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A middleware architecture for mobile 3D graphics

EMMANUEL AGU*, KUTTY BANERJEE, SHIRISH NILEKAR, OLEG REKUTIN

and DIANE KRAMER

Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA

(Received 6 December 2004; in final form 1 July 2005)

Mobile graphics, which involves running networked computer graphics applications on mobile devices
across wireless networks, is a fast growing segment of the networks and graphics industries. Running
networked graphics applications in mobile environments faces a fundamental conflict; graphics
applications require large amounts of memory, CPU cycles, battery power and disk space, while mobile
devices andwireless channels tend to be limited in these resources. In order tomitigatemobile environment
issues, some form of adaptation based on a client device’s capabilities, prevailing wireless network
conditions, characteristics of the graphics application and user preference, is necessary. In this paper, we
describe themobile adaptive distributed graphics framework (MADGRAF), a graphics-awaremiddleware
architecture thatmakes it feasible to run complex 3Dgraphics applications on low-endmobile devices over
wireless networks. In MADGRAF, a server can perform mobile device-optimized pre-processing of
complex graphics scenes in order to speed up run time rendering, scale high-resolution meshes using
polygon or image-based simplification, progressively transmit compressed graphics files, conceal
transmission errors by including redundant bits or perform remote execution, all tailored to the client’s
capabilities. MADGRAF exposes our mobile adaptive distributed graphics language (MADGL), an API
that facilitates the programming and management of networked 3D graphics in mobile environments.

Keywords: Middleware architecture; Mobile 3D graphics; CPU cycles; Memory constraints; Adaptive
graphics; Remote execution

1. Architectural firm mobile 3D graphics scenario

The Ulo corporation is a multi-national architectural firm with clients and workers in 50

countries across five continents. Ulo maintains a large database of 3D architectural drawings

of various types of buildings. Some of Ulo’s clients are located remote areas with limited

internet access and low bandwidth links. Additionally, to accommodate workers at various

levels, Ulo has found it useful to equip its workers with PDAs, laptops and cell phones with

graphics capability. Different teams of architects work on different projects which are

maintained in Ulo’s database. Initially, an Ulo team visits a client and after preliminary

discussions, retrieves possible design solutions and shows them to the client. These serve as

starting points of the design process. After the client selects a viable option and requests

modifications, the architects annotate the diagrams and return to Ulo’s office to make

necessary amendments. Periodically, the architects return to the client to show progress and
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seek more feedback, towards a mutually agreeable design. In cases where the client resides in

a remote location, the architects can select a disconnect operation mode, in which case the

relevant drawings are pre-downloaded (hoarded) onto the client, before disconnection. On

reconnection, the hoarded files are reconciled with the database.

2. Introduction

Mobile graphics, which involves running networked computer graphics applications on

mobile devices across wireless networks, is a fast growing segment of the networks and

graphics industries. In on-site consulting situations (such as the Ulo scenario above), an

interior designer or architect can show clients preliminary designs and seek feedback towards

a mutually agreeable final solution. Field service technicians repairing complex equipment

such as copiers and automobiles can retrieve and playback synthetically generated

animations of repair manuals, focussing on relevant sections from new viewpoints. In

electronic commerce, major corporations are already using interactive 3D catalogs to

demonstrate product features, enabling rich interaction and virtual product examination.

Running networked graphics applications in mobile environments faces a fundamental

conflict; graphics applications require large amounts of memory, CPU cycles, battery power

and disk space, while mobile devices and wireless channels tend to be limited in resources.

Specific issues to be dealt with include mobile device limitations, wireless channel, mobility

and network infrastructure issues [3].Mobile device limitations in memory, CPU power, disk

space, screen size and battery life make it difficult to load and manipulate very high

resolution geometric models or run sophisticated rendering algorithms that are necessary for

visual photorealism. Highly interactive distributed applications cannot be supported due to

wireless channel issues such as low transmission bandwidths and high, variable bit error rates

(BER) that lead to prohibitively high, variable model download times. For wide area

networks with wireless hops, network infrastructure issues such as variable latency and low

bandwidth caused by slow network routers, switches and backbones further exacerbate

networking. Mobility issues such as disconnection and hand-off require additional algorithms

to manage the changing network topology, network address resolution and guarantee

continuous service. Finally, any progress made in algorithms that run on the graphical

processing unit (GPUs) of graphics cards has limited use since most mobile devices are still

not equipped with 3D graphics accelerators.

