

Android smartphone platform to ensure high efficiency. Second,
we smooth the images to remove noise (assumed mainly to be
Gaussian noise produced by the image acquisition process [19])
by using the Gaussian blur method whose standard deviation
σ = 0.5 was empirically judged to be optimal based on multiple
experiments.

To determine the boundary of the wound area, we first deter-
mine an outline of the foot within the image. Hence the initial
Image segmentation operation is to divide the original image
into pixel groups with homogeneous color values. Specifically,
the Foot outline detection is performed by finding the largest
connected component in the segmented image under the con-
dition that the color of this component is similar enough to a
preset standard skin color. Based on the standard color checkers
provided in [20], both the light and dark skin color thresholds in
CIE LAB space are incorporated into the system, which means
that our algorithm is expected to work for most skin colors. Af-
terwards, we carry out a Wound boundary determination based
on the foot outline detection result. If the foot detection result
is regarded as a binary image with the foot area marked as
“white” and rest part marked as “black,” it is easy to locate the
wound boundary within the foot region boundary by detecting

the largest connected “black” component within the “white”
part. If the wound is located at the foot region boundary, then
the foot boundary is not closed, and hence the problem becomes
more complicated, i.e., we might need to first form a closed
boundary.

When the wound boundary has been successfully determined
and the wound area calculated, we next evaluate the healing state
of the wound by performing Color segmentation, with the goal
of categorizing each pixel in the wound boundary into certain
classes labeled as granulation, slough and necrosis [21], [24].
The classical self-organized clustering method called K-mean
with high computational efficiency is used [22]. After the color
segmentation, a feature vector including the wound area size
and dimensions for different types of wound tissues is formed
to describe the wound quantitatively. This feature vector, along
with both the original and analyzed images, is saved in the result
database.

The Wound healing trend analysis is performed on a time
sequence of images belonging to a given patient to monitor the
wound healing status. The current trend is obtained by compar-
ing the wound feature vectors between the current wound record
and the one that is just one standard time interval earlier (typ-
ically one or two weeks). Alternatively, a longer term healing
trend is obtained by comparing the feature vectors between the
current wound and the base record which is the earliest record
for this patient.

B. Mean-Shift-Based Segmentation Algorithm

We chose the mean-shift algorithm, proposed in [16], over
other segmentation methods, such as level set and graph cut-
based algorithms, for several reasons. First, the mean-shift al-
gorithm takes into consideration the spatial continuity inside
the image by expanding the original 3-D color range space to
5-D space, including two spatial components, since direct clas-
sification on the pixels proved to be inefficient [16]. Second,
a number of acceleration algorithms are available [17], [23].
Third, for both mean-shift filtering and region merge methods,
the quality of the segmentation is easily controlled by the spa-
tial and color range resolution parameters [16], [17]. Hence, the
segmentation algorithm can be adjusted to accommodate differ-
ent degrees of skin color smoothness by changing the resolution
parameters. Finally, the mean-shift filtering algorithm is suit-
able for parallel implementation since the basic processing unit
is the pixel. In this case, the high computational efficiency of
GPUs can be exploited.

The mean-shift algorithm belongs to the density estimation-
based nonparametric clustering methods, in which the feature
space can be considered as the empirical probability density
function of the represented parameter. This type of algorithms
adequately analyzes the image feature space (color space, spatial
space or the combination of the two spaces) to cluster and can
provide a reliable solution for many vision tasks [16]. In general,
the mean-shift algorithm models the feature vectors associated
with each pixel (e.g., color and position in the image grid) as
samples from an unknown probability density function f(x) and
then finds clusters in this distribution. The center for each cluster
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is called the mode [25]. Given n data points xi , i = 1, . . . , n
in the d-dimensional space Rd , the multivariate kernel density
estimator is shown as follows [16]:
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where h is a bandwidth parameter satisfying h > 0 and ck,d is a
normalization constant [16]. The function k(x) is the profile of
the kernel defined only for x ≥ 0 and || · || represents the vector
norm. In applying the mean-shift algorithm, we use a variant of
what is known in the optimization literature as multiple restart
gradient descent. Starting at some guess at a local maximum
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where g(r) = −k′(r) and n is the number of neighbors taken
into account in the five dimension sample domain. In our case,
we use the Epanechinikov kernel [26], which makes the deriva-
tive of this kernel a unit sphere. Based on [16], we use the
combined kernel function shown in (5) where hs and hr are dif-
ferent bandwidth values for spatial domain and range domain,
respectively. In [16], the two bandwidth values are referred to
as spatial and range resolutions. The vector m(x) defined in
(3) is called the mean-shift vector [16], since it is the differ-
ence between the current value x and the weighted mean of the
neighbors xi around x. In the mean-shift procedure, the current
estimate of the mode yk at iteration k is replaced by its locally
weighted mean as shown next in (4) [16]:
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This iterative update of the local maxima estimation will be
continued until the convergence condition is met. In our case,
the convergence condition is specified as the Euclidean length
of the mean-shift vector that is smaller than a preset threshold.
The threshold value for the mean-shift iteration is the same
for the task of locating the foot in the full image and for locating
the wound within the foot boundary.

