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Abstract Sedentary behaviors are now prevalent as most modern jobs are
done while seated. However such sedentary behaviors have been found to in-
crease the risk of several ailments including diabetes, cardiovascular disease
and all-cause mortality. Current interventions are mostly reactive and are trig-
gered after the user has already been sedentary. Behavior change theory sug-
gests that preventive sedentary interventions, which are triggered before a
person becomes sedentary are more likely to succeed. In this paper, we char-
acterize user patterns of sedentary behaviors by analyzing smartphone-sensor
data in a real world dataset. Our work reveals location types (where), times of
day/week (when) and smartphone contexts in which sedentary behaviors are
most likely. Leveraging our findings, we then propose a set of context-aware
probabilistic models that can predict sedentary behaviors in advance by ana-
lyzing smartphone sensor data. Our Context-Aware Predictive (CAP) models
leverage smartphone-sensed contextual variables and the user’s history of
sedentary behaviors to predict their future sedentary behaviors. We rigor-
ously analyze the performance of our models and discuss the implications of
our work.
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1 Introduction

Sedentary lifestyles have become prevalent as most modern jobs are now done
while seated in vehicles or offices ([1]). The evolution of mechanization, au-
tomation, and cybernation has reduced human-beings’ workloads and our
modern society is now sitting oriented. In 1997, about 40% of U.S. adults
were sedentary, not engaging in leisure time physical activities of any kind [2].
By analyzing behavioral data collected with accelerometers for the National
Health and Nutrition Examination Survey (NHANES) in 2003–2004, Whitt-
Glover et al. [3] found that participants spent a mean of 5.5-8.5 hours per day in
sedentary behaviors. The amount of sedentary behaviors is concerning because
of mounting evidence of their adverse health effects. Recent research has found
that the length of time spent sedentary is associated with an increased risk of
diabetes, cardiovascular disease and all-cause mortality [4,5]. Such evidence
led Lees and Booth [6] to develop a new term—Sedentary Death Syndrome
(SeDS)—to characterize disorders caused by sedentary lifestyles, which result
in problems and conditions that increase premature death.

The word “sedentary” is from the Latin word sedere, meaning “to sit.”
Pate et al. [7] defined sedentary behaviors qualitatively as activities that do
not increase energy expenditure substantially above the resting level. Common
sedentary behaviors include sleeping, sitting, lying down, watching television,
and other forms of screen-based entertainments. Tremblay [8] proposed a quan-
titative definition of sedentary behavior as “‘waking behaviors characterized
by an energy expenditure ≤ 1.5 Metabolic Equivalent of Task (METs) while
in a sitting or reclining posture.”

Smartphones and wearables are now frequently equipped with a variety of
sensors. Machine learning methods have been proposed, which analyze data
from such sensors to recognize and sense various user contexts and physical
activities [9,10,11] including sedentary behaviors [12]. State-of-the-art inter-
ventions for sedentary behavior leverage such sensors to create sensor-triggered
reminders. For instance, the “Stand Reminders” feature of Apple Watch ([13])
reminds its user to stand up every 50 minutes if the user has not been active
enough. Similarly, the ”Reminder to Move” feature on Fitbit trackers’ checks
the user’s steps at the 50th minute of each selected hours (e.g., 10:50AM).
Users are then reminded to walk if they have not walked 250 steps or more in
that hour ([14]).

While those interventions are a step in the right direction, they are “reac-
tive” —intervening the deleterious sedentary behavior after it has been ongoing
for quite a while. We believe that the ability to anticipate and predict seden-
tary behaviors will transform sedentary behavior intervention to sedentary
behavior prevention. The reliable prediction of future sedentary behaviors will
enable Just-In-Time (JIT) interventions that are triggered just before the user
begins the sedentary behavior or while they are still in the planning stage. The
efficacy of JIT interventions are supported by the theory of planned behavior,
wherein modifications of a person’s day/week/month at the planning stage
are more likely to succeed ([15]). For example, if it is predicted that a person
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will sit for an entire afternoon watching TV, a gentle reminder might be sent
around noon (JIT) reminding them that sitting for too long is unhealthy. Ad-
ditionally, an intervention might be suggested such as asking him/her to stand
up and walk around during commercial breaks while watching TV.

In order to support reliable prediction of future sedentary behaviors, ro-
bust models that analyze user behavior data are required. In this study, we
propose a set of probabilistic models for predicting people’s sedentary behav-
iors from their smartphone sensor data. These models discover the underlying
patterns in people’s historical behaviors and contexts. “Context” in the field
of mobile computing refers to any information that can be used to characterize
the situation of an entity , where an entity can be a person, place, or physi-
cal or computational object ([16]). In our case, we focus on the context of a
smartphone user.

Figure 1 presents an overview of our approach. Our approach and contri-
butions are summarized as the following:

– Characterization: We analyzed a real world smartphone dataset to char-
acterize patterns of sedentary behavior including where (location types),
when (times of the day/week) and smartphone-sensed contexts strongly
correlated with sedentary behaviors.

– Predictive Models: Based on the insights we learned from the real world
dataset, we propose a category of probabilistic models of sedentary be-
haviors: Context-Aware Predictive (CAP) models. CAP models leverage
smartphone-sensed contextual variables and the user’s history of seden-
tary behaviors to predict their future sedentary behaviors. We evaluate
the discriminative and generative modeling approaches, and compare the
sensitivity of our models to various lengths of user history and how far in
advance the predictions of sedentary behaviors are made.

– Intervention: We discuss proposed health behavior interventions that
leverage the sedentary behavior predictions made by our models as a
new research direction. The ability to predict sedentary behaviors facil-
itate more effective computer-driven mobile interventions. By leveraging
accurate behavior prediction, mHealth apps will be able to recommend
evidence-based and context-specific interventions in advance of future dele-
terious health behaviors [17].

The rest of the paper is organized as follows: In the next section, we review
the background of sedentary behavior (as a health problem), context aware-
ness, and activity prediction with probabilistic models. In the “Methodology”
section, we describe the dataset, explain the terminology, and discuss the study
constraints and assumptions. In the “Characterization” section, we character-
ize sedentary behaviors from 3 perspectives: where, when, and the relation to
smartphone usage. In the “Probabilistic Models” section, we mathematically
define the different variants of our probabilistic models. The section after that
shows the results of our experiments evaluating a set of probabilistic mod-
els on a real smartphone dataset. Finally, we discuss the potential use of our
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Fig. 1 Overview of our approach for predicting future sedentary behaviors

models in future work—adopting predictive models in mobile/wearable health
apps—and conclude this paper.

2 Background and Related Work

2.1 Health Effects of Sedentary Behavior

The deleterious health effects of sedentary behavior have been established by
various medical studies. Several systematic reviews have recently confirmed
that sedentary lifestyles are a real health problem in the modern society.