In order to mitigate the above issues, some form of adaptation based on a client device’s

capabilities and prevailing wireless network conditions is necessary. Application-aware

adaptation [14] in mobile computing dictates that any trade-offs made should exploit the

specific nature of each type of mobile application. The mobile graphics industry is already

embracing the adaptation theme for mobile graphics in directions that include the

development of new efficient 2D vector graphics standards such as scalable vector graphics

(SVG), reduced command-set languages and versions of graphics libraries such as OpenGL

ES, wireless gaming engines, and low-power GPUs. However, most of these directions are

niche solutions and more general solutions for mobile 3D graphics have been slower to

appear.

The heart of the wireless graphics problem lies in the scalability of the currently adopted

polygonal mesh representations, which show greater realism as the number of faces in a mesh

increases. Today’s state-of-the art meshes that are automatically produced by 3D scanning
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can easily consist of billions of faces (or hundreds of gigabytes (GB)), each of which have to

be rendered using a number of algorithmic steps, leading to an explosion in rendering

complexity. Manipulating, processing and displaying such large models can be extremely

unwieldy.

Research in mobile graphics tries to exploit the characteristics of graphics applications in

adapting to resource constraints in mobile environments. Mobile graphics applications have

varying degrees of interactivity, latency tolerance, refresh frame rate and scene complexity.

Thus, different mobile applications will benefit from different forms of adaptation. For

instance, a ray tracer performs thousands of floating point computations per pixel to

determine the final pixel color, exhibits very low interactivity and would benefit from remote

execution to offload expensive computations to a high-end server. A mobile gaming

application on the other hand would requires low latency and would benefit more from a

reduction in the resolution of geometric meshes, images and foreground graphics content to

preserve interactivity.

We present the mobile adaptive distributed graphics framework (MADGRAF) [1], a

middleware architecture for interactive 3D graphics in mobile environments. MADGRAF

exposes the mobile adaptive distributed graphics language (MADGL), which facilitates the

programming and management of networked 3D graphics in mobile environments. Specific

research directions being investigated as middleware components in MADGRAF include

device-optimized pre-processing of complex graphics scenes in order to speed up run time

rendering, automatically scaling down the resolutions of complex scenes based on target

mobile device capabilities [15], the offloading of draining rendering steps to more powerful

servers (remote execution and cyber-foraging) [3], efficient transmission via compression

[18], progressive (batch) transmission and rendering of large models [19], concealing the

effects of wireless errors by including redundant bits [20], and the use of graphics-aware

network protocols. We are also investigating machine learning decision algorithms in our

centralized decision module at the MADGRAF server. By closely tracking resource usage at

the client as well as graphics application performance, necessary trade-offs can be made to

improve overall performance.

3. MADGRAF

The generic functions of a graphics library such as OpenGL and DirectX include scene

modeling, import of predefined scenes, scene viewing and rendering. It is instructive to note

that MADGRAF and MADGL do not duplicate these functions, but compliment them by

focussing on aspects such as the import, adaptation and rendering of remotely stored graphics

files, remote execution and geometric compression, which are of direct benefit to a mobile

device. Our proposed research thrusts are being developed using MADGRAF as a

foundation.

3.1 MADGRAF middleware

It is envisioned that MADGRAF will service a diverse spectrum of mobile graphics

applications ranging from ray tracers to mobile games, in different ways. A set of middleware

components can be combined in various ways for different applications, exploiting any
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trade-offs that make sense for a given application. Therein lies the power of the MADGRAF

framework. The main middleware components in MADGRAF are:

. Geometric simplification: algorithms convert an input high-resolution mesh into a lower

resolution version (less polygons) of the original mesh [15]. Figure 1 shows several

representations of the same mesh that are suitable for different mobile clients.