After the filtering (also referred to as the mode seeking) pro-
cedure above, the image is usually oversegmented, which means
that there are more regions in the segmentation result than nec-
essary for wound boundary determination [27]. To solve this
problem, we have to merge the oversegmented image into a
smaller number of regions which are more object-representative

Fig. 2. Mean-shift-based image segmentation sample result. (a) Original im-
age. (b) Mean-shift-filtered image. (c) Region fused image. Note that we ar-
tificially increased the brightness and contrast of the images in this figure to
highlight the oversegmentation in (b) and to better observe the region fusion
result in (c).

based on some rules. In the fusion step, extensive use was made
of RAGs [17], [28]. The initial RAG was built from the ini-
tial oversegmented image, the modes being the vertices of the
graph and the edges were defined based on 4-connectivity on
the lattice. The fusion was performed as a transitive closure
operation [29] on the graph, under the condition that the color
difference between two adjacent nodes should not exceed hf ,
which is regarded as the region fusion resolution. The mean-
shift filtering and region fusion results of a sample foot wound
image [see Fig. 2(a)] are shown in Fig. 2(b) and (c), respec-
tively. We can see that the oversegmentation problem in (b) is
effectively solved by region fusion procedure. From the region
fusion result in (c), the foot boundary is readily determined by a
largest connected component detection algorithm, which will be
introduced in the next Section. A C++ based implementation
method of the mean-shift algorithm can be found in [17].

C. Wound Boundary Determination and Analysis Algorithms

Because the mean-shift algorithm only manages to segment
the original image into homogeneous regions with similar color
features, an object recognition method is needed to interpret
the segmentation result into a meaningful wound boundary de-
termination that can be easily understood by the users of the
wound analysis system. As noted in [30], a standard recognition
method relies on known model information to develop a hypoth-
esis, based on which a decision is made whether a region should
be regarded as a candidate object, i.e., a wound. A verification
step is also needed for further confirmation. Because our wound
determination algorithm is designed for real time implementa-
tion on the smartphones with limited computational resources,
we simplify the object recognition process while ensuring that
recognition accuracy is acceptable.
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Fig. 3. Largest connected component detection-based wound boundary deter-
mination method flowchart.

Our wound boundary determination method is based on three
assumptions. First, the foot image contains little irrelevant back-
ground information. In reality, it is not a critical problem as we
assume that the patients and/or caregivers will observe the foot
image with the wound on the smartphone screen before the
image is captured to ensure that the wound is clearly visible.
Second, we assume that the healthy skin on the sole of the foot
is a nearly uniform color feature. Finally, we assume that the
foot ulcer is not located at the edge of the foot outline. These
are reasonable assumptions for our initial system development
and appear consistent with observations made initially from a
small sampling of foot images. In the future, we plan to explore
ways to relax these assumptions.

Based on these assumptions, the proposed wound boundary
determination method is illustrated as in Fig. 3, and explained
next.

The Largest connected component detection is first performed
on the segmented image, using the fast largest connected compo-
nent detection method introduced in [31] including two passes.

Fig. 4. Wound part detection algorithm flowchart.

In foot Color thresholding, the color feature extracted in the
mean-shift segmentation algorithm of this component is com-
pared with an empirical skin color feature by calculating the
Euclidean distance between the color vector for the current
component and the standard skin color vector from the Macbeth
color checker [20]. If the distance is smaller than a prespecified
and empirically determined threshold value, we claim that the
foot area has been located. Otherwise, we iteratively repeat the
largest component detection algorithm on the remaining part of
the image while excluding the previously detected components
until the color threshold condition is satisfied.

