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Original Article

Clinicians generally evaluate wounds manually using stan-
dardized scales and indices based on visual examination.1 
The main shortcomings of this approach are (1) visual 
inspection is somewhat subjective and potentially inaccurate 
for wound area determination and tissue classification, (2) 
wound examination observations are not always recorded in 
a consistent format, and (3) manual assessment of a patient’s 
wound and subsequent recording of findings constitute extra 
clinical workload.2,3 Quantitative assessment of diabetic foot 
ulcers at regular time intervals combined with a physician’s 
experienced assessments is likely to provide a more reliable 
basis for selecting an appropriate treatment regimen.

In previous works, computer-aided methods have been 
developed1-5 to determine wound size and perform tissue 
classification, based on computer vision techniques and with 
the goal of standardizing wound assessment. Published results 
indicate that these image-processing-based methods permit 

the definition of “standard” wound healing and minimize 
inter- and intraobserver variations. These methods, however 
suffer from drawbacks including (1) high cost and large phys-
ical dimension of the wound imaging equipment, (2) 
computationally demanding algorithms that do not produce 
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Abstract

Background: For individuals with type 2 diabetes, foot ulcers represent a significant health issue. The aim of this study 
is to design and evaluate a wound assessment system to help wound clinics assess patients with foot ulcers in a way that 
complements their current visual examination and manual measurements of their foot ulcers.

Methods: The physical components of the system consist of an image capture box, a smartphone for wound image capture 
and a laptop for analyzing the wound image. The wound image assessment algorithms calculate the overall wound area, color 
segmented wound areas, and a healing score, to provide a quantitative assessment of the wound healing status both for a 
single wound image and comparisons of subsequent images to an initial wound image.

Results: The system was evaluated by assessing foot ulcers for 12 patients in the Wound Clinic at University of 
Massachusetts Medical School. As performance measures, the Matthews correlation coefficient (MCC) value for the wound 
area determination algorithm tested on 32 foot ulcer images was .68. The clinical validity of our healing score algorithm 
relative to the experienced clinicians was measured by Krippendorff’s alpha coefficient (KAC) and ranged from .42 to .81.

Conclusion: Our system provides a promising real-time method for wound assessment based on image analysis. Clinical 
comparisons indicate that the optimized mean-shift-based algorithm is well suited for wound area determination. Clinical 
evaluation of our healing score algorithm shows its potential to provide clinicians with a quantitative method for evaluating 
wound healing status.
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results in real time, and (3) lack of wound healing status mea-
sures for assessing time sequences of wound images.

This study presents a new real-time wound assessment 
system for wound clinics, implemented collaboratively on a 
smartphone and a laptop. The major objectives have been to 
facilitate foot ulcer image capture and to formulate accurate, 
yet computationally efficient algorithms for wound area 
measurement, wound tissue analysis and a score for healing 
status assessment.

Methods

System Overview

Our collaborative system consists of a smartphone and a lap-
top, communicating over Wi-Fi via a router in a peer-to-peer 
mode as shown in Figure 1a. Image capture is performed by 
the high resolution camera on the smartphone (Nexus 5 
smartphone, Android platform) and an image capture box to 
simplify the photographing of foot ulcers on the sole of the 
foot, especially for patients with limited mobility, as illus-
trated in Figure 2a.

Next, the captured image is transmitted via the Wi-Fi net-
work to a laptop (Dell Inspiron 15R) for wound assessment, 
the results of which are displayed by the wound management 
system on the laptop. As shown in Figure 1a, clinicians can 
view the wound healing trend by comparing the current 
image and assessment results with the corresponding images 
and results from a patient’s past visits to the wound clinic.

Wound Image Capture

Because most foot ulcers occur on the sole of the foot, we 
utilize an image capture box6 to facilitate wound image cap-
ture as illustrated in Figure 2. The image capture box was 
designed to be compact, rugged and inexpensive, made from 
quarter-inch white acrylic. The interior is illuminated with 
warm white LED light, which provides consistent lighting 

Figure 1. Collaborative system based on a smartphone and a laptop. (a) System overview, composed of a smartphone and a laptop 
(laptop displays the original wound image, wound image with wound boundary outlined, the image with wound color segmentation 
and calculates the wound area and healing score). (b)-(d) An example output of our wound analysis for one visit by one patient: (b) the 
original wound image, (c) the image with the wound area detected, and (d) the image with the color segmentation in the wound area.