. Image based simplification: convert an input high resolution mesh into a sequence of high

resolution images. The main advantage of converting to images is that even at high

resolutions, images (or textures) have lower memory (storage) requirements than meshes.

However, images permit less interaction than meshes [17].

. Remote execution: allows a portion of a computation task, or rendering in the case of

graphics, to be performed on a remote server. In our many envisaged usage scenarios, the

original high-resolution meshes will be stored on the server and remote execution could

simply involve having the server start a portion of the rendering process before

transmitting partially rendered results back to the client.

. Geometry compression: reduces the size of the geometric mesh prior to transmission [18].

Unlike ASCII compression (such as gzip on Unix systems), geometry compression

exploits the connectivity of input meshes and is thus more efficient for meshes.

Figure 1. Various resolutions of a mesh suitable for different mobile clients.
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. Progressive meshes: large high-resolution graphics mesh files can take a long time to

download over most wireless networks, which generally limits interactivity. In certain

situations, a quick rough preview image that could be improved iteratively would be

adequate. For instance, an experienced interior designer who is trying to match a blue

leather sofa to a virtual model of a room would probably reach a quick decision just by

seeing a rough rendered image of the sofa in place. Progressive transmission [19] is a

hierarchical data structure which encodes a large mesh such that a small base mesh is

transmitted and rendered at first, followed by batches of mesh parts which could be added

iteratively to increase the resolution of the rendered image [19].

. Unequal error protection (UEP): is a forward error correction (FEC) technique that adds

redundant bits to a mesh prior to transmission such that a client can repair meshes that are

damaged due to transmission errors [20], and sometimes eliminate retransmissions. Since

the progressive mesh data structure is hierachical, each layer contains meta information

about the other layers. UEP recognizes this hierarchy and adds more redundancy to more

important packets.

. Graphics-aware wireless network protocols: highly interactive graphics applications such

as games are highly sensitive to network latency [21]. We have shown that latencies as

low as 150 ms affect the performance of users in the first person shooter (FPS) class of

games. However, our earlier studies investigate only latency patterns due to infrastructure

bottlenecks arising from geographically distant multi-user game servers on the Internet.

Multi-path fading and the hidden terminal problem [5] on wireless networks can lead to

significant latencies. We would like to characterize the nature of latencies due to the

wireless channel and its effect on graphics application users.

3.2 Examples of MADGRAF middleware usage

In the Ulo architectural firm scenario in Section 1, since the Ulo architects still require a

significant amount of interaction with the building models, the models must be retrieved in a

geometric mesh format. Since rendering the original mesh at full resolution may not be

possible at interactive rates, geometric simplification based on the client’s hardware

configuration could be applied. The decision module at the MADGRAF server would

determine what the output simplification ratio should be. The MADGRAF server also

determines if it is necessary to perform part of the rendering of retrieved buildings

for the client (remote execution), and also what level of compression or efficient

transmission is necessary based on the bandwidth and prevailing error conditions on the

wireless channel.

Since users of interactive 3D shopping guides expect high quality images to show off

product features and can tolerate limited interactivity, image-based simplification of meshes

is ideal. In a mobile gaming application, near and foreground characters require high

interactivity and geometric simplification is preferable. Image-based simplification can be

used for far and background images. In a ubiquitous synthetic posters application, the quality

of rendered output from ray tracing engines is highly dependent on the resolution of input

meshes and as little simplification as possible should be done. Additionally, this application

has very low interactivity, making remote execution a natural choice. Table 1 summarizes

the nature of mobile applications and related MADGRAF adaptations. In all the scenarios,

although we highlight a main enabling MADGRAF adaptation, other adaptations may be

A middleware architecture for mobile 3D graphics 187



used additionally. For instance, compression, unequal error protection or progressive

transmission may be applied as well.

3.3 Overview of MADGRAF operation

In this section, an overview of MADGRAF’s operation is now given. Figure 2 shows the main

components of the MADGRAF architecture. The key server components for adaptation are

the Adaptive Graphics Engine, the Adaptive Transmission Engine and the IntelliGraph

(a centralized intelligent decision engine). The main client-side components are the

Environment Monitor and the Profile Generator.