After the foot area is located, we generate a binary image
with pixels that are part of the foot labeled “1” (white) and the
rest part of the image labeled “0” (black). The result of the foot
area determination executed on the region fusion image shown
in Fig. 2(c) is presented in Fig. 5(a). To determine the actual
wound boundary, the system locates the black part labeled as “0”
within the white foot area (Hollow region detection in the foot
area). Here, we use the simple line-scanning-based algorithm
illustrated in Fig. 4 and explained it next.

In this wound boundary determination algorithm, each row
in the binary image matrix is regarded as the basic scanning
unit. In each row, the part labeled as “0” in the detected foot
region is regarded as the wound part. After every row is scanned,
the wound boundary is determined accordingly. Because some
small outlier regions may also be generated due to the local
color variation of the skin, a Small region filtering procedure is
needed to identify only the largest black region as the wound.
A sample of the wound boundary determination result is shown
in Fig. 5(b).
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Fig. 5. Wound boundary determination and analysis result. (a) Foot boundary
detection result. (b) Wound boundary determination result. (c) Color segmenta-
tion result within the wound boundary.

After the best estimate of the wound boundary is obtained,
we analyze the wound area within the boundary using a wound
description model. Many methods for assessing and classifying
open wounds require advanced clinical expertise and experi-
ence, and specialized criteria have been developed for diabetic
foot ulcers [21], [32].

The RYB (red–yellow–black) wound classification model,
proposed in 1988 by Arnqvist, Hellgren and Vincent, is a con-
sistent, simple assessment model to evaluate wounds [21]. It
classifies wound tissues within a wound as red, yellow, black or
mixed tissues, which represent the different phases on the con-
tinuum of the wound healing process. Specifically, red tissues
are viewed as the inflammatory (reaction) phase, proliferation
(regeneration), or maturation (remodeling) phase; yellow tissues
imply infection or tissue containing slough that are not ready
to heal; and black tissues indicate necrotic tissue state, which
is not ready to heal either [21], [32]. Based on the RYB wound
evaluation model, our wound analysis task is to classify all the
pixels within the wound boundary into the RYB color categories
and cluster them. Therefore, classical clustering methods can be
applied to solve this task.

For our wound image analysis, a fast clustering algorithm
called K-mean is applied [22]. K-mean is a simple unsuper-
vised learning algorithm that solves the well-known clustering
problem. A sample of the color-based wound analysis result is
shown in Fig. 5(c). The results presented in Section V demon-
strate the effectiveness of the K-mean algorithm for our task.

III. GPU-BASED OPTIMIZATION

Because the CPUs on smartphones are not nearly as pow-
erful as those on PCs or laptops, an optimized parallel imple-
mentation based on GPUs is critical for the most computation-
ally demanding module in the algorithm structure. For current
Android-based smartphones, such as Nexus 4 from Google, the
GPUs (Adreno 320) have high computational capabilities (up

Fig. 6. Implementation flow of the mean-shift algorithm on both CPUs and
GPUs.

to 51.2 G Floating Point Operation per Second) [33]. As the
experimental results in Section V shows, the hybrid implemen-
tation on both CPUs and GPUs can significantly improve the
time efficiency for algorithms, which are suitable for parallel
implementation.

Since our wound analysis is implemented on Android smart-
phones, we take advantage of the Android APIs for GPU imple-
mentations. In our case, we use the Renderscript, which offers
a high performance computation API at the native level written
in C (C99 standard) [34] and gives the smartphone apps the
ability to run operations with automatic parallelization across
all available processor cores. It also supports different types of
processors such as the CPU, GPU or DSP. In addition, a pro-
gram may access all of these features without having to write
code to support different architectures or a different number of
processing cores [35].

On the Nexus 4 Android smartphone, we implement the
mean-shift-based segmentation algorithm both on the Adreno
320 GPU and Quad-core Krait CPU using Renderscript. The
algorithm implementation flow is shown as in Fig. 6 and is ex-
plained later. Our implementation scheme is similar to the ones
used in [35] and [36].