Figure 2. Image capture box: (a) the image capture box with 
smartphone and foot model; (b) wound image captured using the 
warm LED light.
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for imaging. The slanted surface of the box can be flipped 
over to accommodate patients with a wound on either the 
right or left foot. When the patient visits the wound clinic, 
the nurse helps the patient to place his or her foot on the 
opening of the slanted surface, at which point the nurse (and 
the patient) can view the foot ulcer on the smartphone screen. 
After confirming that the entire wound area is visible, the 
nurse initiates image capture using a voice command. To 
protect patients from possible microbial contamination, the 
foot contact area of the box is cleaned after each use.

Wound Image Management

The foot ulcer image captured on the smartphone is transmit-
ted with the patient’s ID (no personal identification informa-
tion is transmitted for confidentiality) to the laptop over the 
Wi-Fi connection. The patient ID is used as the unique iden-
tifier to add new wound data into the database along with 
date of image acquisition. On the laptop, the acquired wound 
image, along with its assessment results (wound area; red, 
yellow, and black area components; healing score) are saved 
into a wound image database established on a secure local 
database server on the laptop. Clinicians with access to the 
database can view a patient’s wound images and healing 
trend remotely.

Wound Assessment Algorithms

During wound image processing, the wound area is deter-
mined by an augmented mean-shift-based algorithm,7,8 con-
sisting of three modules: (1) mean-shift-based image 
segmentation, which groups all image pixels into a number 
of homogeneous regions; (2) a fast method for detecting the 
largest connected component, to recognize the foot outline; 
and (3) final wound boundary determination achieved by 
analyzing the internal and external boundaries of the foot 
outline. We augmented the algorithm from our previous 
work,6 which only detected wounds inside the foot outline, to 
also incorporate a combined region and boundary algorithm.9 
Based on the wound location, one of two different algorith-
mic paths is selected, as described in the next paragraph. 
Following the determination of the wound area, the wound 
tissue classification is performed based on a red-yellow-
black color model.

For wounds enclosed within the foot outline, the largest 
connected internal region within the foot outline is consid-
ered the wound area. For wounds near the boundaries of the 
foot outline, we designed a turning points detection algo-
rithm to better determine the wound boundary along the foot 
outline. The input to this algorithm is a group of corner points 
(prominent structural elements in an image10) on the external 
foot outline. Among these corner points, we identified three 
turning points, characterized by the greatest direction change, 
and determine the wound boundary by connecting them into 
a closed contour, either along the foot outline or by an 

approximation arc. Next, the image morphology technique 
called closing is applied to refine the determined wound 
boundary (Figure 1c). Closing is a common image process-
ing method to fill the small holes and smooth the target 
boundary.11

Within the defined wound area, we identified the wound 
tissues based on color segmentation, using the well-known 
red-yellow-black (RYB) wound evaluation model.12 The 
color segmentation was implemented using a concept similar 
to Bag-of-Words,13 which groups CIE Lab color features for 
all wound pixels into 3 clusters (read, yellow, and black) by 
applying the clustering K-Means algorithm.14 In the RYB 
model (Figure 1d), red wound tissue indicates healing; yel-
low tissue indicates infection or slough that is not ready to 
heal; black tissue indicates necrosis.

Wound Healing Score

To create a measure of wound healing status, we translate the 
raw wound assessment results into a numerical value called 
healing score ( )Sn  using equations 1 to 3. Such a single-
valued healing score will provide patients and caregivers 
with a simple measure of the wound healing or wound dete-
rioration relative to the status at the initial visit. This score 
can range from 0 to 10. The larger the score is, the better the 
healing status is. The fundamental principle underlying the 
healing score design is the RYB evaluation model. The cal-
culation of the healing score is described in the 3 steps below.

Step 1: For each patient, a reference score of 5 is assigned 
to the wound image collected at the first visit to the wound 
clinic.
Step 2: At each subsequent visit, the weighed area of the 
wound is calculated by applying equation 1, where WAn  
represents the weighted area of the wound at the nth visit. 
RAn, YAn, and BAn  represent the red, yellow, and black 
tissue areas, respectively. [ ], ,W W WR Y B  is the vector of 
weights for red, yellow, and black tissue areas, respec-
tively. From clinical observations, changes in yellow and 
black tissue areas influence the healing status more than 
do changes in the red tissue area, which can be expressed 
as W W WR Y B< < . In our case, we empirically determined 
an appropriate weight vector to be [1, 1.5, 2.5].