2.1.1 Link with Total Mortality

A large prospective study conducted by Patel [18] et al. (a type of study that
observes health outcomes during the study period and relates them to sus-
pected risk factors) found relationships between leisure time spent sitting and
physical activity with mortality. Analysis of the time spent sitting and phys-
ical activity levels of 53,440 men and 69,776 women who were disease free at
enrollment identified 11,307 deaths in men and 7,923 deaths in women linked
to these sedentary behaviors during the 14-year follow-up. After adjustment
for smoking, Body Mass Index (BMI), and other factors, they found that time
spent sitting was associated with mortality in both women (Relative Risk [RR]
= 1.34, 95% Confidence Interval [CI]: [1.25, 1.44]) and men (RR = 1.17, 95%
CI: [1.11, 1.24]). RRs for sitting (≥ 6 hours/day) and physical activity (< 24.5
MET-hours/week) combined were 1.94 (95% CI: [1.70, 2.20]) for women and
1.48 (95% CI: [1.33, 1.65]) for men, compared with those with the least time
sitting and most activity. Associations were strongest for cardiovascular dis-
ease mortality. They concluded that the time spent sitting was independently
associated with total mortality, regardless of physical activity level.
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2.1.2 Link with Cardiovascular Disease (CVD) and Diabetes

A systematic review of prospective studies on sedentary behaviors and health
outcomes among adults by Proper et al. [5] analyzed 19 studies from several
electronic databases. Strong evidence was found relating sedentary behavior
to all-cause and cardiovascular disease (CVD) mortality. Moderate evidence
was also found for a positive relationship between sitting time and the risk for
type 2 diabetes. A meta-analysis by Wilmott et al. [4] examined the associa-
tion between sedentary time and diabetes, cardiovascular disease and death in
adults. Sixteen prospective and two cross-sectional studies were selected and
included, with 794,577 participants. They found that the sedentary time was
associated with a 112% increase in the RR of diabetes, a 147% increase in
the RR of cardiovascular events, a 90% increase in the risk of cardiovascular
mortality, and a 49% increase in the risk of all-cause mortality. The review
concluded that sedentary time is associated with an increased risk of diabetes,
cardiovascular disease and cardiovascular and all-cause mortality; the strength
of the association is most consistent for diabetes.

2.1.3 Link with Obesity

Thorp et al. [19] conducted another systematic review of longitudinal studies—
a type of observational research method in which data is gathered for the same
subjects repeatedly over a period of time—published between 1996 and 2011.
The studies reported relationships between self-reported sedentary behavior
and device-based measures of sedentary time with health-related outcomes in
adults. Forty-eight articles met the inclusion criteria, and of these, 46 incor-
porated self-reported measures including total sitting time, TV viewing time
only, TV viewing time and other screen-time behaviors, and TV viewing time
plus other sedentary behaviors. They found a consistent relationship between
self-reported sedentary behavior and mortality and also with weight gain from
childhood to the adult years.

2.2 Context Awareness

Our work characterizes and proposes probabilistic models that discover the
underlying patterns in smartphone user’s historical sedentary behaviors and
contexts.

“Context” in the field of mobile computing refers to any information that
can be used to characterize the situation of an entity , where an entity can be a
person, place, or physical or computational object ([16]). Chen and Kotz [20]
further divide the contexts summarized by Schilit et al. [21] into four cat-
egories: (1) Computing Context, the information about computing resources
such as network connectivity, communication costs, and communication band-
width, and nearby resources (e.g., printers, displays, and workstations); (2)
User Context, the information about users of the system, such as user profiles,



6 Qian He, Emmanuel O. Agu

location, people nearby, and social situation; and (3) Physical Context, the in-
formation about the surrounding physical environment, such as lighting, noise
levels, traffic conditions, and temperature.

In the case of sedentary behaviors, the entities are people who exhibit
recurrent sedentary behaviors, and the contexts are the surrounding environ-
ments they are in (physical context), who they are (user context), and what
smartphones, wearables, and cloud services (e.g., Dropbox for storing data)
they use (computing context). In this study, we focus on users’ contexts—
environments their smartphones can sense (e.g., location, ambient noise and
light intensity), social environments smartphone can infer (e.g., nearby peo-
ple’s voices), and smartphone app usage (e.g., whether the user is playing
Pokémon Go).

2.2.1 Sensors

Sensors are the fundamental components of mobile computing that enable
the context awareness of mobile systems. Sensors could be physical hardware
such as electrical parts (e.g., accelerometer and gyroscope) or software that
implements algorithms (e.g., pedometer and face recognizer). Context sensors
are further categorized into Physical Sensor and Virtual Sensor ([22,23]).

Physical Sensors are hardware sensors, which most smartphones and
wearables are equipped with. They are capable of sensing various physical
data and are the most frequently used types of sensors. Examples are ac-
celerometers, gyroscopes, magnetometers, barometers, photodiodes (ultravio-
let, infrared radiation, ambient light, etc.), microphone and camera.

Virtual Sensors (or Soft Sensors are generated by software algorithms
(e.g., classifiers) that process the raw data collected from physical sensors or
from other information sources (e.g., smartphone usage logs). For example,
a virtual “physical activity sensor” takes raw data from the smartphone ac-
celerometer and gyroscope as input and outputs the physical activity type
(e.g., “running” or “walking”) and duration that a user has performed. Virtual
sensors can also extract information by performing data mining and Natural
Language Processing (NLP) on text (e.g., email, SMS, and calendar event) and
smartphone usage. For instance, Likamwa et al. [24] found that the patterns of
smartphone usage can be used to infer the mood of users. Such patterns can be
considered as virtual “mood sensors”. Pielot et al. [25] investigated boredom
and smartphone usage and found that people often turn to their smartphones
to seek stimulation when they are bored. The recency of communication, usage
intensity, time of day, and demographics can infer boredom with an accuracy
of up to 82.9%. Their boredom sensing algorithm can be called a virtual “bore-
dom sensor”. Our work combines physical and virtual sensors to detect and
predict sedentary behaviors.
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2.2.2 Smartphones and Wearables

Smartphones and Wearables are common personal digital gadgets nowadays.
Smartphones are owned by over 81% of Americans. This is up from 2015,
when 68% of American adults and 86% of young adults (18-29 year olds)
owned a smartphone [26]. Smartphones carried by people in pockets, coats,
and handbags can sense the user’s contexts continuously. Specifically, the on-
board sensors of smartphone such as the microphone, ambient light sensor,
GPS, accelerometer, gyroscope, and magnetometer can be used to sense user’s
physical activities, mental states, and environments. Essentially, smartphones
can be considered as a sensor of human behavior.

Unlike smartphones which people may not always carry, wearables (e.g.,
fitness trackers) are attached to user’s body and are carried more often than
smartphones. For instance, people may leave their smartphones on the desk
for charging after they arrive at office or home. Wearables, on the contrary, are
worn continuously and may still be attached to people when they are sleeping
(e.g., fitness trackers with sleep tracking functionality) and even when they
are taking shower (e.g., waterproof trackers). Our work focuses on sedentary
behaviors detected by smartphones due to their ubiquitous ownership, but
excludes wearables.

2.2.3 Context Awareness

Context Awareness refers to the ability of a system to adapt itself to the
changing situations including physical context, computational context, and
user context [27]. Context-aware mobile applications can monitor context in-
formation from a variety of context sensors as discussed in previous sections.
In healthcare research, context-aware mobile apps have been widely developed
and used to promote exercises and healthy lifestyle [11,28,29,30].

One of the earliest context-aware applications, UbiFit Garden was devel-
oped to track and encourage active physical activities using mobile phones [9].
Likewise, BeWell [10] can assist people in maintaining a healthy lifestyle by
passively keeping track of their everyday behaviors without burdening them.
Both approaches focus on tracking subjects’ behaviors and displaying results.
Behavior prediction and intervention were not researched.