When a MADGRAF client program requests a 3D graphics file that is stored on a

MADGRAF server, the client’s Profile Generator retrieves information on the mobile host

configuration and capabilities along with the current quality of the wireless communication

channel from the Environment Monitor, and then builds the client profile, which it sends to

the server along with the originally requested file. At the MADGRAF server, the request and

client profile are forwarded to the intelliGraph, which decides if scaling is required and what

optimizations and conversions should be done for the mobile client. Adaptation takes place

in four main ways: (1) adaptive graphics such as geometric mesh simplification and image-

based simplification, that pre-process input scene files; (2) efficient transmission techniques

such as geometry compression, error concealment and progressive transmission [19] that

address wireless network transmission bottlenecks; (3) architectural and distributed systems

techniques such as remote execution, distributed rendering [1], and parallel rendering which

Table 1. Mobile graphics applications.

Application Interactivity Latency Scene complexity Frame rate
Main MADGRAF
adaptation

Architectural firm Medium High Very high Low Geometric simplification
Online shopping Medium Medium Low Medium Image-based simplification
Realtime 3D game High Very low Low High Geometric and

image-based simplification
Remote ray tracer Low High High Low Remote execution

Figure 2. MADGRAF components.
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attempt to borrow rendering resources from more powerful network servers; and (4)

intelligent caching which retains the results of expensive computations for re-use in the

future. These adaptations and the decision process forms the core of our short term goals and

will be expounded later as specific projects in Section 5.

The IntelliGraph on the MADGRAF server manages the entire adaptation process, and

utilizes the Adaptive Graphics Engine to generate files, which are best suited for use by a

given mobile client, and the Adaptive Transmission Engine to transmit these files efficiently

over a wireless network. The Adaptive Graphics Engine contains algorithms for geometric

conversions such as scaling, polygon simplification, view-dependent optimizations and

image-based techniques, while the Adaptive Transmission Engine contains efficient

transmission algorithms such as progressive transmission, compression, and graphics-aware

network protocols. Since a lot of the inter-conversions are computationally expensive and

could potentially drain server resources, the client’s profile and previously requested files are

cached in the profile cache, while the resultant optimized geometric models are cached in the

scene cache and may be re-used in subsequent requests.

The Environment Monitor gathers information and statistics about the MADGRAF

client’s operating environment, which are then used to build the client’s profile, and is a key

component for mobile host and communication channel adaptation. The information

collected include static attributes such as the hardware specification (CPU, memory, hard

disk and screen size) of the mobile host, dynamic attributes of the operating environment

(channel error rate, download times, latency and system battery power) and depreciating

resources such as battery power. The client profile may also include application requirements

on speed and interactivity, quality of service (QoS) parameters and location information that

may be useful for some optimizations.

4. IntelliGraph

Section 3.1 has described the different types of adaptations and optimizations that are possible

in order to adapt graphics content for a mobile client. Usually a combination of these

optimizations is applied and each combination of adaptations yields different rendering speeds

and perceived distortion at the client. IntelliGraph is a centralized control center at the

MADGRAF server, which decides what set of adaptations are necessary: specifically, what set

of efficient transmission techniques are applied in theAdaptive Transmission Engine andwhat

set of adaptive graphics techniques are applied in the Adaptive Graphics Engine. The

secondary issues are what models and client profiles are cached at the server and the client,

what stages of the graphics pipeline aremapped to the server andwhat stages aremapped to the

client. Finally, also, what degree of parallelism and mapping to a multi-process, beowulf

cluster or multi-processor machine. The IntelliGraph in the MADGRAF server uses

information which it receives about the client’s capabilities to make adaptation decisions in

four passes: adaptive graphics, architectural efficient transmission and intelligent caching

decisions.