 WA W RA W YA W BAn R n Y n B n= + +  (1)

Step 3: Compute a relative healing score using equation 2 
to compare WAn  with WA0 , the weighted area for the first 
wound image of the current patient. The parameter G is an 
empirically determined gain value, ranging from 0 to 1, to 
control the dynamic range of the healing score such that 
our assessment results match clinicians’ judgments.
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We find that the gain values of 0.5 and 0.4 provide similarly 
good results. Choosing G = 0.4, we verified that Sn  ranges 
from 0 to 1.4 if we assume that WAn  is bound by 
0 3 5 0< <WA WAn . .

To normalize Sn  into the range [0, 10], we multiply the 
expression in equation 2 by 10/1.4. This results in the final 
formulation of the healing score, as given in equation 3. It is 
easily verified that the healing score increases from 0 (wound 
condition is seriously degraded) to 10 (wound is completely 
healed) as the weighted wound area decreases from its upper 
bound ( . )3 5 0WA  to 0.

 S
WA

WA
n

n
= −10

2 857

0

.
 (3)

The healing score is a simple, but useful mathematical con-
struct, which is applicable to other types of chronic wounds, 
such as venous ulcers, possibly requiring a parameter 
adjustment.

Clinical Assessment of Wound Area and Healing 
Score

To establish a clinical basis (ground truth) with which to com-
pare our wound area, three experienced wound clinicians out-
lined the wound area of the wound images in our database 
independently, using a tablet computer and an electronic pen. 

Their delineations for a given wound were combined into one 
ground truth using a majority vote scheme at the pixel level.1 
To assess the accuracy of the wound area determined by the 
mean shift algorithm relative to the ground truth, we apply the 
Matthews correlation coefficient (MCC),15 which is commonly 
used for the evaluation of binary classification methods.

To provide clinical validation for our healing score, we 
asked the same three clinicians to independently score the 
foot ulcer healing status for each wound image over the 
range from 0 to 10. A computer-based application was 
designed to present wound images to clinicians. Only the 
first image is shown initially, and each click of the “Next 
Image” button brings up a new image for scoring, while 
retaining the previous images, as shown in Figure 3.

Furthermore, to ascertain whether the quantitative wound 
data, in addition to the wound image itself, can improve the 
clinicians’ assessment of the wound, we ask each of the clini-
cians to score each wound image twice. In the first round, 
only wound images are presented, so that clinicians’ scores 
are based solely on their visual observations. In the second 
round, the total wound area and the areas of the red, yellow, 
and black tissues within the wound boundary are also pre-
sented. These two sets of scores from the clinicians are com-
pared to the scores, generated by the healing score algorithm, 
by calculating the Krippendorff’s alpha coefficient (KAC).16 
KAC is a statistical measure of the agreement of ratings 

Figure 3. Software interface screenshot for presenting wound images to clinicians. Clinicians click the “Next Image” button to view 
the next image for current patient, click the “Next Patient” button to score the images for the next patient, and click the “Next Phase” 
button to score all images again with different given information.
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given by two or more clinicians. The value of this coefficient 
ranges in [ , ]−∞ 1 , where value 1 indicates perfect agreement 
and value 0 indicates the absence of agreement. A value less 
than 0 implies that the disagreements are systematic and 
exceed what can be expected by chance.16 The detailed clini-
cal validation results are presented in the “Results” section.

Results

To evaluate our wound assessment method, we have 
involved 12 patients over a period of one year where each 
patient was seen over a period ranging from 1 month to 5 
months in the Wound Clinic at UMass Medical School, 
based on an approved institutional review board (IRB) pro-
tocol. Among the 12 patients, 9 of them were monitored 
over at least 2 consecutive visits (2 visits for 3 patients, 3 
visits for 4 patients, 4 visits for 1 patient, and 6 visits for 1 
patient). In total, 32 foot ulcer images were collected (1 
patient, visiting only once, had foot ulcers on both feet) and 
28 images were used for the clinical validation of the heal-
ing score algorithm.