More recently, intelligent mobile coaching interventions have been proposed
to target unhealthy behaviors. In 2013, Klevin et al. [31] proposed an intelligent
coaching system for therapy adherence. They created ”eMate”, a coaching
system to determine why a user acts in conflict with his/her health goals. For
example, people might be aware of the serious consequences of an unhealthy
diet, but they might not feel that they will be actually affected. By inferring
the causes of conflicts, the eMate system sends subjects tailored information
through a mobile phone app and includes an online lifestyle diary to motivate
behavior change. Intervention messages are sent to users on a weekly basis.

Our prior work [12] proposed and developed a context-aware application to
encourage the user to walk more and be more active. It automatically classifies



8 Qian He, Emmanuel O. Agu

and records user’s physical activities, and recommends “walk interesting de-
tours” that increases walking distance based on the user’s origin and intended
destination. The study demonstrated the viability of activity recommendation
based on detected user behaviors using off-the-shelf smartphones.

2.3 Activity Prediction with Probabilistic Models

Our goal is to create probabilistic models that predict future user sedentary
behaviors based on observed past behaviors. Theoretically, human behavior
can be approximately modeled as a control system. Human behavior follows
a pattern over time, and environmental factors influence human behavior in
certain ways either physically or mentally. Consider a person who follows a
daily routine and drives on his usual route to the office every morning. Due to
a new pavement construction on his route, he is forced to follow a diversion
that takes him off his route, causing a late arrival at the office. In this example,
“drive to office” is a human behavior with a certain pattern “every weekday
morning with a usual route.” It can be influenced by a changing environment
such as “new pavement construction” or by the person himself such as “being
tired”.

By applying such insights, [32] proposed that many human behaviors can
be accurately described as a set of dynamic models such as Kalman filter
and can be sequenced together by a Markov chain. They demonstrated that
driving-related actions can be accurately categorized soon after the actions
begin using their behavior modeling methodology. Motivated by the goal of
recognizing activities performed by elders in their dwellings, Viard et al. [33]
also proposed a global method based on probabilistic finite-state automata
and a definition of the normalized likelihood and perplexity.

Similarly, probabilistic graph-based activity prediction methods, such as
Hidden Markov Models (HMM) [34] and Conditional Random Fields (CRF)
[35] have also been proposed. Such probabilistic models such as HMMs, CRFs,
and Bayesian networks [36] have emerged because they are efficient at repre-
senting random variables, dependence, and temporal variation, making them
suitable for behavior modeling ([37]).

2.4 Sedentary Behavior Prediction Using Non-Probabilistic Models

There has been little similar work that creates models of smartphone-sensed
behaviors and uses them to predict future sedentary behavior. He and Agu
[38] proposed a model based on rhythm analysis to predict future sedentary
behaviors. Their approach involves detecting the prevailing rhythms of seden-
tary behaviors and modeling the cyclical and linear rhythms using periodic
functions (history-free) and linear functions (history-dependent) respectively.
He and Agu also proposed an autoregressive model [39] with maximum entropy
method for discovering people’s temporal patterns of sedentary behaviors from
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raw activity logs and a frequency domain algorithm [40] to identify recurrent
sedentary behaviors that are usually the targets of interventions from activ-
ity time-series data at multiple timescales (hourly, daily, and weekly). They
found that subjects who exhibited recurrent sedentary behaviors yielded peri-
odic functions.

2.5 Machine Learning Approaches to Sedentary Behavior and Activity
Prediction

Rather than modeling sedentary behaviors, much of recent work has uti-
lized a machine learning or data mining approach. Kantoch [41] examined
and compared Linear Discriminant Analysis, Support Vector Machines, K-
Nearest Neighbors, Naive Bayes, Binary Decision Trees and Artificial Neural
Networks to recognize sedentary behaviors. They however utilized data from
wearable sensors while we utilized data from smartphone sensors. Bhattachar-
jee et al. [42] used machine learning to analyze sleep and sedentary behaviors
from physiological signals. Cook and Krishnan [43] proposed various machine
learning based approaches for learning, discovering, recognizing and predicting
human behavior from sensor data mostly for smartphones. Fahim et al. [44]
mined the contexts in which sedentary behaviors occur. There is a rich body of
work on Human Activity Recognition that uses machine learning and neural
networks models and focuses on all activities and not only sedentary behav-
iors [45]. Also related are human action prediction methods from video using
deep learning [46].

2.6 Other Related Work

Other related work include prior work that has proposed novel methods to
quantify sedentary behaviors [47], predictive models for mobility but not seden-
tary behaviors [48], visual analytics for exploring health behaviors that include
activities and sedentary behaviors [49], and smartphone apps that suggest
interventions based on recognized and predicted patterns of sedentary behav-
ior [12].

3 Methodology

3.1 Quantitative Definition of Sedentary Behavior

To define Sedentary Behavior quantitatively, we divide time into discrete time
buckets and characterize what percentage of all activities performed in a given
time bucket is sedentary. We define two terms first: time window (or time
bucket) and sedentary level. Time window is the atomic time unit for which
we examine people’s behavior. Sedentary level is the percentage of time in a
time window people spent being sedentary. For example, if a person spent 15
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minutes being sedentary in a 20-minute time window, his/her sedentary level
in this time window is 75% (= 15m

20m × 100%).
Exactly what sedentary level and what length of a time window should be

considered as “prolonged” or “deleterious” remains debatable. Some studies
define “prolonged” as being sedentary for an entire 20-minute or 30-minute
bout [50], implying that the time window is 20 or 30 minutes and that the
sedentary level is 100%. Other studies refer to it as “spending 3 or more hours
watching television or using a computer per day” [51], which implies that the
time window is 3 hours and that the sedentary level is 100%.

For our work, we defined prolonged sedentary behavior by adopting the
health recommendation given by the Ergonomics Research Group of Cornell
University [52]. They recommend “periodic standing and moving 1 to 2 min-
utes every 20 to 30 minutes,” and define three levels of sedentariness:

– Very Sedentary, a person who spends more than 96.67% of time on
sitting and where people stand/move less than 1 minute per 30 minutes
(99.67% = 1− 1m

30m × 100%);
– Sedentary, a person spends more than 90.00% of time but less than

96.67% of time on sitting. The value of 90.00% is calculated from a bound-
ary case in the above recommendation, where people stand/move less than
2 minutes every 20 minutes (90.00% = 1− 2m

20m × 100%);
– Active, a person spends less than 90.00% of time on sitting, which perfectly

meets the recommendation.

Whenever “Sedentary Behavior” is mentioned in this paper without ad-
ditional qualification, by default, it means a behavior with a Very Sedentary
or Sedentary level within a 20-minute time window.

3.2 Smartphone Dataset

In this study, we use the “StudentLife” dataset [11]. It is a public dataset
gathered at Dartmouth College. It contains smartphone logs of 49 Dartmouth
College students 1. The study was conducted in the spring of 2013. In the 10-
week study, 49 Dartmouth College students were given a smartphone running
an application collecting smartphone-sensed data (such as app usage, locations
visited, and ambient sound/light) as well as students’ periodic responses to
mental health (e.g., mood, affect, and depression) questionnaires. StudentLife
dataset provides us with real physical activity data, from which sedentary
behaviors are extracted with contexts of college students.

