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Abstract—The standard chronic wound assessment
method based on visual examination is potentially inac-
curate and also represents a significant clinical work-
load. Hence, computer-based systems providing quantita-
tive wound assessment may be valuable for accurately mon-
itoring wound healing status, with the wound area the best
suited for automated analysis. Here, we present a novel ap-
proach, using support vector machines (SVM) to determine
the wound boundaries on foot ulcer images captured with
an image capture box, which provides controlled lighting
and range. After superpixel segmentation, a cascaded two-
stage classifier operates as follows: in the first stage, a set
of k binary SVM classifiers are trained and applied to dif-
ferent subsets of the entire training images dataset, and
incorrectly classified instances are collected. In the second
stage, another binary SVM classifier is trained on the incor-
rectly classified set. We extracted various color and texture
descriptors from superpixels that are used as input for each
stage in the classifier training. Specifically, color and bag-of-
word representations of local dense scale invariant feature
transformation features are descriptors for ruling out irrel-
evant regions, and color and wavelet-based features are
descriptors for distinguishing healthy tissue from wound
regions. Finally, the detected wound boundary is refined
by applying the conditional random field method. We have
implemented the wound classification on a Nexus 5 smart-
phone platform, except for training which was done offline.
Results are compared with other classifiers and show that
our approach provides high global performance rates (av-
erage sensitivity = 73.3%, specificity = 94.6%) and is suffi-
ciently efficient for a smartphone-based image analysis.

Index Terms—Cascaded classifier, diabetic ulcer, support
vector machines (SVM), wound image assessment.
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I. INTRODUCTION

IN THE United States, foot ulcers related to type-2 diabetes
constitute a significant health issue affecting 5–6 million

people [1]. Moreover, diabetes-related wounds resulted in ap-
proximately 73 000 lower limb amputations in 2010 [2]. Alex-
iadou et al. [3] Indicate that up to 85% of all diabetic foot
ulcer-related amputations are preventable with appropriate clin-
ical interventions and effective patient self-management. In spite
of this optimistic claim, the incident rate of foot ulcers is in-
creasing, and effective foot ulcer care imposes a substantial
work load for clinicians. Financially, chronic ulcer care adds
around U.S.$9–U.S.$13 billion to the annual costs of managing
diabetes itself, according to a recent study [4].

Doctors base their wound assessment primarily on visual ex-
amination and manual measurements performed either directly
on the wounds or on high-resolution wound images. However,
such an ad hoc assessment approach does not establish a compre-
hensive clinical benchmark. A reliable wound assessment can
only be achieved by regularly performing accurate measure-
ments of the wound area, analyzing its colors, and the relative
sizes of different wound tissues, including proliferation, infected
area, slough, or necrosis. Due to the lack of consistency, even
with the assistance of tools such as pressure ulcer scale for heal-
ing [5], an objective assessment of wound healing rate cannot be
ensured. Hence, PC-/laptop-based evaluation of foot ulcers us-
ing computer vision and image processing techniques represents
an improved approach to accurate chronic wound assessment.
Automatic detection of foot ulcer size and tissue composition
is especially useful for both clinicians and diabetic patients
to monitor the wound healing status and for more effective
wound care.

Based on published results of other wound analysis systems
[6]–[8], current ulcer image analysis systems mainly focus on
addressing the following tasks: 1) high-quality wound image
capture, 2) wound boundary determination and wound area
measurement, 3) wound tissue classification within the detected
wound area, and 4) wound healing rate assessment. This paper
focuses on task 2, wound boundary determination. Generally
speaking, there are two broad types of methods: 1) “direct”
wound boundary determination methods that utilize image anal-
ysis techniques and 2) “indirect” wound boundary determina-
tion methods, which utilize object recognition techniques that
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are popular in computer vision, wherein the wound area is the
object to be recognized.

Prior work on “direct” wound boundary determination: In
earlier investigations, active contour models and level set-based
methods were commonly applied to directly measure the wound
areas semiautomatically [9]–[11]. However, these approaches
all suffer from problems, such as dependence on the initial con-
tour setting, sensitivity to illumination conditions, and instabil-
ity when dealing with the poorly defined wound boundaries or
false edges. In our previous work in foot ulcer segmentation
[12], [13], the mean shift segmentation method and a combined
region and boundary algorithm were utilized to find the foot
outline, and then three different algorithmic paths were selected
based on the wound location, either 1) on the sole, 2) on the edge
of the foot, or 3) on the toe, to determine the foot ulcer area.
However, these methods suffered from performance limitations
when dealing with foot ulcer images with complicated skin tex-
tures, such as surgical sutures or other interfering structures very
near the wound area.

Prior work on “indirect” wound boundary determination: In
recently published works [6], [14], the bottom-up object recog-
nition scheme based on machine learning was applied to wound
tissue classification and indirect wound area determination (by
grouping all the regions classified as one type of wound tissue).
Generally, these approaches consist of following three key steps:
Step 1: image segmentation; Step 2: feature extraction within
each segment; and Step 3: classifier training on a large num-
ber of features from either the wound or nonwound segments.
Support vector machine (SVM) [14]–[16] and artificial neural
network (ANN) [6] were applied to train the wound tissue clas-
sifier. For example, a cascaded classifier based on ANN and
Bayesian committee machine was described in [6]. According
to published results, the bottom-up scheme provides promising
wound tissue classification accuracy on wound images contain-
ing mainly wound and only a small amount of surrounding
healthy skin tissue. Here, only color and texture features were
used to describe each superpixel, which may be sufficient for
the classification between wound and healthy skin regions, but
when more complicated regions are involved, this feature set
no longer suffices. Therefore, when applying SVM and ANN
methods to a foot ulcer image where the actual ulcer occupies
only a relatively small part of the overall image and where the
image may also contain an arbitrary background surrounding the
foot, the boundary determination accuracy is not adequate. To
address such scenarios, other descriptors, such as bag-of-word
(BoW) representation of local scale invariant feature transfor-
mation (SIFT) features [17], commonly used in general object
recognition tasks need to be investigated.

Wound analysis software systems in current use: There are
several software tools for wound analysis and monitoring
presently available, such as PictZar Digital Planimetry Soft-
ware [18], WITA [19], MOWA [20]. However, none of these
software packages have yet incorporated automatic wound de-
tection methods to minimize the clinician’s initial involvement.
A different approach to wound monitoring software and hard-
ware was proposed in [21]. They developed a new “wound
mapping” device, which is based on electrical impedance spec-

troscopy and involves a multifrequency characterization of the
electrical properties of wound tissue under an electrode array.
Using this approach clinically, however, requires major changes
to the daily clinical routine in wound care. Another evidence-
based wound assessment tool, called “Silhouette TM,” was de-
veloped by Aranz Medical [22]. The system includes a 3-D
camera with laser guidance that captures a 3-D image of the
wound. However, the wound boundary must still be manually
delineated, after which the system measures the area, depth, and
volume of the wound and its healing progress.