4.1 Adaptive graphics decision

In general, combinations of graphics adaptations lead to a degraded synthetic image, which

can be rendered at cheaper computational costs at the mobile client. A brute force search for
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an optimal sequence of adaptations would, for a large number of possible optimizations, map

to the classic knapsack problem in computer science algorithms. In order to compare and

evaluate the effectiveness of any given set of adaptations, it is necessary to establish the

degradation-computational savings relationship for that set of optimizations. Evaluation can

be done using either quantitative metrics such as the number of polygons in the scene and

refresh rate, or by using perceptual metrics, which give a measure of the perceptual impact

on a user. Quantitative metrics tend to be easier to derive but perceptual metrics that require

detailed user studies have more meaning, since the response of the user is the desired end

result. Also, perceived levels of detail are not linearly correlated with quantitative metrics.

For instance, a user may by unable to tell the difference between a model with 100,000

polygons and a simplified version with 50,000 polygons.

4.1.1 Quantitative metrics. Pasman [16] has derived the distortion introduced by two key

types of degradation, polygon simplification and image-based rendering. For instance, for

view independent simplification, the distortion D introduced by simplifying a given model to

N polygons is shown to be given by

D ¼
2k arctanðr=dÞ

N
ð1Þ

These results are important since they allow the IntelliGraph to compute an estimate of the

distortion introduced by running a certain simplification or image-based optimization on a

scene. Thus, it is possible to compare whole categories of adaptive graphics by computing a

common metric, distortion. It is instructive to note that geometric simplification and image-

based rendering are the two most popular categories of techniques used in resource-

constrained graphics.

4.1.2 Perceptual metrics. Although calculating distortion is a first step towards determining

how well a certain optimization works, an additional link needs to be made between user

perception and the various forms of adaptive graphics, since in the end, the final consumer of

the results of these trade-offs is the human perceptual system. Making this link will require

detailed user experiments in the future; however, at this point, we shall formulate the

perceptual decision problem at the IntelliGraph. For this we adapt the decision-theoretic

approach proposed in [7]. The exact relationship between sets of adaptations and the visual

perceptory system remains unclear. Although we use the methods in [7] it is also instructive

to mention that several alternative bodies of work on what the most relevant visual factors are

exist in visual cognitive psychology, but there is no concensus and it is somewhat unclear as

to how these factors are to be used.

Humans typically scan rendered scenes in one of two modes, namely, pre-attentive vision

and attentive vision. Pre-attentive vision continually scans large areas at a time in parallel,

noting major or basic changes in a static of moving scene. Features efficiently detected by

pre-attentive vision include overall color, size, luminance, motion, object shape and

orientation. Attentive visual processes refer to the more serial, resource-constrained

processes, which are required in order to recognize details about objects and relationships in

scenes. In general, degradations in the quality of rendered scenes affect a human being’s

attentive senses and may be more prominent if they lead to discontinuities in color, texture or

E. Agu et al.190



motion. Since rendering artifacts are most noticeable in regions where a human being is

focussing attention, degradation techniques (such as polygon simplification) exploit this and

in general more resources (more detail) may be assigned to regions in which a user pays more

attention. View-dependent techniques are a good example of this.

Modeling attention-based rendering can be divided into three main tasks: (1) establishing a

relationship between perceived degradation in image quality and levels of adaptive

algorithms; (2) deriving the probabilities that a user focusses attention on particular objects;

and (3) combining the costs of degradation of individual pieces, objects or faces (or sprites)

which make up the rendered image.

First, we define a perceptual cost function C p (Rk, Fi) that gives a measure of the

perceptual cost associated with each face, Fi in a scene as a function of adaptive rendering

action Rk. A minimal perceptual cost C p means more photorealistic images and vice versa.

The R represents the combination or vector of graphics adaptations such as polygon

simplification, which are applied to the rendered faces. The faces in the scene can then be

combined by summation to give a total perceptual cost C p as

Cp ¼
X
i

C pðRk;FiÞ ð2Þ

It is important to note that the summation used above is somewhat naive since some

interaction between multiple faces may lead to artefacts or pop-out effects. Next, we extend

our perceptual cost function by including another variable, A, which captures the attentional

focus on a face to get C p (Rk, Fi, A). We also introduce pðAFi jEÞ, the probability that a user

focuses on face Fi, given some evidence E. Evidence includes information about the scene to

be rendered and inferences, which can be made from the general nature of the graphics task.