The processing steps Color space transformation, Color his-
togram generation and discretization, and Weight-map genera-
tion (these steps belong to the mean-shift-filtering module in-
troduced in Section II) are all implemented on the CPU. After-
ward, all the needed data are moved to the global memory on
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the GPU. These data include the original image data in CIE Lab
color space, the discretized color histogram for all three chan-
nels in this color space and the weight-map, which combines
the edge information into the image segmentation to further
improve the accuracy [17]. Because the mean-shift-based seg-
mentation algorithm operates on each pixel of an image, and the
computation, which takes place at each pixel, is independent of
its distant surroundings, it is a good candidate for implemen-
tation on a parallel architecture. Hence, we developed a paral-
lel implementation of Mean-shift mode seeking, which simply
copies the image to the device and breaks the computation of
the mode seeking into single pixels and their surrounding inter-
mediate neighboring region. An independent thread is spawned
for the mean-shift mode seeking for each pixel. Multithreads
are running at the same time on the GPU to realize the parallel
computation. The number of threads running in parallel is de-
termined by the computational capability of the GPU. In the
Renderscript programming, this number is optimized automat-
ically and does not need to be specified. After the mean-shift
mode seeking, all the result modes for each pixel are moved
back to the local memory of the CPU. The Region fusion step,
as discussed in detail in [17], is performed on the CPU.

IV. IMAGE CAPTURE BOX

Two devices for the image capture of diabetic foot ulcers have
been reported in the literature [37], [38]. However, drawbacks to
these designs are either large dimensions or high cost. Moreover,
both devices require Wi-Fi connectivity and a laptop or PC for
image processing.

To ensure consistent image capture conditions and also to
facilitate a convenient image capture process for patients with
type 2 diabetes, we designed an image capture device in the
shape of a box. Hence, we term this device “the Image Cap-
ture Box.” The image capture box was designed as a compact,
rugged, and inexpensive device that: 1) allows patients to both
view the sole of their foot on the screen of the smartphone and to
capture an image since the majority of patients’ wounds occur
on the soles of their feet; 2) allows patients to rest their feet com-
fortably, without requiring angling of the foot or the smartphone
camera, as patients may be overweight and have reduced mo-
bility; and 3) accommodates image viewing and capture of left
foot sole as well as right foot sole. To achieve these objectives,
we make use of two front surface mirrors, placed at an angle
of 90° with respect to each other, and with the common line
of contact tilted 45° with respect to horizontal. A mechanical
drawing of basic optical principle for foot imaging is shown in
Fig. 7. The optical path is represented in blue straight lines with
arrows indicating the direction.

A SolidWorks 3-D rendering of the image capture box is
shown in Fig. 8. As seen in this figure, the entire box has a
rectangular trapezoid shape. Rectangular openings for placing
the foot and smartphone are cut into the slanted surface, shown
in Fig. 8(b), which is at 45° with respect to horizontal. In this
case, the patients can rest their foot comfortably and view their
wounds through the smartphone camera. When using the box,
the patients need to ensure that the wound is completely located

Fig. 7. Basic optical principle for foot imaging.

Fig. 8. Three-dimensional drawing of the mechanical structure of the image
capture box. (a) From the back. (b) From the front. (c) Internal structure from
the front.

within the opening by simply observing the image displayed on
the smartphone.

To avoid the ghost image effect associated with normal back
surface mirrors (reflective surface on the back side of the glass),
front surface mirrors (reflective surface on the front side) are
needed, as illustrated in Fig. 8(a). The optical paths for both
the front surface mirror and the normal mirror are shown in
Fig. 9(a). As shown in Fig. 9(b) and (c), the ghost image effect
has been eliminated by using front surface mirrors.

To provide consistent light for wound image viewing and
capturing, warm white LED (light emitting diode) lighting, re-
sembling daylight, is incorporated at the back side of the box.
Based on our evaluation of different positions of the LED light,
we found this to be the optimal location for foot imaging. The
wall material for the image capture box is constructed from
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Fig. 9. Ghost image caused by the normal second surface mirror. (a) Ghost
image optical path; (b) ghost image using the normal mirrors for the box; (c)
improvement by using the front surface mirrors.

Fig. 10. Image capture box illustration; (a) actual product of the image capture
box; (b) wound image captured using the warm LED light.

¼′′ white acrylic where white was chosen to obtain better light
reflectivity. The actual product is shown in Fig. 10(a), and a
sample image captured by the image capture box is shown in
Fig. 10(b).