This paper describes a smartphone-based wound image as-
sessment system (bottom-up object recognition scheme based)
for assessing diabetic foot ulcers. For the wound image capture,
we utilized the image capture box described in our previous
work [12], but with improved lighting and with verification that
our system introduces a minimal geometric distortion. The im-
age capture box plays an important role to ensure the accurate
wound area determination by providing consistent illumination,
foot position, and range controlling. For wound area determina-
tion, we utilized an image processing technique in the form of a
cascaded two-stage approach based on machine learning imple-
mented with a SVM to determine the wound area. SVM-based
methods have proven effective when applied to similar clinical
problems, such as the MRI brain image segmentation and X-ray
bone image analysis [14], [23]. Our proposed training method-
ology includes the following steps: 1) a simple linear iterative
clustering (SLIC) method is used to segment the image into a
number of superpixels; 2) significant color and texture features
are extracted from these superpixels. Different descriptors are
extracted for each of the two-stage SVM classifiers (color fea-
ture and BoW representation of dense scale invariant feature
transformation (DSIFT) feature for the first stage, color feature
and wavelet-based texture feature for the second stage); 3) a
first-stage training on a set of k SVM binary classifiers is im-
plemented using different subsets of the entire training images
dataset; and 4) a second-stage training on a single SVM binary
classifier is implemented using the incorrectly classified test in-
stances from the first stage. The first two steps (segmentation
and feature extraction) for the wound boundary determination
method are similar to the steps 1 and 2 in the training method-
ology above (the wound boundary determination process can
be viewed as the testing or classification part in the standard
machine-learning framework). Subsequently, we apply the two
classifiers in a cascaded fashion to find all wound superpix-
els, based on which we can also indirectly delineate the wound
boundary. Finally, we refine the delineated wound boundary us-
ing a conditional random field (CRF) technique. The wound
boundary determination is completely automatic requiring no
human intervention and can handle wounds appearing near the
edge of the foot, which is a significant improvement compared
to our previous work [12], [13]. The entire system was imple-
mented on Nexus 5 smartphone and tested on 15 subjects at the
Wound Clinic and Limb Preservation Center in the University
of Massachusetts (UMass) Medical School.

This paper is organized as follows: Section II provides an
overview of the foot ulcer image assessment system. Section III
introduces the image capture box and the evaluation of the de-
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gree of geometric distortion it introduces. In Sections IV–VI,
the major three key modules (superpixel segmentation, feature
descriptor extraction, and wound classifier training) of our foot
ulcer area determination are discussed in detail, with associ-
ated experimental results. Finally, Section VII gives an overall
conclusion and assessment of the proposed system.

II. METHODOLOGY OVERVIEW

We captured 100-ft ulcer images over a period of two years
at the Wound Clinic at the UMASS Medical School by tracking
15 patients, based on an approved IRB protocol. In most cases,
the foot ulcers were located on the sole of the foot. To facili-
tate the image capture process, we used an improved version of
our image capture box as described in Section III. The image
capture box maintains consistent illumination, has an optical
path of fixed length, and is convenient for elderly patients with
limited mobility. We utilized a Nexus 5 smartphone whose F2.0
autofocus lens provides a well-focused high-resolution image
over a specified distance range. Hundred photographs were se-
lected, which were considered to be an appropriate sized dataset
for wound classifier training. Since the objective is an efficient
smartphone-based implementation, we down sampled the orig-
inal image (with pixel dimensions 3264 × 2448) by a specific
factor in both the horizontal and vertical directions. The ra-
tionale for this down-sampling procedure is to speed up the
following wound area determination, without losing essential
information. The down-sampling factor is empirically set as 4
which will provide a final resolution as 816 × 612. Based on
the observation, this factor provides the optimal balance be-
tween processing time efficiency and wound recognition accu-
racy. For implementation, we apply the API from android bitmap
operation library provided by Google.

Furthermore, we framed the wound images to remove irrele-
vant background information (thanks to the image capture box,
we can safely rule out the irrelevant background by simply fram-
ing the original image with a rectangle with a fixed size, center,
and orientation). The final pixel dimensions of each foot image
are 560 × 320, which has been shown empirically to provide a
good balance between the wound resolution and the processing
efficiency.

Fig. 1 depicts the overall process for the wound boundary
determination on diabetic foot ulcer images. Since our wound
boundary determination system is based on the bottom-up ob-
ject recognition scheme, the first critical task is to segment the
wound images accurately into a number of superpixels. In pub-
lished wound analysis works [6], [14], the mean-shift-based seg-
mentation algorithm [24] has been widely applied because of its
outstanding region uniformity preservation. However, in terms
of forming superpixels, the mean shift procedure only provides
a preliminary result with many oversegmented regions. Hence,
a region merge procedure is required to group a number of these
oversegmented regions together to form a superpixel represen-
tation that better preserves the original boundary information.
Three superpixel segmentation algorithms, the graph-based, the
mean-shift–based, and the J-SEG-based algorithms, have been
described and compared on wound images in [14]. The best

Fig. 1. Complete flowchart for the wound boundary determination sys-
tem (the details are introduced in the Section II).

results were obtained with the J-SEG algorithm [25]. Both
the mean-shift and J-SEG-based algorithms are controlled by
several parameters that need to be tuned to adjust the number of
output regions. Furthermore, even with the same parameter set-
tings, our experimental results have demonstrated that both the
mean shift and the J-SEG methods result in a large variation in
the resulting number of superpixels for visually similar wound
images. Since our system is intended for the smartphone-based
platform, the number of regions will impact the computation
time. Hence, we prefer an algorithm which allows direct control
of the number of output regions. For this purpose, we chose
the SLIC [26] for superpixel segmentation. The SLIC algorithm
has been compared to other state-of-art superpixel methods in
[27] and has been shown to correctly identify image boundaries,
while at the same time providing speed and memory efficiency,
which are desirable characteristics for a smartphone-based
implementation.