Assuming a continuous attentional model in which attention is a scalar random variable for

which minimum attention is at zero and maximal attention at one, the expected perceptual

cost becomes

E½Cp� ¼
X
i

ð1

x¼0

pðAFi ¼ xjEÞCpðRk; Si; xÞdx ð3Þ

Since users naturally attend to contiguous objects, pðAFij jAOj ;EÞ is the probability of

attending to a face, Fij conditioned on the viewer attending to a set of interrelated elements

which are perceived as a contiguous object, Oj. The expected perceptual cost in equation (6)

can be re-written as

E½Cp� ¼
X
i

ð1

x¼0

pðAFij jAOj ;EÞCpðRk; Si; xÞdx ð4Þ

The probabilistic models of attention above can be constructed using information

including the nature and context of the graphics task (e.g. game or ray tracer), direct mining

from the input scene file, and meta-data embedded by the input scene creators. So far, the

expected costs have been derived for static scenes. For dynamic scenes, the perceptual cost is

modeled by considering the last n frames observed at time t as C p(t 2 n). In general, the

more frames over which artefacts persist, the more noticeable they would be. For a dynamic

scene the probability of attention becomes pðAFij jAOj ;E;Cpðt2 nÞÞ.

The IntelliGraph seeks to minimize the expected perceptual rendering cost. An exhaustive

search on all combinations of adaptive algorithms maps to an expensive knapsack problem
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and is infeasible. However, classes of adaptation may be compared. More importantly, the

ratio in computational gains from a certain class of adaptation can be compared to the

perceptual loss. In most adaptations, the user accepts a certain level of error or distortion in

the image. The marginal computational cost DC c(Rr,Ra,Fi) is the difference in cost between

rendering the original scene and rendering an adapted version and can be written as

DCcðRr;Ra;FiÞ ¼ CcðRr;FiÞ2 CcðRw;FiÞ ð5Þ

The perceptual cost contributed to the overall expected perceptual cost of the whole image

by the adapted scene is given as

DCpðRr;Ra;FiÞ ¼
X
i

ð1

x¼0

pðAFi ¼ xjEÞCpðRk; Si; xÞdx ð6Þ

The expected perceptual refinement rate, F(Si) is the ratio of the incremental gain in

quality and the computational cost by using an adapted scene and can be expressed as

FðSiÞ ¼
CpðRr;Ra;FiÞ

CcðRr;Ra;FiÞ
ð7Þ

The IntelliGraph searches for a combination of adaptations which optimize the value of the

perceptual refinement rate.

4.2 Architectural adaptation decision

In the architectural decision, the IntelliGraph decides where to locate stages of the graphics

pipeline based on the capabilities of the mobile device, the capacity of the wireless channel

and the degree of resources and parallelism, which the server can support. Different

configurations and mappings of our distributed architecture will lead to different network

communications overheads for the different stages. In order to evaluate the gains from

various distribution scenarios, we need to quantify the computation-communication

overheads inherent in each stage of the graphics pipeline and hence each possible

distribution. Specifically, the storage and computation requirements of each stage and the

inter-stage communication overhead are evaluated.

A simple analysis of each stage of the graphics pipeline now follows. The pipeline takes as

input a vertex (Px,Py,Pz,1) expressed in homogeneous coordinates. The modeling and view

transforms, lighting and projection stages involve multiplication of the vertex with a 4 £ 4

matrix in homogenous coordinates of the form

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

0
BBBBB@

1
CCCCCA

ð8Þ

The per-stage, per-vertex computation and storage overheads are roughly equivalent to the

matrix storage and multiplication overheads. So that for a graphics scene with N vertices, a

first order approximation leads to a stage computation overhead of PM and storage

requirement of P þ M and the communication overhead incurred is that of transferring
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intermediate matrix PM. The IntelliGraph evaluates the above overheads and decides where

to locate the graphics pipeline stages.