To provide a general sense of the StudentLife dataset in terms of sedentary
level, Figure 2 shows the daily sedentary levels (percentage of time in a one-
hour time window people spent being sedentary) of 49 students over 10 weeks.
The X-axis is the date and the Y-axis is the subject ID. Because some students

1 On the website of StudentLife project and in [11], the authors state that 48 students
completed the study. The StudentLife dataset, however, contains 49 students’ data.
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Fig. 2 Daily sedentary levels of 49 students over 10 weeks

dropped out of the StudentLife study [11], the subject ID is not from 0 to
48. In Figure 2, it can be observed that the students participating in the
StudentLife study started and ended the study on different dates. Also, not
all students turned on their given smartphones during the study. The blank
areas in Figure 2 are the dates we do not have any data for the corresponding
students.

3.3 Discretizing Time Series into Time Buckets

StudentLife dataset contains physical activity logs with activity labels (Sta-
tionary, Walking, Running, and Unknown) which were sampled every 2–3
seconds in 1 of every 4 minutes. In order to preserve battery life of study
participants and minimize attrition, different types of data were sampled at
different frequencies. For example, smartphone app usage was sampled every
20 minutes, and location logs were sampled every 10 minutes. In one hour
of app usage and location data, the different sampling rates would generate
different amounts of usage logs (e.g. 3 app usage logs and 6 locations logs
for one hour). This will cause difficulties in correlation analysis. Due to this
variability observed in sampling rates, discretization and time alignment of
the time series data is required for data analysis. In this study, all types of
data such as physical activity, location, and app usage were discretized into
20-minute buckets, 30-minute buckets, 40-minute buckets, 50-minute buckets,
1-hour buckets, 2-hour buckets, 3-hour buckets, 4-hour buckets, and 6-hour
buckets. The idea here is to count how many sedentary behaviors occurred
within each time bucket, which permits statistical analysis. From StudentLife
dataset, 65,601 such 1-hour buckets can be extracted from the raw smartphone
logs.
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3.4 Extracting Semantic Locations

One aspect of the analysis is to characterize where the students were sedentary
on the campus of Dartmouth College. In the Studentlife dataset, the historical
locations students visited were represented as either GPS logs (more accurate)
or service set identifier (SSID) logs of Wi-Fi access points that were close to the
student’s location. Because raw GPS logs (coordinates) and SSIDs (strings) are
difficult to reason about why sedentary behaviors occurred there, converting
Wi-Fi SSIDs to Dartmouth College campus building names made the location
data more meaningful and useful for characterization.

However, the “SSID ⇐⇒ building name” mapping information for Dart-
mouth College campus was not publicly available. Fortunately, we were able to
obtain metadata of all Dartmouth College buildings in a JavaScript Object No-
tation (JSON) format from Dartmouth College’s online map service (http://
m.dartmouth.edu/map/), which was powered with an open source software—
Kurogo Mobile Web (https://github.com/modolabs/Kurogo-Mobile-Web).
An example of a JSON representation of Dartmouth College building (Baker
Library) is shown below:

{

"title": "Baker Library",

"subtitle": "3 Wentworth Street, Hanover, NH",

"categories": ["Libraries", "Common Public Event Spaces"],

"lat": 43.705149197893,

"lon": -72.288711622435,

"geometry": [...]

...

}

In total, 678 locations/buildings were found on http://m.dartmouth.edu/

map/. A sample of the Dartmouth College buildings retrieved is shown on
a map in Figure 3. Among them, 101 SSIDs were mapped to Dartmouth
College’s buildings. For instance, the “sudikoff ” SSID was mapped to building
“Sudikoff Hall”.

3.5 Identifying Smartphone Apps Used

Prior work by Xu et al. [53], has shown that app usage are correlate with
user activities and environment factors. We hypothesized that certain apps
may either cause or are correlated with sedentary behaviors. For instance,
most people sit quietly while using banking apps to thoughtfully review their
banking statements. In this example, the banking app causes the sedentary
behavior. In this section, we analyze the apps used by Dartmouth College
students in order to determine what types of apps generally caused or were
correlated with sedentary behaviors.

http://m.dartmouth.edu/map/
http://m.dartmouth.edu/map/
https://github.com/modolabs/Kurogo-Mobile-Web
http://m.dartmouth.edu/map/
http://m.dartmouth.edu/map/


Title Suppressed Due to Excessive Length 13

Fig. 3 Buildings on the campus of Dartmouth College. Different colors represent different
building types: violet is Parking Lot ; green is Dartmouth/Hanover Community; cyan is
Residential-Undergraduate; orange is Common Public Event Spaces; and yellow is Aca-
demic & Administrative.

This app usage analysis involved placing specific apps used into different
app categories. The 49 students in the StudentLife study were given Google
Nexus 4 Android phones for everyday use. A data gathering app running
in the background of these phones recorded the apps they launched or used
throughout their day. Whenever a student used an Android app, the Java
package name of the app (e.g., “com.google.android.gm”) was recorded. In
total, 698 unique package names were found in 1,990,510 app usage logs.

In order to determine which apps corresponded with these package names,
these 698 unique package names were cross-referenced with the Google Play
Store, Amazon AppStore, Wandoujia Market, and online searches. 480 unique
apps were identified in terms of the app name (e.g., “Gmail”), the app devel-
oper (e.g., “Google Inc.”), and the app category (e.g., “Communication”).
Apps with package names such as “com.example.xxx” and “edu.dartmouth.cs65.xxx”
were considered as homework apps programmed by students. We labeled 204
such homework apps with app name “Study” and categorized them as “Ex-
periment” apps.

4 Characteristics of Sedentary Behavior

Many prior studies of sedentary behaviors involve statistical factor analysis
to establish the correlation between sedentary behaviors and various health
outcomes ([4,5,6]). A detailed characterization of sedentary behaviors and the
occurrence contexts has not yet been well explored and studied at the time
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of writing. Such fine-grained data are necessary for driving machine learning
algorithms and intelligent mobile applications. Our approach is to characterize
the sedentary patterns exhibited by students in the StudentLife dataset.

In this section, the sedentary behaviors of college students will be char-
acterized from 3 perspectives: when, where, and the relation to smartphone
usage.

4.1 When: Times Sedentary Behaviors Occurred

We suspected that sedentary behaviors may occur more at certain times since
college students and campuses are schedule-driven. For instance, classes usu-
ally take place during the day, and leisure time is usually before or after class
time. Prior work has established that undergraduate students have a certain
order about their schedules driven by the class schedules. For example, in
Barkhuus et al.’s study [54], one student reported, “My room mate and I have
lunch every Monday, Wednesday, Friday, because we have class that get out
at the same time. Tuesdays, Thursday I meet my guy-friends at [a fast food
restaurant on campus].” If times when students are mostly sedentary can be
established, then some temporal models can be applied.

Figure 4 is a heatmap of the average sedentary levels—the percentages of
time spent on sedentary behaviors in a time bucket. The Y-axis is the Day of
Week and the X-axis is the Hour of Day. The value of each cell in the grid is
the average sedentary level computed for all 49 students in a particular hour
and day (1-hour bucket). For instance, the block at the bottom left corner
represents the average sedentary level (81.60%) of all 49 students on Sunday
midnight between 12AM–1AM.