For each superpixel in a given sample image, a feature de-
scriptor is generated based on local color and texture informa-
tion. Experimental findings in [6] and [14] show that the color-
based features are important parameters for determining wound
boundaries. Meanwhile, texture is also relevant given that these
neighborhood-based features are appropriately selected to de-
scribe the difference between the wound and nonwound regions.
In [14], several color and texture descriptors, previously ap-
plied in dermatological imaging systems, have been explored for
wound tissue classification. The experimental results show that
the mean color descriptor (MCD), the dominant color descriptor
(DCD) in different color spaces (RGB, normalized-RGB, CIE
Lab), and the statistics of the color histogram serve as most
useful color features for wound tissue classification. With re-
spect to texture, the gray level cooccurrence matrix (GLCM)
and wavelet transformation-based features have been shown to
be the most effective features. In our paper, we further explore
the feasibility of applying another popular visual descriptor used
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Fig. 2. Image capture box illustration: (a) Actual product of the image
capture box; and (b) wound image captured using the warm LED light.

in other object recognition tasks, such as human recognition and
outlining, scene detection, and classification: the BoW represen-
tation of the DSIFT descriptors [17]. Based on the experimental
results, we extract different feature descriptors for the two-stage
classification. The mean-color information (in CIE Lab and nor-
malized RGB space), color histogram statistics, GLCM texture,
and BoW representation of the DSIFT features are used for
the first stage. The dominant color information and wavelet
transformation-based texture are used for the second stage. In
each stage, the dimension of feature descriptors can be reduced
by applying principal component analysis (PCA) techniques.

Subsequently, a cascaded two-stage SVM-based wound
boundary determination method is proposed based on the ex-
tracted feature descriptors. Before training the algorithm, three
experienced clinicians assisted us in generating the ground truth
labels of the wound boundaries for all training images. After
the ground truth had been determined, k-fold cross validation
was performed to train the set of k SVM binary classifiers in the
first stage. After applying these k classifiers to different testing
sets, we collected all the incorrectly classified superpixels to
form a new training dataset for the next stage. In the second
stage, we extracted new feature descriptors for these superpix-
els and trained a new binary SVM classifier. When analyzing a
new wound image, we first applied the first-stage SVM classi-
fier to all superpixels. Then, for all the superpixels classified as
“wound,” we applied the second-stage SVM classifier to remove
false positives. Finally, a CRF-based algorithm was applied to
refine the determined wound boundary. In Sections IV to VI,
each module of the flowchart will be discussed in detail.

III. IMPROVED IMAGE CAPTURE BOX

As described in our previous work [12], to capture an image
of their wound, the patient places his/her foot with the wound
over the opening of the image capture box and a smartphone
is attached next to the foot. By using a pair of straight-angled
front surface mirrors, the entire foot region can be imaged. In the
improved version of the image capture box, a more complicated
layout is employed consisting of three LED lights in the box to
minimize the shadows. The actual product and the sample image
taken with this box are shown in Fig. 2. To fix the smartphone
at the right place, we install four elastic metal clips which allow
the user to easily slide the phone in and stop at the place where

Fig. 3. Grid of black and white squares.

Fig. 4. Geometric distortion estimation for images captured with the
image capture box: (a) Original image of a black-white grid sheet; (b)
nine selected rectangle areas marked in red for geometric distortion
detection; and (c) region area determination results for all rectangle
areas.

the camera exactly looks through the hole. When using it, the
patient will sit in a chair and place his foot on the opening
comfortably. One major concern is the possibility of microbial
contamination of the image capture box by the users or the
environment. So far, we addressed this problem by wiping the
surface of the box with an antimicrobial wipe after each use. A
better solution may be a disposable contamination barrier, which
will cover the slanted surface of the box except the openings.
This will avoid the patient’s foot directly touching the surface
of the image capture box. We can see from the image in (b) that
the plantar surface of the foot is uniformly illuminated.

Since we used a pair of straight-angled mirrors to image
the entire foot region, we need to verify that no significant
geometric distortion is introduced across the entire image plane.
For this test, we prepared a grid of black and white squares on
the white paper, as shown in Fig. 3, where the dimension of
each square was 15 mm. The grid paper was placed over the
opening of the image capture box, and an image was captured,
as shown in Fig. 4(a). Next we selected nine black squares at
different locations on the image plane, marked these squares
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TABLE I
GEOMETRIC DISTORTION ESTIMATION RESULTS

Patch ID Physical dimension 1 2 3 4 5 6 7 8 9

Area in pixels N/A 2622 2590 2648 2638 2676 2639 2692 2622 2650
Area in mm2 225 219 216 220 220 222 220 224 219 220
Error relative to Patch 1 (in %) +2.7 0 −1.4 +0.5 +0.5 +1.4 +0.5 +2.3 0 +0.5

in red using Photoshop and numbered them 1–9, as shown in
Fig. 4(b). After calculating the area of each square, we can
determine the geometric distortion by comparing the areas of
squares at the edge of the image field with the area of the
square in the middle. Because we use the image capture box
which provides a fixed object-to-image distance, we can simply
convert the area size in terms of pixels to physical units by
multiplying a constant scale factor to the former one.

To calculate the square areas, we generated a binary im-
age with the nine selected rectangles highlighted in white, as
shown in Fig. 4(c). Then, we applied the mean-shift-based
segmentation algorithm to segment the binary image into ten
different regions where nine of them represent the nine red rect-
angles in Fig. 4(b) and the remaining one represents the entire
black background region. In this case, the area size for each
rectangle can easily be calculated by counting the number of
pixels in each region, as shown in Fig. 4(c). The results are dis-
played in Table I, which shows that the largest deviation from
each rectangle area to the middle rectangle is less than 3% of
the mean area size. Even when considering the inaccuracy that
can possibly be introduced by the square patch delineation us-
ing Photoshop, we can conclude that the geometric distortion is
small enough to be considered negligible.

IV. SUPERPIXEL SEGMENTATION

A good superpixel segmentation algorithm should have the
following three properties: 1) good image boundary adherence
(i.e., the edge information in the original image will be pre-
served in the segmentation result), 2) computationally efficient
and with modest memory requirements, and 3) easy to use and
control [27]. The most widely used superpixel segmentation al-
gorithms can be divided into two categories [27]: 1) graph-based
algorithms, which view each pixel as a node in a graph and use
the weight between any two nodes to measure their similar-
ity [28], and 2) gradient ascent-based algorithms, which start
from an initial node and iteratively refine the clusters until the
convergence criterion is met to form superpixels (mean shift al-
gorithm is the best known in this category [24]). Previous works
prove that no existing segmentation method can provide ideal
performance under all circumstances [27]. When dealing with a
high-resolution image, graph-based algorithms can become very
computational demanding if the number of nodes grows rapidly.
As mentioned before, in wound tissue classification studies,
researchers have mainly used the mean-shift-based algorithm.
However, these mode-seeking approaches suffer from several
drawbacks: 1) they usually stop at an oversegmented state and
require further region merge procedures; 2) several parameters
are required to control the performance, and poor parameter

tuning can result in efficiency and performance degradation;
and 3) the number of superpixels generated cannot be directly
controlled. In other bottom-up object recognition applications,
the JSEG algorithm, consisting of three steps (color space quan-
tization, J-image calculation, and region growing-based region
merge), has also been widely used [14], [25]. However, the
number of superpixels generated can also not be controlled. To
overcome these shortcomings, in this paper, we utilize the SLIC
method [26], [27].