Clinical Validation Results of the Wound 
Boundary Determination Algorithm

In Figures 4 and 5, we present the wound area and tissue 
classification results for two patients, resulting in two time 
sequences of foot ulcer images. The average MCC value is 
.68, based on comparison to the wound area delineation by 
clinicians for the 32 images, which is better than what was 
obtained with the method used in our previous work (which 
yielded an average MCC value as .403)6 and better than the 

wound recognition method proposed in Wannous et al1 (with 
an average MCC value of .45). Since the image capture box 
is used for acquiring the images, the distance between the 
foot and the imaging plane is constant. This enables the pixel 
dimensions from the algorithm measurements to be con-
verted into actual area units (square millimeters in our case) 
by simply multiplying the pixel dimensions by a constant. 
The corresponding actual wound area, areas of different 
wound tissues and the healing scores for the two patients are 
shown in Tables 1 and 2.

Clinical Validation Results of the Healing Score 
Algorithm

We utilize KAC to compare the consistency of healing score 
among the three clinicians (also referred to as “raters”), both 
for the case where the clinicians are presented with only the 
wound image and for the case where wound assessment data 
are also available (Figure 3 illustrates the latter case). The 
calculated coefficients are referred to as the interrater con-
sistency coefficients. The results are shown in the diagonally 
symmetrical Table 3 where the top number in each cell is the 
consistency coefficient for wound image only while the bot-
tom number is the coefficient for wound image plus quantita-
tive wound data. We can see that clinicians 1 and 2 have 
similar assessment about the wound healing status irrespec-
tive of whether the quantitative data is presented (KAC > .8 
in cell (1, 2)). Clinician 3’s assessment differs somewhat 
from that of the other 2 clinicians (KAC < .5 in cell (1, 3) and 
the top number in cell (2, 3)). This lack of agreement is also 
evident in Figure 6, where the red curve (scores from clini-
cian 3) deviates from the green and black curves (scores 

Figure 4. Wound area and tissue classification results for patient 1. Row 1: original foot ulcer images; row 2: wound boundary 
determination results; row 3: tissue classification results.
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Table 3. Krippendorff’s Alpha Coefficients for the Interrater 
Consistency Measurements, both for Wound Image Only (Top 
Values) and for Wound Image Plus Quantitative Wound Data 
(Bottom Values).

Clinician 1 Clinician 2 Clinician 3

Clinician 1 .85 .42
 .80 .46

Clinician 2 .85 .46
 .80 .63

Clinician 3 .42 .46  
 .46 .63  

from clinicians 1 and 2) at several points. Another finding is 
that clinicians 2 and 3 agree more when the wound quantita-
tive data is also presented (KAC > .6 for the bottom number 
in cell (2, 3)). Due to our limited number of clinicians and 
wound samples, our preliminary results indicating that add-
ing wound data can have some influence should be tested 
with a larger group of clinicians and additional samples.

Next, the effect of providing quantitative wound data, in 
addition to the wound image itself, on the healing scoring of 
a given clinician (or “rater”) is evaluated by determining the 
KAC between the healing scores with and without the quan-
titative wound data presented. The evaluation results are 
reflected in the intrarater data impact coefficients. The 
quantitative wound data consists of healing score, total 
wound area and area components of red, green and black tis-
sues. The results are given in Table 4 for the three clinicians, 
showing a modest, but detectable effect (.8 < KAC < .9 for 
each cell); had there been no effect, KAC would be 1.0. We 
conclude that adding quantitative data to visual image 
appears to result in better and/or more consistent assess-
ments, but with our limited set of observations, we cannot 
generalize as to whether these results would apply in a larger 
wound sample.

Table 1. Wound Assessment Results for Patient 1 (Area Unit: 
mm2); for Better Accuracy, 2 Significant Digits for the Healing 
Scores Are Displayed.

Image 1 Image 2 Image 3 Image 4 Image 5

Healing score 5 (ref) 7.0 7.4 6.9 7.3
Wound area 928 403 293 279 332
Red area 751 353 283 215 126
Yellow area 158 39 10 43 184
Black area 19 11 0 21 22

Table 2. Wound Assessment Results for Patient 2 (Area Unit: 
mm2).