Fig. 4 Average sedentary level over a week timespan
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Students were generally more sedentary during nighttime (10PM–8AM)
than daytime (8AM–10PM). We believe that this was caused by resting/sleeping—
a type of sedentary behavior. Students were also more structured earlier in the
week, sleeping more overnight, and being relatively more sedentary on Sunday,
Monday, and Tuesday nights than other nights (Thursday to Saturday) of the
week. During the day, students were more sedentary on Mondays, Tuesdays,
and Wednesdays. We speculate that the first half of week was busier, focusing
more on school work, less on social engagements, and thus more structured
than the second half of week for Dartmouth College students. The latter part
of the week and weekends typically have more social activities. Future work
might explore additional interesting relationships regarding causation of seden-
tary behaviors by class schedules, deadlines, and personal weekly routines.

Students were generally more active in the mornings (8AM–12PM) than
the afternoons (12PM–5PM). We speculate that this phenomenon might be
caused by the fact that more courses were scheduled in the morning. A heatmap
of the distributions of course meetings (Figure 5) is generated by cross-referencing
the courses registered by each student and the meeting schedules of each
course. We acknowledge that actual student attendance (and hence activity)
may deviate from course schedules due to factors such as students skipping
some classes or classes being canceled due to bad weather.

Fig. 5 Course meetings

4.2 Where: Locations at Which Sedentary Behaviors Occurred

Student activities and their mobility patterns tend to revolve around a few
buildings. Their locations at any point during the week were largely dependent
on their class schedules. Prior work has found that students tend to be nomadic
in nature through their day [54]. They moved through the campus, stopping
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temporarily for dining, working in computer labs, studying at libraries, and
attending classes. Many of these nomadic stops are points at which sedentary
behaviors may occur. For example, after class, a student may go to a coffee
shop and sit there for half an hour.

Because the geometry information (the “shape”) of each building is avail-
able with the map service, We further merged the semantic locations (build-
ings) extracted from SSID logs with the geographic coordinates in GPS logs.
After that, we cross-referenced the locations with sedentary behaviors by
timestamps. Figure 6 shows a heatmap sample of where sedentary behaviors
occurred on the campus of Dartmouth College.

Fig. 6 A sample heatmap of where sedentary behaviors occurred (locations)

4.2.1 Buildings in Which Sedentary Behaviors Occurred

Figure 7 shows the top-10 buildings where Very Sedentary behaviors occurred.
The buildings ranked 1st (“North Park Street” graduate student apartments)
and 3rd (“Mass Row Cluster” undergraduate residence hall) are places where
students sleep, resulting in high sedentary levels at night (≈ 6–8 hours per
day). The building ranked 2nd highest is “Sudikoff Hall”, where the Depart-
ment of Computer Science is located. We speculate that students were highly
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sedentary at this building because most computer science research and study
require sitting and using computers.

Fig. 7 Top-10 buildings where sedentary behaviors occurred

To find the correlation between locations and Very Sedentary behaviors,
Pearson Correlation Coefficients (PCCs) [55] and 95% Confidence Intervals
(CI) were calculated. Figure 8 shows the top-10 buildings that were positively
correlated with Very Sedentary behaviors. “North Park Street” (graduate stu-
dent apartments) was the most positively correlated (ρ = 0.1489 and 95% CI
= [0.1437, 0.1540]) building with Very Sedentary behaviors. As mentioned,
this is not surprising because apartments are places where students rest and
sleep.

Fig. 8 Top-10 buildings that were positively correlated with Very Sedentary behaviors

Figure 9 shows the top-10 buildings that were negatively correlated with
Very Sedentary behaviors. “Hopkins Center for the Arts” was the most nega-
tively correlated building (ρ = -0.1586 and 95% CI = [-0.1637, -0.1534]) with
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Very Sedentary behaviors. “Hopkins Center for the Arts” building is the home
of the drama and music departments and is used for student performances,
concerts and plays by visiting artists [56]. Those activities are active as op-
posed to sedentary behaviors.

Fig. 9 Top-10 buildings that were negatively correlated with Very Sedentary behaviors

4.2.2 Building Category

Furthermore, the buildings were categorized using place type labels “Resi-
dential - Undergraduate”, “Residential - Graduate”, “Academic & Adminis-
trative”, “Common Public Event Spaces”, “Dining”, “Libraries”, “Dartmouth
Community”, and “Athletics”. As expected, residential buildings and academic
buildings were the places where the most Very Sedentary behaviors occurred
(Figure 10).

“Residential Undergraduate” category was positively correlated with Very
Sedentary behaviors with ρ = 0.1731 and 95% CI = [0.1680, 0.1782]. “Common
Public Event Spaces” category was negatively correlated with Very Sedentary
behaviors with ρ = -0.2393 and 95% CI = [-0.2443, -0.2344].

4.2.3 Environment

Different environmental ambient sound/light levels may be associated with the
types and intensity levels of physical activities people perform. For instance,
sleep usually happens in quiet and dark locations, and exercises are usually
surrounded by ambient noises at gyms and public parks. Figure 11 shows the
sedentary behaviors of different levels distributed in different ambient sound
types—“’Silence”, “’Voice” (people were talking near their smartphone), and
“’Noise”. Students tended to be more sedentary in quiet environments.
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Fig. 10 Categories of buildings where sedentary behaviors occurred

Fig. 11 Ambient sound vs. sedentary behaviors

“’Silence” was found to be positively correlated with Very Sedentary be-
haviors with ρ = 0.4665 and 95% CI = [0.4629, 0.4702] and “’Noise” was
negatively correlated with Very Sedentary behaviors with ρ = -0.4194 and
95% CI = [-0.4233, -0.4156].

Figure 12 shows that students were more active in bright environments.
“Dark” environments were found to be positively correlated with sedentary
levels with ρ = 0.2491 and 95% CI = [0.2449, 0.2532]. From previous section,
we learned that students were more physically active during daytime. We
speculate that students were busy with lively activities during the day (or
bright places) and were more sedentary in dark places (e.g., sleep at night).

4.3 Smartphone Usage Correlated with Sedentary Behaviors

Many smartphone-related activities such as chatting, watching videos, and
gaming are usually performed while sitting or lying down, which have positive
correlation with sedentary behaviors. Other smartphone apps such as exercise
tracking apps are typically used while exercising, which have negative correla-
tion with sedentary behaviors. In general, how smartphone usage is correlated



20 Qian He, Emmanuel O. Agu

Fig. 12 Ambient light vs. sedentary behaviors

with sedentary behavior and what types of smartphone use (e.g., communica-
tion, social networking, game playing, web browsing) are correlated the most
are questions we want to answer.

4.3.1 App Category

Among the identified 480 apps discussed in previous section, 87 apps belong
to Game category, 61 apps belong to Tools category, and 45 apps belong
to Productivity category (Figure 13). Although many games were played by
students, few games were played frequently. Figure 14 shows app usage by
category. Only 2.99% (59,465) of all app usage (1,990,510) occurred in the
Game category, in contrast to the fact that 18.13% (87) apps installed by
students were games.