4.3 Efficient transmission decision

Remotely located input graphics scene and mesh files, as well as intermediate results in our

distributed architecture, require transmission. The combination of efficient transmission

techniques such as encoding, compression and graphics-aware protocols selected is a complex

decision. With transmission, assuming that the server has few limits on resources, the main

overhead involved is the load of the techniques and time taken at the client. For instance,

compression at the server requires decompression at the client. Hence, higher compression

ratioswill lead tomore resources required for decompression. Typically, these client overheads

are minor and in general, the most compact and efficient transmission techniques can be used,

greatly reducing the need for optimality in this portion of the adaptive decision process. The

available bandwidth is also a big factor in deciding what set of transmission techniques are

used. For instance, for low bandwidth links like GSM, high compression ratios are important.

Finally, some redundancy may be introduced into the meshes before transmission for the

purposes of error concealment. The most suitable error concealment strategy is decided in the

efficient transmission decision, based on prevailing wireless channel conditions.

4.4 Intelligent caching decision

When a server receives a client’s request for a geometric model it computes the optimal

representation of the model for the client. This process may be time and resource consuming.

For instance, we found that it can take up to 10min to simplify a 500,000 vertex input model

by 98% for a cell phone. Running interactive graphics applications under these conditions

would be difficult. As an optimization, the server may generate a discrete number of

representations of all stored mesh models as a pre-process. All incoming client requests are

mapped to the cached representations, which is closest to its actual calculated optimal

representation. Also, the process of computing a client’s optimal representation is also time-

consuming and the same client may repeatedly request the same files. It is also useful to store

the mapping of a client, its configuration and the computed representation and simply look

that up on repeated requests. The specific number and increments of representations

calculated is done during an Intelligent caching decision.

5. MADGRAF research projects

Using MADGRAF as a foundation, we now define the research thrusts, which we are

currently pursuing in mobile 3D graphics. While the results of each thrust will generally lead

to the development of a module of the MADGRAF system, the results should be general

enough to apply to a wide range of mobile graphics systems. Due to space constraints, we

simply outline these research thrusts, which are expounded further in [1]:

. Budget-based graphics transcoders for heterogeneous mobile clients: which develop

metrics for the pre-processing of input meshes, subject to a budget on available memory,

CPU or other mobile device resource.
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. Remote execution for mobile graphics: in which based on prevailing conditions, each of

the various stages of the 3D graphics pipeline can be flexibly mapped for either a client or

surrogate server using our novel pipeline-splitting mechanism.

. Efficient transmission of graphics content and wireless networking: where we combine

progressive transmission, geometric compression, unequal error protection (UEP) and

graphics aware network protocol in order to satisfy application-dependent restrictions on

latency, interactivity, image resolution and other suitable performance criteria.

. Real-time performance monitoring and tracking: in which we instrument the mobile

device in order to constantly receive feedback for the demand and supply of its system

resources and wireless channel condition.

. Machine learning-based intelligence using history-based linear prediction: in which by

observing the resource usage of certain graphics models and optimizations, we develop

heuristics for the automatic selection and employment of our middleware modules for the

benefit of the mobile device.

. MADGL API definition: in which we are defining an intuitive powerful programmable

interface to our system to increase flexible usage and rapid prototyping.

. MADGRAF server optimization: in which we are investigating scalability issues on the

server based on workload analysis. We are also implementing out-of-core algorithms

which are paging techniques used in the pre-processing of extremely large models that

cannot fit into the server’s memory.

6. Current MADGRAF prototype

Our initial investigations showed that very little research on adapting 3D graphics

applications in mobile environments has been done. To get a concrete sense of the issues

involved, as well as to fuel our research efforts, we chose to develop MADGRAF while

prototyping. A minimal prototype has been developed. We shall now describe briefly our

accomplishments thus far.

6.1 Accomplishments thus far

. Minimal working prototype: MADGL and MADGRAF were developed initially using an

object-oriented design methodology with final implementation in Java, which due to its

platform independence, allows MADGRAF to run on various mobile devices with little

modification. A few third party tools were also used in developing MADGRAF, either as

offline pre-processing tools (3D model converters) or as third-party components (polygon

simplification, VRML viewers), which have been integrated into the prototype to reduce

development time. The high-resolution polygonal meshes used models were retrieved

from the Stanford 3D Scanning mesh repository [4]. Figure 3 is a screen shot of our

MADGRAF prototype.