Image 1 Image 2 Image 3

Healing score 5 (ref) 3.9 5.6
Wound area 249 329 253
Red area 203 247 232
Yellow area 11 82 21
Black area 38 0 0

Figure 5. Wound area and tissue classification results for patient 2. Row 1: original foot ulcer images; row 2: wound boundary 
determination results; row 3: tissue classification results.
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The agreement between the algorithm-based healing 
score and the clinician-based healing score is measured simi-
larly, using the KAC. The results are given in Table 5, where 
the measured coefficients are called the clinical validity coef-
ficients. As with the interrater consistency coefficients, the 
results are provided for both the case where the clinicians see 
only the wound image (top values) and the case where they 
see both the wound image and the quantitative wound data 
(bottom data). The values in Table 5 show that our healing 
score algorithm agrees well with clinician 2 (KAC > .8 espe-
cially when quantitative wound data is presented) and has an 
acceptably good agreement with clinician 1 (KAC > .6). The 
KAC value for the scoring results from clinician 3 and our 
algorithm is less than .5, possibly indicating differences in 
evaluation criteria.

The actual healing scores for 19 wounds (the wound image 
for each patient’s initial visit is the reference image) given by 
3 clinicians (for the case where both the wound images and 

quantitative wound data are presented) and by our algorithm 
are shown in Figure 6. From this figure, we can see that the 
scores given by our algorithm are a reliable quantitative indi-
cator of the wound healing trend. Overall our algorithm pro-
vides a promising quantitative assessment that approximates 
well the average score from three clinicians.

Discussion and Conclusion

Reliable foot ulcer measurements that provide good wound 
healing status assessment are likely to be important for 
accelerating the healing and for reducing the risk of lower 
limb amputation for type 2 diabetes patients. The results 
presented indicate that efficient image processing algo-
rithms and cost-effective image capture devices meet clini-
cal needs. In our prior work, wound assessment was 
implemented efficiently on a smartphone-alone system,6 
which enables patients to self-manage their foot ulcers and 
gives the patients’ clinicians the possibility for asynchro-
nous evaluation.

As demonstrated in the “Results” section, our wound 
boundary determination algorithm provides clinically valid 
results. The average total computing time for the wound 
boundary determination, color segmentation and healing 
score calculation algorithm, implemented on a laptop CPU 
(Intel i5 2.5 GHz), is around 6 seconds for the images in 
dimension of 816 × 612. It indicates that our wound analysis 
method is time-efficient enough for a real-time wound 
assessment implementation.

The use of the image capture box ensures consistent light-
ing, image distance and quality images, permitting effective 
wound assessment. The experience from the wound clinic 
indicates that our image capture box can be used by patients, 
if necessary with the assistance of a nurse or caregiver.

Figure 6. Healing scores by the three raters (green, black, and red for clinicians 1, 2, and 3, respectively), and by the healing score 
algorithm (blue), for the case where both wound images and wound data are presented.

Table 4. Krippendorff’s Alpha Coefficients for the Intrarater 
Data Impact Measurements.

Clinician number 1 2 3

Intrarater data impact coefficients .81 .80 .86

Table 5. Krippendorff’s Alpha Coefficients for the Clinical 
Validity Measurements, both for Wound Image Only (Top Values) 
and for Wound Image Plus Quantitative Wound Data (Bottom 
Values).

Clinician number 1 2 3

Clinical validity coefficients .73 .68 .42
 .66 .81 .46
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We believe that our system can readily be integrated into 
the work-flow of a wound clinic, thanks to compact design 
and ease of use. It provides data for objective evaluation by 
recording, for each patient visit, the original and processed 
wound images (as shown in Figures 1b-1d), along with 
wound area and healing score. While actual implementation 
in a wound clinic may take different formats, operational 
issues were briefly addressed in the “Wound Image Capture” 
and “Wound Image Management” sections.

The clinical assessment results of our healing score algorithm 
shows very good agreement with clinicians’ scores and thus indi-
cates its strong potential for automated quantitative wound heal-
ing assessment. More validation data is needed to further evaluate 
our algorithm. Unavoidably, healing score determination by cli-
nicians is influenced by experience and training, similar to what 
has been observed in wound area determination.17,18 We expect 
that a future research effort will include information regarding 
wound texture1,14 into our wound boundary determination algo-
rithm. Doing so will likely require switching to an algorithm 
based on machine learning that may be better suited for integrat-
ing clinically determined texture information into wound bound-
ary determination for better area determination.
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