4.3.2 App Users

The 49 Dartmouth College students did not use all those 480 apps. Figure 15
shows the number of students who used a specific app. Each bar on the X-axis
represents a unique app, and the height of the bar represents the number of
students who used that app. The figure shows a long tail. More than half of
the students used only 20 apps (4.17%). The top-10 non-system apps (not
part of Android OS, such as Launcher and SystemUI ) were Gmail (49 stu-
dents), PACO (49 students), Study (49 students), Chrome Browser (49
students), Contacts (47 students), Gallery3D (46 students), Google Play
(46 students), Messenger (40 students), Maps (31 students), and Google
Calendar (29 students).

4.3.3 Correlation with Sedentary Behaviors

The usage of certain apps may be correlated with how sedentary people are.
For instance, watching YouTube is typically done while sitting or lying down.
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Fig. 13 Number of apps in different categories

Fig. 14 App usage in different categories

Figure 16 shows the PCCs with 95% CI between different app categories and
sedentary level. The usage of “Book and Reference” apps (e.g., Amazon Kindle
app and Google Books), “Lifestyle” apps (e.g., Tinder and Etsy), and “News
and Magazines” apps were positively correlated with sedentary level. We spec-
ulate that apps in these categories require the user to sit down or at least to
hold the phone stable. For instance, it is common to read news and books on
smartphone while sitting. On the other hands, “Music and Audio” apps (e.g.,
Pandora and Google Music), “Social” apps (e.g., Twitter and Facebook), and
“Shopping” apps (e.g., Target and Walmart) are negatively correlated with
sedentary level. We speculate that people usually use these apps while walk-
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Fig. 15 Number of students used a specific app

ing. For instance, it is common among students to listen to music and check
friends’ updates in social networks while walking.

From another perspective of correlation, in Figure 17, we show the average
sedentary levels when students were using different types of apps. It is clear to
see in Figure 17 that when students were using Transportation apps (e.g.,
Uber and Lyft), Finance apps (e.g., Bank of America), Photography apps
(e.g., Picasso, a drawing app), Books and Reference apps (e.g., Google Play
Books), they were very sedentary.

4.4 Summary of Patterns of Sedentary Behavior

– Times of Sedentary Behaviors: Students are generally more sedentary
during nighttime (10PM–8AM) than daytime (8AM–10PM) and more ac-
tive in the mornings (8AM–12PM) than the afternoons (12PM–5PM).

– Locations of Sedentary Behaviors: Students’ residential buildings and
academic buildings were the places where most sedentary behaviors hap-
pened. We speculate that this phenomenon was caused by the fact that
daily activities (e.g., studying and researching) that require sitting (seden-
tary behavior) are usually performed in academic buildings, and resting
activities (e.g., sleeping and relaxing) usually happen in residential build-
ings.

– Environments in Which Sedentary Behaviors Occurred : Students
tended to be more sedentary in quiet and dark environments.

– Apps Correlated with Sedentary Behaviors: When students were
using apps in categories such as “Book and Reference”, “Lifestyle”, and
“News and Magazines”, they tended to be sedentary. Checking social net-
works and listening to music can be done in parallel with walking and
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Fig. 16 Correlation between app category and sedentary level

Fig. 17 Sedentary level vs. app category

exercising. Apps in categories that were negatively correlated with seden-
tary behaviors suggest that users were more active when using such apps
and may be good interventions for sedentary behaviors. For instance, work-
out apps were negatively correlated with sedentary levels. An intervention
could recommend that people with desk jobs could take breaks and use a
7-Minute Workout app.
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5 Probabilistic Models

Smartphones carried by people in pockets, coats, and handbags can sense the
users’ contexts continuously. Specifically, the on-board sensors of smartphone
such as the microphone, ambient light sensor, GPS, accelerometer, gyroscope,
and magnetometer can sense user’s physical activities, mental states, and en-
vironments. Consequently, the smartphone could be considered a “human
behavior sensor”.

In this section, we investigate whether contexts sensed by a smartphone
can be used to reliably predict a user’s future sedentary behavior. We believe
that reliable prediction of future prolonged sedentary behaviors will facilitate
computer-driven health behavior interventions and deleterious behavior pre-
vention.

5.1 Contextual variables sensed by a Smartphone

As detailed in previous sections, “StudentLife” is the dataset we use to create
the probabilistic models for predicting sedentary behavior. We further process
the raw data, derived data, and cross-referenced data with other data sources.
Twenty-four smartphone-sensed context variables are then generated and will
be utilized as features in our predictive models:

– dateOfMonth , the date of the month (1 to 31)
– dayOfWeek , the day of the week (Monday to Sunday)
– hourOfDay , the hour of the day (0 to 23)
– minuteOfHour , the minute of the hour (0 to 59)
– activityMajor , the type of activity with the most instances in a time

bucket
– audioMajor , the type of audio with the most instances in a time bucket
– radius, the radius (in meters) of the area covered by the student during

a time bucket
– latitude , the average latitude of the student’s location
– longitude , the average longitude of the student’s location
– travelstate , moving or not, sensed by GPS
– locationMajor , the major location the student was at
– isCharging , whether the smartphone was charging
– isLocked , whether the smartphone was locked
– isInDark , whether smartphone was in the dark
– isInConversation , whether student was conversing
– appNameMajor , the app used most frequently in a time bucket
– appCategoryMajor , the app category most frequently used in a time

bucket
– diningPlace , the on-campus restaurant at which the student purchased a

meal
– diningType , the type of meal purchased by the student on campus (Break-

fast, Lunch, Supper, or Snack)
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– courseName , the name of course the student is assumed to be attending
– courseWifi , the Wi-Fi SSID of the course classroom the student is as-

sumed be attending
– afterLastDeadline , how many seconds since the last homework was due
– beforeNextDeadline , how many seconds before the next homework is

due
– hasCalendarEvent , whether an event is scheduled in the calendar

The general idea behind the proposed Context-Aware Predictive (CAP)
models is that we leverage the information in contextual variables and the
history of sedentary behaviors to predict future sedentary behaviors. To
simplify and unify the language and terms used here, we shall call the 24
contextual variables described above as “contextual behaviors”. For instance,
contextual variable location can be considered as a person’s behavior “being at
a specific place”. As such, in our predictive models, two types of variables exist:
Sedentary Behavior , denoted as Y , with 3 levels Very Sedentary, Sedentary,
and Active. It is the sedentary level we want to predict; and Contextual
Behaviors, denoted as 〈X1, X2, . . . , Xm〉. They are the behaviors that happen
together with a sedentary behavior.

To predict future sedentary behavior, denoted as Y t+1 (where time index t
in the superscript indicates “right now” and t+1 means “one step/time bucket
ahead in the future”), we have several pieces of information we can leverage 2:

1. The history of sedentary behavior {Y t, Y t−1, Y t−2, . . . , Y t−n};
2. The current contextual behaviors 〈Xt

1, X
t
2, . . . , X

t
m, Y

t〉;
3. The histories of contextual behaviors {〈Xt−i

1 , Xt−i
2 , . . . , Xt−i

m 〉 | i ∈ [1, n]}.