V. EXPERIMENTAL RESULTS

A. Experimental Setups

The goal of the experimental work has been: 1) to assess
the accuracy of the wound boundary determination based on
the mean-shift algorithm and the color segmentation based
on the K-mean algorithm; and 2) to perform an efficiency anal-
ysis by comparing the mean-shift algorithm to two other algo-
rithms.

To test accuracy, we applied the mean-shift-based algorithm
on two categories of wound images. For the first category, we
used 30 images of simulated wounds, typically referred to as
moulage wounds. The moulage wounds permitted us to evaluate
our method under relatively consistent skin conditions and on
wounds with distinct boundaries. Moulage is the art of applying
mock injuries for the purpose of training emergency response
teams and other medical and military personnel. In our case,
we use the moulage wounds that include typical granulation,
slough and necrotic tissues; the wounds were provided by Image

Fig. 11. Wound images of the moulage simulation applied on the author’s
feet.

Fig. 12. Clinical image samples of actual patients.

Perspectives Corporation (Carson City, Nevada) and applied to
the first author’s foot. The selected four sample images (not all
30 images were presented in this paper) of the moulage wounds
are shown in Fig. 11 and were captured with the smartphone
camera placed on the image capture box.

For the second category, we evaluated our wound image anal-
ysis method on 34 images of actual patient wounds collected at
the UMass-Memorial Health Center Wound Clinic (Worcester,
MA), following an IRB approved protocol in accordance with
Federal Regulations. The goal of selecting these typical wound
images from type 2 diabetic patients is to provide a more realistic
test of our wound boundary determination and color segmenta-
tion algorithms. Six selected sample images out of a total of 34
are shown in Fig. 12. Compared with the images in Fig. 11, the
real wound images are more complex: they may have uneven
illumination over the image plane, complex surrounding skin
texture and wounds appearing in a variety of shapes, sometimes
lacking distinct boundaries. Note that only two of the wound
images in Fig. 12 were captured by our smartphone and image
capture box; the other four images are directly from the wound
image data base in UMASS Wound Clinic.

To test the algorithm efficiency, the mean-shift-based wound
analysis algorithm discussed in Section II was implemented
on the CPU (Quad core, 1500 MHz, Krait, 2048 MB system
RAM) and the GPU (Adreno 320, Qualcomm) of the Nexus 4
Android smartphone. All the programming was done in Java in
the Eclipse IDE (Integrated Development Environment).
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Fig. 13. Experimental results for the images of the moulage wound simulation.
(a)–(d) Wound boundary determination results with mean-shift-based algorithm.
(e)–(h) Color segmentation results using the K-mean clustering method based
on the mean-shift boundary determination results.

B. Experimental Results on the Images of Moulage
Wound Simulation

The wound boundary determination results of images in
Fig. 11 are shown in Fig. 13. As seen from (a) to (d), the
mean-shift segmentation algorithm described in Section II pro-
vides promising boundary detection results. However, there is
still visibly imperfect detection as shown in Fig. 13(c) where
the yellow wound tissue at the boundary has similar color to the
healthy skin surrounding it.

As mentioned in Section II, after the wound boundary was
determined, the K-mean color segmentation method was per-
formed within the wound boundary. The color segmentation
results are shown in (e)–(h). We assessed the color segmenta-
tion performance by comparing the original images in Fig. 11
with the results in Fig. 13. By careful observation, we found
that most of the wound tissues were accurately classified. How-
ever, there were still some misclassifications in (e) where some
visually light red tissues are classified as yellow tissue.

C. Experimental Results on Clinical Images
From Actual Patients

The original images from actual patients, shown in Fig. 12,
are more complex than is the case for the images of moulage
simulations and are taken from six different patients. The images
in (a) and (b) are appropriately illuminated with a uniform skin
color and well-defined wound boundaries, but the remaining
four images are either not illuminated uniformly or with an
uneven skin texture. The wounds in images (a), (c), and (d)
are located completely within the limbs’ boundary. In contrast,
the wounds in images (b), (e), and (f) are located almost at the
boundary.

Fig. 14. Wound boundary determination results for clinical images of real
patients with preset bandwidths.

To adapt to these different conditions, we had to adjust the pa-
rameters of the algorithm for each wound image. There are three
adjustable parameters in the mean-shift-based wound boundary
determination algorithm for each wound image: the spatial res-
olution hs , the range resolution hr , and the fusion resolution
hf .