Before the superpixel segmentation, the original image needs
to be transformed from RGB space to CIE Lab space in order
to obtain better perceptual accuracy. Similar to the mean shift
algorithm, the SLIC clustering takes spatial continuity into ac-
count by expanding the original 3-D color range space to a 5-D
space, which includes two spatial components. By default, we
only need to specify one parameter k, the desired number of ap-
proximately equal-sized superpixels. Unlike the random initial-
ization required for the traditional K-means clustering method,
the SLIC algorithm places k initial cluster centers uniformly on
the image grid with S pixels separating each pair. It is easy to
verify that S =

√
N/k, where N denotes the number of pixels

(i.e., the product of image height and width). In this case, we
can expect the segmented superpixels to be of approximately
equal size. In the assignment step, each pixel is assigned to the
closest cluster center, which is similar to the traditional K-mean
process. However, instead of computing the distance between
the target pixels and all cluster centers, SLIC only computes
distances from each cluster centers to pixels within a 2S × 2S
neighborhood region. This approach narrows down the search
region, effectively reducing the number of distance calculations
and accelerating the algorithm. Meanwhile, it is also pointed
out in [27] that this speeding up is allowed only when a spe-
cial distance measure D is introduced, as formulated in (1).
The novel distance measure D combines distances from color
space (dc) and spatial space (ds) to effectively reduce the vari-
ance of boundary adherence due to changes in the superpixel’s
size [27]:

dc =
√

(Li − Lj )
2 + (ai − aj )

2 + (bi − bj )
2

ds =
√

(xi − xj )
2 + (yi − yj )

2

D =

√

d2
c +

(
ds
S

)2

m2 (1)

where (Li, ai, bi , xi, yi) and (Lj , aj , bj , xj , yj ) represent two
points in the 5-D color and spatial spaces. The variables dc
and ds represent distances in color subspace and the distance
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spatial subspace, respectively. As mentioned earlier, S denotes
the approximate superpixel size. The parameter m is used to
weight the relative importance between color similarity and
spatial proximity. It is recommended in [27] that m should be
in the range [1], [40] if the algorithm is performed in CIE Lab
color space. In our case, we empirically set m to 16 and S to
30. Then, the following process is similar to K-mean algorithm:
1) replace the cluster center with the mean of all pixels in that
cluster; 2) calculate the cluster center change and decide whether
it converges; and 3) reallocate isolated pixels to nearby cluster
centers to enforce connectivity.

It is demonstrated in [6] that the “ground truth” is not al-
ways a practical basis for evaluating the performance of super-
pixel segmentation algorithms. The reasons are: 1) to generate
the ground truth, experienced wound clinicians are required to
manually segment each wound image into 100 of regions; 2) this
process is not only time consuming but also lacks consistency
in terms of both the segmentation granularity and boundary
determination for each superpixel; and 3) for segmentation al-
gorithms with high level of complexity, it makes more sense
to apply goodness evaluation methods, which assess the per-
formance on a number of test images by using some desirable
properties of segmented images as goodness measures. Hence,
we use the evaluation method used in [6] to assess the super-
pixel segmentation result of the SLIC algorithm, and compare
it to the mean-shift-based algorithm used in [29] and the JSEG
algorithm used in [14]. The evaluation is based on two mea-
sures: region uniformity measurement Uα and region contrast
measurement Cα of the entire segmented image, as defined in
(2) and (3). In both these equations, fi is the color vector in
CIE Lab space for pixel i in region Rj , f̄j is the average value
of all fi in Rj , Aj is the area of the region Rj , and fmin and
fmax are the maximum and minimum values in this region. It is
obvious that the larger the value of Uα , the better the uniformity
is achieved in the current region, where α is the significant area
where the measure is evaluated. In (3), cj is the contrast measure
in region Rj and vj is the weight assigned to region Rj . Based
on [6], vj is modeled as the simple linear contribution of region
Rj to the total area of image. The parameter cij represents the
contrast between regions Rj and Ri . Finally, pij is the adja-
cency parameter specified as the ratio of the common perimeter
of Rj to Ri . More details about the definition and derivation of
these formulas can be found in [30]:

Uα = 1 −
2
∑

Rj ∈α
∑

i∈Rj

∥∥fi − fj
∥∥

∑
Rj ∈α Aj ‖fmax − fmin‖ (2)

Cα =

∑
Rj ∈α vj cj∑
Rj ∈α vj

cj =
∑

AdjRi

pij cij

cij =

∥∥fi − fj
∥∥

∥∥fi
∥∥ +

∥∥fj
∥∥ . (3)

We applied the superpixel segmentation evaluation scheme
proposed in [6], specifically, we calculated the mean and stan-

TABLE II
STATISTICS OF REGION UNIFORMITY AND CONTRAST MEASURES ON THE
CIE LAB SPACE WITH THE SIGNIFICANT AREA CONTAINING THE ENTIRE
IMAGE FOR THREE DIFFERENT SUPERPIXEL SEGMENTATION METHODS