5.2 History of Sedentary Behavior

The motivation behind using the history of sedentary behavior {Y t, Y t−1, . . . , Y t−n}
to predict future sedentary behavior Y t+1 is that the transformations between
human behaviors have statistical patterns [57]. Sedentary behaviors also have
such patterns. For instance, if a person just finishes running 5 kilometers in
the past 20 minutes (Y t = 0%, sedentary level: Active), we may expect this
person will cool down for a few minutes and sit for relaxation in the next 20
minutes (Y t+1 ≥ 96.67%, sedentary level: Very Sedentary). Similarly, if an
active person has sat for 1 hour already (Y t = Y t−1 = Y t−2 = 100%, seden-
tary level: Very Sedentary), we may expect him/her to stand up and walk
around (Y t+1 < 90.00%, sedentary level: Active).

Figure 18 shows a probabilistic model for predicting future sedentary be-
havior with the history of sedentary behavior. In this model, the probability
of future sedentary behavior to be p(Y t+1 = y) where y ∈ {ya (Active), ys
(Sedentary), yvs (Very Sedentary)}, is predicted based on the observations
of the past of sedentary behaviors.

2 Hereafter, without explicit mention, superscripts used in notations are time indexes, not
powers.
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Fig. 18 Predict Y t+1 with {Y t, Y t−1, . . . , Y t−n}

Assuming Y i is conditionally independent of every Y j (i 6= j) given Y t+1,
which means p(Y i = yi, Y j = yj |Y t+1 = y) = p(Y i = yi |Y t+1 = y)p(Y j =
yj |Y t+1 = y), we can apply a näıve Bayes classifier—a probabilistic classifier
applying Bayes’ theorem with strong (näıve) independence assumptions be-
tween the features ([58])—for prediction by maximizing the joint probability,

Y t+1 = arg max
y

p(Y t+1 = y, Y t = yt, . . . , Y t−n = yt−n)

= arg max
y

p(Y t+1 = y)

·
n∏

i=0

p(Y t−i = yt−i |Y t+1 = y) (1)

where {yt−i | i ∈ [0, n], yt−i ∈ {ya, ys, yvs}} are the historical observations of
{Y t−i | i ∈ [0, n]} respectively.

Alternatively, we also consider a type of predictor where we do not have the
independence assumption, and we can apply a multinomial logistic regression
classifier (or sometimes referred as maximum entropy classifier) for prediction
by maximizing conditional probability,

Y t+1 = arg max
y

p(Y t+1 = y |Y t = yt, . . . , Y t−n = yt−n)

= arg max
y

1

Z
exp{θt+1

y +

n∑
i=0

θt−iy yt−i}

= arg max
y

exp{θt+1
y +

n∑
i=0

θt−iy yt−i} (2)

where Z =
∑

y∈{ya,ys,yvs} exp{θ
t+1
y +

∑n
i=0 θ

t−i
y yt−i} is a normalizing constant,

and θiy are bias weights learned from training data for each y ∈ {ya, ys, yvs} [59].

This model will be referred as SBPh (sedentary behavior prediction with
history) model hereinafter.
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5.3 Current Behaviors

Current contextual behaviors (Xt
1, X

t
2, . . . , X

t
m) and sedentary behaviors (Y t)

are those that just occurred in the current timestep t. They are the most recent
information that can be leveraged to predict the future. For instance, knowing
a student just exercised 1 hour at the gym around 6PM, enables predicting
that he will go back to his dormitory and sit and relax for the rest of the day.

Fig. 19 Predict Y t+1 with 〈Xt
1, X

t
2, . . . , X

t
m, Y t〉

Figure 19 shows the graphical model of using current behaviors to predict
future behaviors. Similar to the näıve Bayes classifier and logistic regression
classifier discussed previously, the methods for probabilistically forecasting
Y t+1 are maximizing the joint probability (Equation 3) and maximizing the
conditional probability (Equation 4):
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Y t+1 = arg max
y

p(Y t+1 = y, Y t = yt,

Xt
1 = xt1, X

t
2 = xt2, · · · , Xt

m = xtm)

= arg max
y

p(Y t+1 = y) · p(Y t = yt |Y t+1 = y)

·
m∏
j=1

p(Xt
j = xtj |Y t+1 = y) (3)

Y t+1 = arg max
y

p(Y t+1 = y |Y t = yt,

Xt
1 = xt1, X

t
2 = xt2, . . . , X

t
m = xtm)

= arg max
y

exp{θy + θtyy
t +

m∑
j=1

θty,jx
t
j} (4)

where {xtj | j ∈ [1,m]} are the current observations of current context variables
{Xt

j | j ∈ [1,m]} respectively, and {θty,j | j ∈ [1,m]} are bias weights learned
from training data for each y ∈ {ya, ys, yvs}.

This model will be referred to as the Sedentary Behavior Prediction with
current behaviors SBPc model hereinafter.

5.4 Histories of All Behaviors

In the previous two models, the future sedentary behavior is predicted from
two dimensions respectively—time dimension (Y i, historical sedentary be-
haviors. ¶ in Figure 20) and behavior dimension (Xj , current contextual
behaviors. · in Figure 20). It is natural to explore leveraging information
from both dimensions to make prediction. However, it is important to note
that more information does not necessarily imply better prediction [60].

A general model SBPa (sedentary behavior prediction with all behaviors
and histories) is thus defined based on joint probability (Equation 5) and
conditional probability (Equation 6):

Y t+1 = arg max
y

p(Y t+1 = y)

·
n∏

i=0

p(Y t−i = yt−i |Y t+1 = y)

·
n∏

i=0

m∏
j=1

p(Xt−i
j = xt−ij |Y t+1 = y) (5)

Y t+1 = arg max
y

exp{θy

+

n∑
i=0

(θt−iy yt−i +

m∑
j=1

θt−iy,j x
t−i
j )} (6)
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Fig. 20 Predict Y t+1 with histories of all behaviors. ¶ is historical sedentary behaviors; ·
is current contextual behaviors; and ¸ is historical contextual behaviors.

where θt−iy,j are bias weights learned from training data, which imply how
influential the corresponding behaviors are. SBPh model leverages the infor-
mation in ¶ (historical sedentary behaviors) to make prediction; the SBPc

model uses · (current contextual behaviors); and SBPa utilizes ¶, ·, and
¸ (current and historical contextual behaviors and sedentary behaviors). To
make the framework complete, we add one more model, SBPc (sedentary be-
havior prediction with partial history and current behaviors), which applies ¶
and · (historical sedentary behaviors and current contextual behaviors).

It is noteworthy that SBPc is a special case of SBPa when the length of
history used is set 1.

6 Experiments

As described in previous section, we have 3 categories of context-aware predic-
tive models: SBPh, SBPc, and SBPa (Table 1). For each category, we have
generative models built by maximizing the joint probability and discrimi-
native models built by maximizing the conditional probability. Each model
can choose different optimal time bucket sizes for discretization and different
lengths of historical data to be used.

In total, we have 216 variants of predictive models: 3 categories (Table 1)
× 2 strategies (generative and discriminative) × 9 time bucket sizes (20min,
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30min, 40min, 50min, 1h, 2h, 3h, 4h, and 6h) × 4 lengths (orders) of historical
data used (1 bucket, 2 buckets, 3 buckets, and 4 buckets).

Table 1 Categories of predictive models

Category Information Used
SBPh historical sedentary behaviors
SBPc current contextual behaviors and historical

sedentary behaviors
SBPa all behaviors, both current and historical

For these 216 models, 10,896 to 196,803 instances—depending on the size
of time bucket for discretization—are used for experiments. Three-fold cross-
validation was used to calculate overall accuracy and evaluate the predictive
models.