First, we tried parameter settings hs = 7, hr = 6, and hf = 3
because previous work [17] showed good segmentation results
with these values. Our experiments with these default setting on
the real wound images in Fig. 12 did not provide satisfactory
wound boundary determination results for all six images shown
in Fig. 14. Note that we only try to delineate the boundary for
the largest wound in the middle for the multiple-wound situation
as shown in Fig. 12(b).

As mentioned in [16], only features with large spatial sup-
port are represented in the mean-shift-filtered image when hs

increased, and only features with high color contrast survive
when hr is large. In [17], it is also stated that a larger number of
regions will remain in the region fused image by employing a
smaller hf . In Section II-C, we discussed how the wound bound-
ary determination is strongly dependent on whether a complete
foot boundary can be detected. Hence, we need a better spatial
resolution as well as a better region fusion resolution value to
group the small regions in the foot area to a connected compo-
nent when the skin texture is complex [as shown in Fig. 12(c)].
On the other hand, if the wound is located near to the foot
boundary (as shown in (b), (e), and (f)), better spatial and fu-
sion resolution is also needed to avoid the disconnected foot
boundary detection, which will cause the wound boundary de-
termination failure.

Second, we tried different parameters in specified domain
(4 ≤ hs ≤ 10, 4 ≤ hr ≤ 7, 3 ≤ hf ≤ 15) and using 0.5 as the
adjustment step to customize the parameters for each wound
image in Fig. 12 as shown in Table I. The corresponding wound
boundary determination results are shown in Fig. 15. Much
more accurate results are obtained for (b), (c), (d), and (f) by
parameter adjustment.

For a more objective evaluation, we asked three experienced
wound clinicians from UMass Medical School to independently
label the wound area for all 34 real wound images. Then,
we applied a majority vote [6], [7] for each pixel. Finally,
we used the MCC (Matthews Correlation Coefficient) [39] to
measure the wound boundary determination accuracy by us-
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TABLE I
PARAMETERS ADJUSTMENT FOR WOUND BOUNDARY DETERMINATION

OF DIFFERENT IMAGES

Default Image a Image b Image c Image d Image e Image f

Spatial
resolution
hs

7 7 9 9 9 9 7

Range
resolution
hr

6 6.5 6.5 8 6.5 6.5 6.5

Fusion
resolution
hf

3 7 7 10 10 10 12

Fig. 15. Wound boundary determination results for clinical images of real
patients with adjusted bandwidths.

ing the combined labeled wound images as the “ground truth.”
The MCC returns a value between –1 (total disagreement) and
+1 (perfect prediction). With a fixed optimal parameter setting
for 34 wound images, the MCC score was 0.403. In contrast,
with customized parameter settings, the MCC score improved
to 0.736.

Color segmentation results provided by K-mean algorithm
based on wound boundary determination results from Fig. 15
are shown in Fig. 16. The results are promising despite a small
number of misclassified pixels in (c) and (f). In (c), some dark
red part is recognized as black tissue. In (f), some “dark yellow”
part is classified as the red tissues. In conclusion, the wound
analysis task is much more complicated for the clinical images
of real patients due to the complicated skin color and texture of
patients’ feet, various wound locations and uneven illumination
over the image plane.

D. Computational Efficiency Analysis

In this section, we present data for an efficiency analysis
of: 1) the mean-shift method as compared to the level set [15]
and graph cut-based algorithms [40], which are typical image
segmentation algorithms; and 2) a comparison of two different
implementations of the mean-shift-based method.

First, the three algorithms were implemented without GPU
optimization on a quad-core PC with 4 GB of RAM and ap-
plied to all 64 wound images (30 moulage images and 34 real
wound images). For similar segmentation results, the average
computing time of level set and graph cut-based algorithms was

Fig. 16. Wound assessment results for clinical images of real patients.

approximately 15 and 10 s, respectively. In contrast, the mean-
shift-based method required only about 4 s on average. Thus,
the mean-shift-based wound boundary determination method
provides a much better efficiency, being nearly four times faster
than the level set based algorithm and twice as fast as the graph
cut-based algorithm. Hence, it is reasonable to select the mean-
shift-based algorithm as it delivers the most balanced perfor-
mance of both boundary detection accuracy and time efficiency.

Second, we compared the mean-shift-based algorithm on the
smartphone’s CPU to the smartphone CPU + GPU. The average
processing time of the 64 images for the CPU and CPU + GPU
implementations on the smartphone is approximately 30 and
15 s, respectively. We can see that the time efficiency is signifi-
cantly enhanced by GPU implementation.