Method Mean shift JSEG SLIC

μ σ M σ μ σ

Uα 0.867 0.022 0.878 0.051 0.873 0.032
Cα 0.147 0.008 0.166 0.019 0.099 0.027

TABLE III
STATISTICS OF REGION UNIFORMITY AND CONTRAST MEASURES ON THE

CIE LAB SPACE WITH THE SIGNIFICANT AREA CONTAINING THE MANUALLY
DELINEATED WOUND AREA FOR THREE DIFFERENT SUPERPIXEL

SEGMENTATION METHODS

Method Mean shift JSEG SLIC

μ σ M σ μ σ

Uα 0.692 0.109 0.769 0.162 0.748 0.174
Cα 0.217 0.058 0.233 0.084 0.184 0.061

TABLE IV
COMPUTATION TIME EVALUATION ON NEXUS 5 SMARTPHONE PLATFORM

FOR THREE DIFFERENT SUPERPIXEL SEGMENTATION ALGORITHMS

Method Mean shift JSEG SLIC

Computation time 12.7 s 9.7 s 7.2 s

dard deviation of the Uα and Cα measures for three superpixel
segmentation algorithms (with appropriate parameter tuning)
when applied to 100 sample images (significant area α in (2)
and (3) is set as the entire image area). The results are shown
in Table II. In Table III, the same indicators are calculated with
the significant area α containing the entire wound area manu-
ally delineated by three experienced clinicians (the details about
these ground truth generation process will be discussed in detail
in Section V). The implementation details of the mean shift +
region merge algorithm and JSEG method are beyond the scope
of this paper and can be found in [23], [25], and [28]. In Table IV,
the efficiencies (running time) of these three segmentation ap-
proaches are compared, using the Nexus 5 smartphone platform
with a Quad core CPU, 2.3-GHz Krait 400, 2-GB RAM. We
can see from Tables II and III that the mean value of region
uniformity is generally large and that the mean value of region
contrast is generally small. These results were expected since
we deliberately tuned the parameters to obtain a relatively large
number of superpixels. Besides, the standard deviation is gener-
ally small for all cases. Comparing the data in these two tables, it
can be concluded that in the wound area, uniformity is smaller
and region contrast is higher than for the entire image. This
shows that the nature of the wound area is more complicated
than that of the background and the healthy skin. Comparing
the different columns in both tables, we find that SLIC provides
the best performance balance between the uniformity and con-
trast measures. However, the difference in the performance of
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different algorithms is not large. The average region uniformity
Uα is larger than 0.86 and the average region contrast Cα is
smaller than 0.2 for all three methods. Hence, based on these
findings, we conclude that all three superpixel segmentation al-
gorithms can achieve good performance given careful parameter
tuning. We selected the SLIC algorithm for several reasons. As
mentioned earlier in Section 2.2.3, we only need to tune one
parameter for the SLIC algorithm. In contrast, at least two and
three parameters need to be tuned in the JSEG shift and mean
shift algorithms, respectively [24], [25]. Furthermore, SLIC has
the best performance in terms of computation time, as shown in
Table IV.

V. FEATURE DESCRIPTOR EXTRACTION FOR SUPERPIXELS

In terms of selecting appropriate descriptors for wound clas-
sification, we concentrate on the color and texture descriptors
already applied in the wound tissue classification tasks [6], [14],
[31]. Generally speaking, color features are very useful for
wound recognition and tissue classification, as demonstrated
by the red-yellow-black healing visual assessment scheme [32].
Texture features, even though they have lesser significance, can
still be useful in refining the classification results [14]. The
superpixel-based local color features used in previous wound
tissue classification work include mean color, dominant color,
statistics (highest peaks, variance, skewness, energy, and en-
tropy) of color histogram and sampled multidimensional color
histogram [31] in various color spaces (RGB, normalized-RGB,
HSV, CIE Lab, and CIE Luv). The widely used local texture
features have specific measures, determined by the chosen de-
scriptors: 1) energy of each subband of the two-stage wavelet
transformation, 2) Gabor transformation-based features on five
scales, 3) local binary pattern histograms, 4) normalized texture
contrast and anisotropy, and 5) GLCM-based features. Wannous
et al. [14] compared the extraction efficiency and predictive
power of several local color and texture features and concluded
that the combined descriptor of mean color, dominant color,
and GLCM-based features provided the best performance (92%
for specificity and 77% for sensitivity) [14]. Veredas et al. [6]
applied the combination of mean and variance of local color in
RGB, normalized RGB and CIE Luv spaces, histogram statis-
tics, and wavelet-based texture features as region descriptors. It
is claimed that a high global wound classification performance
(95% for specificity and 79% for sensitivity) was achieved by
applying neural networks and Bayesian classifiers [6]. However,
both works dealt with wound images that contained predomi-
nantly wound tissue, with just a small amount of surrounding
healthy skin tissues. In our scenario, the wound boundary de-
termination task is more challenging since the wound image
contains large area of healthy skin tissues (sometimes the en-
tire foot) and even some arbitrary background surrounding the
foot. After applying a combination of the sets of descriptors
proposed in previous works, the wound boundary was not al-
ways accurately determined and the sensitivity was not high
enough (<65%), which implies that a significant amount of
nonwound regions have been incorrectly classified as wound
regions. Hence, it became necessary to explore additional fea-

tures that would improve the accuracy of wound boundary
determination.

In other object recognition applications, such as face detec-
tion, pedestrian detection, and scene classification, the BoW
representation of local features is widely used as a powerful de-
scriptor for classification. BoW treats image features as words,
where BoW is a sparse histogram of word counts over the vo-
cabulary of image features. This direction of development is
now established as a state-of-the-art approach for visual object
category classification [17], [33], [34]. The wound boundary
determination task can also be treated as an object recognition
task, although the “object,” i.e., the wound, is often complex due
to lack of characteristic outline and internal structure. Hence,
we applied the normalized BoW histogram representation as a
supplement to the color and texture features. To construct a less
sparse BoW histogram representation (meaning that the num-
ber of zeroes in the histogram representation is reduced) and to
provide more relevant information to the classifier, we extracted
SIFT descriptors for each pixel (or over a denser grid than tradi-
tional SIFT) of the image at a fixed scale and orientation using
the DSIFT framework [17], [35]. As mentioned in [17], the
computation of DSIFT descriptors is usually accompanied by
a clustering stage, where the individual SIFT descriptors are
reduced to a small vocabulary of visual words, which can then
be combined with the BoW model method [17]. The extracted
descriptors are clustered to generate K (a predefined number)
centers (a so-called dictionary of visual words) using a K-means
algorithm. Then, each descriptor is classified based on its near-
est center as determined by the minimum square distance rule.
The descriptors in each superpixel si are aggregated into a sin-
gle normalized histogram hi ∈ RK

+ based on the classification
results, where K is the number of words predefined in the code-
book (the set of clusters resulted from the K-means algorithm,
which in our case was set to 400).