. Automatic constraints detection: Since we wanted to make MADGL and MADGRAF

easy to use, we chose not to burden the client with specification of its resource

constraints, configuration and network conditions, which are used by the server’s

IntelliGraph in decision-making. Constraints detection is done automatically once a

MADGRAF client requests a graphics file. As such, it was necessary to develop
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platform-dependent modules for detecting client configurations and periodically sample

prevailing device and network conditions. The MADGRAF constraints/environment

detection module was developed using native code since it involves accessing specific

operating system variables, which was not possible in pure Java due to Java’s platform

independent design. On a Win32 client, system constraints were accessed by querying

the windows registry.

. Energy profiler: One key success is the development of PowerSpy [9], a software-only

power meter for determining power usage on a Windows mobile client, to enable the

server to make energy-efficient decisions.

. Pipeline splitting for remote execution validated: We instrumented a version of Mesa, a

popular software implementation of the OpenGL graphics library, with networking code

to create Remote Mesa (RMesa). Our preliminary tests show that our idea of remote

execution for mobile graphics using fine-grained pipeline splitting has merits and are

expounded in [8].

. Preliminary system performance measurements: Our working prototype allowed us to

get a rough sense of how long the retrieval, transmission, simplification and rendering of

meshes of a given resolution would take. These early measurements reinforced some of

our initial assertions, and are informing our current directions. Table 2 is a sample of

measurements on our current prototype. Since graphics applications are so different in

nature, we are developing a wide range of test applications and perform detailed

measurements as well as perceptual experiments to evaluate how much distortion is

experienced by the human visual system.

Figure 3. MADGRAF client screen shot.
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7. Related work

Some of the adaptation concepts used in MADGRAF such as polygonal mesh simplification,

image-based simplification [17], geometry compression [18] and progressive transmission

[19] have been proposed separately in the literature. However, combining them in an

integrated system for mobile environments is novel. Specifically, the application of mobile

environment constraints in determining which sets of adaptations to use and to what extent, is

a key contribution of the MADGRAF project. Augmented reality systems [12] integrate a

number of these techniques but are immersive, while MADGRAF is non-immersive. Web-

based graphics systems, [13], also deal with latency and bandwidth constraints on network

performance.

A few related complete systems are also worth mentioning. The ARTE system [2]

implements primarily adaptive graphics techniques such as polygon simplification and LOD

techniques, but does not use remoted execution, parallelism, or any distributed rendering.

ARTE also uses a simple decision model, which does not address specific device or wireless

channel constraints. Repo3D [11] is a distributed graphics library, which primarily presents

an object-oriented framework for the distribution of input graphics models, but does not

address issues of resource-constraints.

8. Conclusion and future work

We have presented the MADGRAF, a middleware architecture for mobile 3D graphics. The

MADGRAF prototype is serving as a proof of concept to validate our concepts. Our research

thrusts and key accomplishments thus far have all been presented.

In order to keep our goals realistic, we have limited the middleware components

described in this paper. However, several ideas for long-term research are already being

considered. Other research themes that we would like to explore longer term include pre-

fetching and hoarding techniques that allow offline operation in a disconnected mode,

cyber-foraging [3] which allows a mobile graphics client to “lease” the services of new

servers in new locations as it moves, and parallelization of server-side algorithms to enable

rendering on clusters. Other research thrusts include using MADGRAF to scale graphics

output to heterogenous displays in ubiquitous environments and point-based graphics for

mobile devices.

Table 2. MADGRAF prototype performance measurements.

Percent reduction
No caching With caching

Reduction time
(ms)

GZip time
(ms)

Total time
(ms)

Reduction time
(ms)

GZip time
(ms)

Total time
(ms)

05 136729 5943 142672 3825 4560 8385
20 340383 4950 345334 3819 4031 7850
30 455495 4376 459871 3809 3473 7282
50 653118 3152 656270 3857 2436 6293
80 802992 1225 804217 3836 1136 4972
99 925709 26 925735 3845 50 3895
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