While GPU + CPU implementation of the mean-shift algo-
rithm on a laptop only provides minimal improvements in com-
putation time over a CPU implementation, the GPU + CPU
implementation on the smartphone does improve the time effi-
ciency by about a factor of 2. This is partly because the CPU
on the smartphone is not as powerful as the one on the laptop.
Moreover, the Renderscript implementation utilizes both the
smartphone GPU as well as the CPU and even available DSP
devices on chip to provide the effective optimization.

VI. CONCLUSION

We have designed and implemented a novel wound image
analysis system for patients with type 2 diabetes suffering from
foot ulcers. The wound images are captured by the smartphone
camera placed on an image capture box. The wound analysis
algorithm is implemented on a Nexus 4 Android smartphone,
utilizing both the CPU and GPU.

We have applied our mean-shift-based wound boundary de-
termination algorithm to 30 images of moulage wound simula-
tion and additional 34 images of real patients. Analysis of these
experimental results shows that this method efficiently provides
accurate wound boundary detection results on all wound im-
ages with an appropriate parameter setting. Considering that
the application is intended for the home environment, we can
for each individual patient manually find an optimal parameter
setting based on a single sample image taken from the patient
before the practical application. Experimental results show that
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a fixed parameter setting works consistently well for a given
patient (the same foot and skin condition). In the future, we
may consider applying machine learning approaches to enable
self-adaptive parameter setting based on different image condi-
tions. The algorithm running time analysis reveals that the fast
implementation of the wound image analysis only takes 15 s on
average on the smartphone for images with pixel dimensions of
816 × 612.

Accuracy is enhanced by the image capture box, which is de-
signed so that consistent image capture conditions are achieved
in terms of the illumination and distance from camera to object.
While different smartphone cameras do have slightly different
color space characteristics, we have not included color calibra-
tion mainly because the most important aspect of the wound
assessment system is the tracking of changes to the wound,
both in size and color, over consecutive images captures.

Given the high resolution, in terms of pixel size, of all modern
smartphone cameras, the performance of our wound analysis
system is not expected to be affected by resolution differences
across smartphone cameras. In fact, the original large resolution
images are downsampled to a fixed spatial resolution of 816 ×
612 pixels.

While different image noise levels for different smartphone
cameras are a potential concern, we have determined, based
on the experimental results, that any noise level encountered
during the image capture process can be effectively removed by
applying a Gaussian blurring filter before wound analysis.

The primary application of our wound analysis system is
home-based self-management by patients or their caregivers,
with the expectation that regular use of the system will reduce
both the frequency and the number of wound clinic visits. One
concern is that some elderly patients may not be comfortable
with operating a smartphone, but this concern could be ad-
dressed by further simplifying the image capture process to a
simple voice command.

An alternative deployment strategy is placing the system
in wound clinics, where a nurse can perform the wound im-
age capture and data analysis. With this implementation, the
wound analysis can be moved from the smartphone to a server,
which will allow more complex and computationally demand-
ing wound boundary detection algorithms to be used. While this
will allow easier and more objective wound tracking and may
lead to better wound care, this implementation of the wound
analysis system is not likely to reduce the number of visits to
the wound clinic.

In either implementation, telehealth is an obvious extension to
the wound analysis system whereby clinicians can remotely ac-
cess the wound image and the analysis results. Hence, a database
will be constructed on a possibly cloud-based server to store the
wound data for patients.

The possibility of microbial contamination of the image cap-
ture box by the users or the environment has so far only been
addressed by wiping the surface of the box with an antimicro-
bial wipe after each use. A better solution may be a disposable
contamination barrier, which will cover the slanted surface of
the box except the openings. This will avoid the patient’s foot
directly touching the surface of the image capture box.

The entire system is currently being used for wound track-
ing in the UMass-Memorial Health Center Wound Clinic in
Worcester, MA. This testing at the Wound Clinic is a first step
toward usability testing of the system by patients in their homes.

In future work, we plan to apply machine learning methods
to train the wound analysis system based on clinical input and
hopefully thereby achieve better boundary determination results
with less restrictive assumptions. Furthermore, we plan to com-
pute a healing score to be assigned to each wound image to
support trend analysis of a wound’s healing status.
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