The BoW histogram-based descriptor has two major draw-
backs [17]: 1) the resulting classifier is superpixel specific with-
out considering the surrounding regions for each superpixel,
and 2) the histograms are still very sparse even when based on
DSIFT features, since the superpixels are inherently uniform
and a large number of DSIFT features are assigned to the same
visual word. To overcome the problems caused by the lack of
consideration of the surrounding region of each superpixel and
sparse histogram representation, we apply the histograms to
superpixel neighborhoods [17]. Let h0

i be the histogram asso-
ciated with superpixel si . Then, hNi is the histogram obtained
by merging the histograms of the superpixel si and neighbors
which are less than N nodes away in the adjacency graph of the
current superpixel [17]:

hNi =
∑

sj |D (si ,sj )≤N
h0
j . (4)

In our experiments, we evaluated four combined feature de-
scriptors by applying them to the single-stage binary SVM-
based wound classifier, using 100 sample images and employing
the leave-one-out cross-validation scheme. More details about
the machine-learning techniques we utilized can be found in the
Section VI. Descriptors 1 and 2 are formulated based on [6] and
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TABLE V
WOUND RECOGNITION PERFORMANCE EVALUATION FOR DIFFERENT

COMBINED DESCRIPTORS

Descriptor
ID

Classification results
(α = entire image)

Classification results
(α = wound + healthy skin only)

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

1 68.7 86.2 72.2 86.1
2 68.3 86.9 74.5 88.3
3 71.4 87.2 69.4 86.6
4 70.4 87.0 72.3 85.8

1) Descriptor 1: MCD + DCD + GLCM [14], descriptor 2: MCD + color histogram
+ wavelet [6], descriptor 3: MCD + color histogram + BoW, and descriptor 4: MCD
+ DCD + color histogram + wavelet + GLCM + BoW; 2) descriptors are evaluated
on two different types of image area: the entire image area containing wound bed,
healthy skin, and irrelevant background and the area containing only wound bed and
small amount of surrounding healthy skin.

TABLE VI
COMPUTATION TIME EVALUATION FOR DIFFERENT COMBINED DESCRIPTOR

GENERATION (INCLUDE THE PCA DIMENSION REDUCTION) BASED
ON NEXUS 5 SMARTPHONE

Descriptor ID 1 2 3 4

Computation time 4.5 4.2 5.6 8.8

[14] and contain color and texture features, respectively. In de-
scriptor 3, we use the color features introduced in [6] (mean and
variance of color in the CIE Lab and normalized RGB spaces,
two highest peaks, dominant levels, variance, skewness, energy
and entropy of the color histogram in the RGB, and normalized
RGB spaces), and we append the color features with the BoW
histogram representation of local DSIFT features. Descriptor
4 combines the color and texture features used in descriptors
1–3. After applying the PCA dimension reduction method by
maintaining 99% total invariance, the resulting descriptor
lengths are 12, 19, 33, 39 for descriptors 1–4, respectively.

As seen in Table V, the general sensitivity and specificity mea-
sures when evaluating the entire image show that the descriptor 3
provides the best performance (71.4% for sensitivity and 87.2%
for specificity) on the 100-ft wound images. However, when the
significant area is confined to the wound itself and small region
of surrounding skin, descriptor 2 provides the best performance
(74.5% for sensitivity and 88.3% for specificity). These results
may indicate that the BoW features are useful for ruling out the
irrelevant background information, but is less able to distinguish
between the wound and healthy skin comparedto wavelet and
GLCM-based texture features. This observation led us to imple-
ment the cascaded two-stage classifier design introduced in the
next section. Morever, the longest feature descriptor 4, while
obviously more computationally demanding as seen from Ta-
ble VI, provides no major performance improvement. Based on
the discussion above, we applied the descriptor 3 and descriptor
1 to the first- and second-stage classification, respectively. The
cascade two-stage classification system will be introduced in
the next section.

VI. SUPERVISED MACHINE-LEARNING-BASED METHOD

FOR WOUND BOUNDARY DETERMINATION

A. Expert Labeling for Supervised Machine Learning

Wannous et al. [6], [14] developed graphical user interfaces
to deal with the time-consuming task of labeling the whole set
of more than 10 000 regions (superpixels) from the segmented
wound images. It was reported in [6] that labeling just one image
required 6 min. To save the clinicians’ time, we proposed a sim-
pler labeling method. For the images used in this study, a group
of three expert wound clinicians from the Plastic Surgery De-
partment at the UMASS Medical School delineated the wound
boundary for all 100 wound images independently. The setup
consisted of a laptop, installed with Photoshop and connected
via USB to a Wacom drawing tablet. Using the electronic pen, it
took on average only 30 s for each clinician to label one wound
image. To generate the ground truth based on a binary label for
each superpixel (wound or nonwound), we first assign each pixel
a label by applying a majority vote scheme [14]. Then, for each
superpixel, another majority vote scheme is applied: if more
than half of all pixels in this superpixel are labeled as “wound,”
we assign it as a wound region; otherwise, we assigned it as
nonwound region. To validate our labeling method, we reused
the wound boundary delineation based on the label associated
with each superpixel in a given image and compared it with the
original delineation from the clinicians. The resulting similarity
at the pixel level between these two sets of delineations was
higher than 96%. Overall, we concluded that the novel method
provided labeling results with high accuracy, although the sec-
ond majority vote may cause some inaccuracy for regions near
the wound boundary.

B. Two-Stage Cascaded SVM-Based Machine-Learning
Architecture

In [6], Verdedas et al. utilized the approach of creating a
stable neural network-based classifier from a set of subclassi-
fiers trained by following a cross-validation strategy. The re-
sults proved that this approach provides promising wound tis-
sue classification performance when dealing with images con-
taining only wound area and some surrounding healthy skin.
We have modified Verdedas’s proposal to a two-stage cascade
machine-learning architecture based on SVM, as shown in the
following steps.

Step 1: Split the entire training image dataset into k subsets
of equal size. Since we can control the segmented superpixel
number by using the SLIC algorithm and the dimensions
of most training images are the same, we have approx-
imately an equal number of superpixels for each training
image. Hence, in each subset, we have approximately equal
numbers of both images and superpixels.
Step 2: Make the number of wound regions and nonwound
regions from k−1 subsets equal. Since we use the image
capture box to photograph the foot, sometimes the number
of wound regions (i.e., superpixels) is relatively small com-
pared to the number of nonwound regions. This skewed
distribution of the number of instances in the different cat-
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egories can severely undermine the performance of the
trained SVM classifier. Hence, if our training set has m
wound superpixels and n nonwound superpixels (n >> m)
in the subset 1 to k−1, we will randomly select only m non-
wound regions from n in total. Consequently, our training
set has 2m training patterns.
Step 3: Follow a classical tenfold cross-validation scheme
to train a binary SVM-based classifier on these 2m train-
ing patterns. Based on each subset, we further split this
subset into ten equal-sized folds. Then, we run the standard
RBF-χ2 kernel-based soft margin SVM (C-SVM) [36] ten
times, where on each run, one fold is the validation set while
the remaining nine folds are the training set.
Step 4: Use the trained classifier to classify regions in a
subset other than the k−1 subsets for training.
Step 5: Collect the incorrectly classified instances from the
results in Step 4 into the training set for the second stage.
Step 6: Repeat the first-stage training (Steps 2 to 5) k times
and let each subset be the test set exactly once.
Step 7: Train the second-stage SVM binary classifier in the
same way as described in Step 3.

Based on the findings in Section IV, we extract wound image
descriptors consisting of color features and the BoW histogram
representation of DSIFT features for superpixels for the first-
stage training set. For the second-stage training set, we extract
the descriptors consisting of color features and wavelet-based
features. In kernel-based SVM training, the nonlinear separa-
ble classes in low-dimensional feature space may become lin-
early separable when mapping features to higher dimensional
space using a suitable kernel function [37]. Hence, the key point
of the SVM classifier design remains the choice of the kernel
function. Since no universal kernel will fit all applications, we
evaluated various classic kernels, including linear, polynomial,
perceptron, and RBF-χ2, and we found that the RBF-χ2 pro-
vided the best performance. After the selection of the RBF-χ2

kernel, its parameters must be tuned. In our case, we utilized
the soft-margin SVM with the RBF kernel. Hence, there are
two parameters that need to be tuned: (C, ϒ) where C is the
regulation parameter and ϒ is the kernel parameter [36]. The
best parameter combination is often selected by a grid search
with exponentially growing sequences of the two parameters
[38]. Each point in this grid was used as parameters in the SVM
training process and the general testing error (GTE) on the val-
idation sets was evaluated. The optimal parameter combination
was the one that provided the lowest GTE. After running the
grid search for both stages, we found that the optimal parame-
ters for the first and second stages were (C = 100, ϒ = 0.05)
and (C = 85, ϒ = 0.12), respectively.

To evaluate the performance of the two-stage cascaded SVM-
based approach more completely, we also compared it to other
machine-learning strategies. The strategies we compared against
included 1) a single-stage SVM-based classifier with the same
configuration as the first-stage classifier in the two-stage ap-
proach, and 2) a single-stage classifier based on neural net-
work (ANN) with one hidden layer of 40 neurons [6]. For both
single-stage methods, we applied descriptor 2 introduced in
Section V (this descriptor is a combination of mean color, color

TABLE VII
WOUND BOUNDARY DETERMINATION PERFORMANCE EVALUATION

OF DIFFERENT MACHINE-LEARNING STRATEGIES

Method ID 1 2 3 4

Sensitivity (%) 68.3 66.4 71.4 73.3
Specificity (%) 86.9 83.7 92.8 94.6
Computation time (s) 15.4 16.1 18.8 20.5

Method 1: single-stage SVM-based method, method 2: single-stage ANN-based
method, method 3: novel two-stage SVM-based method, method 4: two-stage SVM
+ CRF refinement. The Computation time measures the average time consumed by
the entire wound boundary determination process for 100 images including superpixel
segmentation, descriptor generation, and classification, and only method 4 includes the
boundary refinement process.

Fig. 5. Examples of wound boundary determination results (the deter-
mined wound areas are covered with red color), column 1: the original
image, column 2: the boundary determination results by applying our
two-stage classifier, column 3: the results after applying the CRF refine-
ment technique, and column 4: the results after the outlier removal or
hole filling up.

histogram, and wavelet-based texture features). As mentioned
in Section IV, for the two-stage SVM-based method, we applied
descriptors 3 and 2 for the first and second stages, respectively.
Here, we used the specificity and sensitivity as performance
measures of the wound boundary determination methods. De-
spite a slight increase in the computation time (as shown in the
bottom row of Table VII), our two-stage SVM-based classifier
outperforms both single-stage methods, by being approximately
5% higher in sensitivity and was 6% higher in specificity. Three
examples of our wound classification results are shown in Fig. 5.
Note that we implemented the SVM algorithm using libSVM
library [37].

C. Wound Boundary Refinement

Even though the two-stage SVM-based classifier signifi-
cantly improves the wound boundary determination perfor-
mance, some regions may still be misclassified. Most of the
erroneously classified regions were located near the wound
boundary and were connected to the target wound area. In ad-
dition, some misclassified regions may also be located inside
the wound bed (holes) and/or in the healthy skin (outliers). To
refine the wound boundary, we first generate a binary result
image based on the wound boundary determination result, by
assigning a value of 255 to the pixels classified as “wound” and
0 to the pixels classified as “nonwound.”
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Following that there are three major steps for wound bound-
ary refinement. The first step is to apply the CRF technique to
relabel the misclassified regions near the actual wound bound-
ary. Ideally, all correctly classified regions should retain their
labels after the CRF refinement, while the labels for misclassi-
fied regions should be flipped. Otherwise, extra errors might be
introduced by the refinement process itself. The second step is
to break narrow bridges (if there are any) and fill the remaining
holes (if there are any) inside the determined wound area by
applying the closing image morphological operation (we used
the circular structure element with radius = 3 pixels). For the
last step, we try to remove the outlier regions if there are any.
This is easy because outliers are always disconnected from the
main wound area and small in size. We can simply run a con-
nected region detection method [39] and only keep the largest
connected region. Examples of the results of boundary refine-
ment after the two previous steps are shown in Fig. 5, column 4.
By comparing the last two images on the third row, significant
refinement can be observed on the boundary determined by last
two steps when CRF alone fails to provide accurate refinement.

Since the last two steps are straightforward and only involve
basic image processing techniques, in the remaining part of this
section, we will focus on the first refinement step. CRF and
level set are two candidate techniques, which have been used
for postboundary refinement in similar applications (e.g., refine
the determined boundary of an individual in an image) [40].
As mentioned in Section I, the level set-based algorithm can be
unstable especially when the actual wound boundary is poorly
defined. Hence, we decided to utilize CRF to recover more
precise boundaries by further reducing the misclassification oc-
curring near the edges of the wound. CRF provides a natural
way to incorporate such constraints by including them in a pair-
wise edge potential of the model. The refinement problem can
be formulated as the task of finding the most probable labels for
all pixels in a given image. It includes the use of both unary pixel
properties and pairwise relations between pixel labels. In image
processing using CRF, the labeling problem is transformed into
an energy minimization problem. The energy is usually defined
as the sum of a series of unary terms and pairwise terms, which
indicate individual label preferences (unary term) and spatial
coherence, respectively (pairwise term).

Let P (c|G;w) be the conditional probability of the set of
class label assignments c, given the adjacency graph G(S,E)
and scalar weight w. The energy function in [17] and [41] is
shown as

−log(P (c|G,w))=
∑

si ∈S
ψ(ci |si)+w ·

∑

(si ,sj )∈E
φ(ci, cj |si, sj ).

(5)
Our unary potentials ψ are defined directly by the probability

outputs (provided by the libSVM library) for each superpixel
as

ψ(ci |si) = − log(P (ci |si)). (6)

Regarding the pairwise term in (5), our pairwise edge
potential ϕ is identical to the one introduced in [23], defined

as

φ(ci, cj |si, sj ) =
(

L(si, sj )
1 + ‖si − sj‖

)
[ci �= cj ] (7)

where [.] is the zero-one indicator function and ‖si − sj‖ is
the norm of color difference between any two superpixels in the
Luv (or CIE Lab) color space where the perceptible color differ-
ence can be directly calculated.L(si, sj ) is the shared boundary
length between superpixels and acts here as a regularizing term
which discourages small isolated regions.

In applications of CRF for computer vision tasks, the unary
and pairwise potentials are represented by a weighted summa-
tion of many simple features, and so the parameters of the model
are trained by maximizing their conditional log likelihood. In
the formulation in (5), the CRF model simply has one weight w,
which represents the tradeoff between spatial regularization and
our confidence in the classification. We estimated w by applying
cross validation on the training data [17]. Once our model has
been trained, we wish to find the most probable labeling c∗, i.e.,
the labeling that maximizes the conditional probability in (5).
The optimal labeling is found by carrying out inference with the
multilabel graph optimization library of [42] usingα-expansion.
Since the CRF is defined on the superpixel graph, inference is
very efficient, taking less than half a second per image on a typi-
cal modern PC [17]. Based on our experimental results, the CRF
refinement consumes 2.2 s on average on the Nexus 5 smart-
phone, which is still fast enough for processing at interactive
rates. Examples of the results of CRF refinement are shown in
Fig. 5, column 3. To demonstrate the refinement effectiveness,
we reevaluate the specificity and sensitivity measures based on
the CRF-refined boundary determination results on the same
testing images in Section IV. By comparing columns 2 and 5,
a 3.8% improvement on sensitivity and 1.2% improvement on
specificity can be observed.

VII. DISCUSSION AND CONCLUSION

A novel smartphone-based system for automatic wound
boundary determination on diabetic foot ulcer images has been
presented in this paper. We tracked 15 patients in the Wound
Clinic at UMASS over a two-year period resulting in 100-ft
high-resolution ulcer images that were captured using an image
capture box. The images were first segmented into superpixels
by using the SLIC algorithm, which our evaluation has shown
to outperform other widely used segmentation algorithms. The
main contribution of this paper is the development of a cas-
caded two-stage SVM-based classifier to determine the wound
boundaries. The inputs of the classifiers were color and texture
descriptors of superpixels. To train the supervised classifiers,
we asked three experienced clinicians to delineate the wound
boundary on 100 images and designed a novel way to generate
the ground truth label for each superpixel. In the first stage, k
C-SVM-based classifiers were trained by a k-fold cross-
validation strategy on the entire training dataset. In the second
stage, only the incorrectly classified instances, when k classifiers
were applied in the first stage, were used as the training set to
train another C-SVM-based classifier. To optimize performance,



2108 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 9, SEPTEMBER 2017

we used different combinations of color and texture descriptors
for the two training stages. Finally, the determined boundary
was further refined utilizing a number of image processing tech-
niques, including morphological operations, connected region
detection, and a CRF-based relabeling method, to either remove
the outlier nonwound regions or fill undetected wound regions.

To evaluate our two-stage binary classification system, we
compared its performance with two other machine-learning
strategies: a single-stage SVM classifier and an ANN-based
classifier. Moreover, the classification performance on different
color and texture descriptors were also compared to a single-
stage SVM machine-learning strategy. During the evaluation,
we found that the sensitivity was the performance measure-
ment that varied the most across different machine-learning
approaches analyzed in this paper. In contrast, almost every
machine-learning strategy used here can achieve promising
specificity (higher than 92%) and there was only small variance
between methods (<3%). According to our results, the mean
color + color histogram + wavelet texture feature (applied in
our second-stage training) showed the best ability to distinguish
between wound regions and surrounding skin regions. How-
ever, the dominant color + color histogram + BoW histogram
of DSIFT features (applied in our first-stage training) provided
the best sensitivity when classifying irrelevant background and
foot tissue. Furthermore, our two-stage SVM-based classifier
provided the best sensitivity rate to determine wound boundary
from foot ulcer images containing wound regions, as well as the
foot, healthy skin, and irrelevant background.

We implemented the entire wound classification system on
a Nexus 5 android smartphone and measured the computa-
tion time for each module. The average time required for our
two-stage classification method was 17.5 s. Compared with the
method proposed in [14], the running time of our two-stage
approach only increased slightly, i.e., by 2 s. However, the per-
formance of boundary determination has been improved signifi-
cantly (12% improvement on sensitivity and 8% on specificity).
We only implemented the offline classification system on the
smartphone, excluding the classifier training process. Moreover,
the SVM-based training strategy is good at dealing with descrip-
tors containing a large number of elements on a relatively small
training set. Hence, the PCA dimension reduction was not really
helpful and we did not use it in the actual smartphone imple-
mentation as it would further increase the computation time.

As mentioned earlier, the good performance of wound area
determination relies on the image capture box. In another words,
our approach can achieve robust accuracy only when the im-
age capture condition, including illumination, foot position, and
foot-to-camera distance are consistent. All previous discussion
regarding method selection for superpixel segmentation and fea-
ture descriptor generation are also based on this well-controlled
image database.

To obtain a more precise estimation of the appropriateness
of our machine-learning approach and extend its feasibility, a
few tasks should be addressed in the future. 1) More clini-
cians should be recruited to delineate wound boundaries in order
to minimize the impact of inter- and intraobserver variability,
which was reported as an unavoidable problem to undermine

the classification efficiency when using manual delineation as
the ground truth; 2) the current wound image database should be
extended to further enhance the classifier training. Hence, not
only do more type-2 diabetic patients need to be recruited, but
we also considered training our supervised wound classifier on
other type of wound images (for example, burn wounds), and
also wound images taken under varying lighting conditions. In
these cases, we believe that our methodology would be easy to
apply in other similar scenarios; and 3) cloud computing tech-
niques could be exploited to update the wound classification
model using an online machine-learning strategy to add more
flexibility to our method, rather than prestore the trained model
files on the smartphone.
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