6.1 Generative Models vs. Discriminative Models

As mentioned above, half of the 216 models are generative models making
predictions by maximizing joint probabilities (Equation 1, Equation 3, and
Equation 5), and the other half are discriminative models making predic-
tions by maximizing conditional probabilities (Equation 2, Equation 4, and
Equation 6). When using generative models, we make a very strong and näıve
conditional independence assumption that variables (contextual and sedentary
behaviors) are independent of each other when predicting the future of the tar-
get variable (the future sedentary behavior). However, this assumption may
not stand when using contextual behaviors to predict future sedentary behav-
ior. For instance, certain contextual behaviors such as “being at the library”
and “being in quiet environment” may be highly dependent on each other.
Therefore, näıve Bayes classifier and generative models may not perform well.

To confirm this intuition, we ran experiments for both categories of models.
The 216 models were separated into 2 groups for comparison—108 generative
models with their 108 corresponding discriminative models listed next them
(Figure 21). The Y-axis is the overall accuracy for predicting future sedentary
level (Very Sedentary , Sedentary , or Active). It is clear to see in Figure 21
that discriminative models (orange) outperform generative models (blue) uni-
formly in this dataset. This confirms our intuition that we should not make
the näıve independence assumption when predicting sedentary behavior using
contextual behaviors.

Therefore, henceforth we will only discuss the discriminative models—the
108 generative models will not be included in discussion hereafter.
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Fig. 21 Comparison between generative models and discriminative models

6.2 Size of Time Bucket

As mentioned in Methodology section, a critical step in data prepossessing is to
discretize time into time buckets and place data into these buckets. If we make
the size of time bucket small (e.g., 1 minute), it will be more difficult to pre-
dict people’s next-bucket behavior. For instance, an extreme case—1-second
bucket, it is nearly impossible to predict a person’s behavior in the next mo-
ment because human’s everyday life is so dynamic and complicated ([61]).
Shorter term predictions are more likely affected by many factors and even
random noise caused by sensors, which can be smoothed out in longer term
predictions. On the other hand, if the size of time bucket gets too large, the
dependence of future events on past events on a longer timescale is weak, mak-
ing it more difficult to make predictions. For example, knowing how sedentary
a person is this year, has little predictive power in estimating how sedentary
s/he will be next year. This is because a typical person will most likely change
their activity habits and sedentary behaviors in a year’s time. He/She may
become more active playing exergames such as Pokémon Go, or join a local
gym or start using a fitness tracker (e.g., Fitbit). On the other hand, s/he
may become more sedentary and habitually watch more videos and generally
become a couch potato.

The minimal size of the time bucket, as we discussed earlier, is 20 minutes
because of our definition of prolonged sedentary behavior. In the experiments,
we compared the accuracy of 9 time bucket sizes (20min, 30min, 40min, 50min,
1h, 2h, 3h, 4h, and 6h). The 108 discriminative models are grouped by the
time bucket sizes. For each time bucket size, there are 12 models—3 categories
(SBPh, SBPc, and SBPa) × 4 lengths (1, 2, 3, and 4) of historical data used
(orders).

Figure 22 shows the comparison between models with different sizes of time
bucket. The X-axis is the model ID for the 12 models (e.g., SBPh1 means SBPh
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Fig. 22 SBPh, SBPc, and SBPa models with different sizes of time bucket

model with order 1). Each line in the chart represents a size setting of time
bucket. The result shows that 20-minute time bucket is the best option among
the 9 options, which appears to be a good balance between long and short
term predictions. This finding confirms our initial intuition that on a longer
timescale (e.g., 360-minute time bucket), the dependence of future events to
past events is weaker.

6.3 Length of History

Intuitively, the more we learn about a person’s behavior history, the more ac-
curate we can predict his future behavior using discovered patterns. However,
it is not always true as several factors such as occupation type and unplanned
events may alter a person’s schedule. For instance, call center representatives’
shifts may change every month. Using more than 1-week behavior history to
predict their future sedentary behavior may yield inaccurate results as the
model would not have learned their new schedules.

Figure 23 shows the comparison between SBPh, SBPc, and SBPa models
using different lengths of history. The X-axis represents the length of his-
tory (number of 20-minute buckets lookback) used by the model. The result
generally confirms our initial guess—“more histories yield better prediction.”
However, the benefit of increasing the length of history utilized is marginal
beyond two 20-minute time buckets.

6.4 Groups of Similar Subjects

As the old saying goes, “Birds of the same king flock together” [62]. In both
Western and East Asian philosophy and mathematics [63], a general phe-
nomenon is commonly observed—people behave similarly to each other. If
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Fig. 23 SBPh, SBPc, and SBPa models using different lengths of history (number of
20-minute buckets lookback)

we can take advantage of such phenomena and predict subjects’ sedentary be-
haviors based on the patterns we learned from other people who are similar
to them, we may be able to achieve more accurate prediction. Learning from
similar subjects may provide good initialization values for our models. This is
especially relevant when a subject initially starts to use the SBP models and
we do not have enough historical data from the subject at the beginning.

To find people who are similar to each other, we need to quantitatively de-
fine “similarity” and group them by applying clustering algorithms. In this
section, we define “similarity” based on a set of quantitative attributes which
we call Personal Attributes ({a1, a2, · · · , an}). These attributes (a1, a2, · · · , an)
can be used to characterize a person. Demographic information is a typical
type of personal attributes, which would be valuable criteria for clustering
subjects. But unfortunately, StudentLife dataset does not provide such demo-
graphic information 3. From the dataset, the information one could charac-
terize subjects using the similarity of their pre-study and post-study survey
responses. We only use the pre-study survey responses in this research because
our goal is to predict the future. Thus, we should not use information about
the “future”—post-surveys.

The pre-survey in the StudentLife dataset consists of Big Five personality
questions [64], Flourishing Scale positive and negative feeling questions [65],
UCLA Loneliness Scale questions [66], Positive and Negative Affect Schedule
(PANAS) questions [67], Perceived Stress Scale questions [68], PHQ-9 depres-
sion scale questions [69], Pittsburgh Sleep Quality Index (PSQI) questions [70],
and Veterans RAND 12 Item Health Survey (VR12) questions [71]. Among the

3 On the website of StudentLife project, the authors mentioned a “user info.csv” file which
might contain subjects’ demographic information. However, in the data publicly provided,
such a file does not exist.
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questions, 138 are designed to be answered on scales of 1 to 3, 1 to 5, or 1 to
7. These questions cover mental health, general health conditions, and person-
ality. We clustered users in the StudentLife dataset based on their responses
to these questions on the pre-survey.

Two clustering algorithms are experimented: ExpectationMaximization (EM)
algorithm [72]—an iterative method to find maximum likelihood estimates of
clusters an observation belongs to—and K-means [73]—an algorithm to par-
tition observations into k clusters in which each observation belongs to the
cluster with the nearest mean. For EM, the number of clusters are selected
automatically. For k-means, we tested the number of clusters from 1 to 10 and
found the number (= 5) with highest likelihood. The clustering results are
listed below:

– EM
– Cluster 0: {Subject 2, 3, 4, 7, 9, 12, 13, 16, 19, 22, 27, 34, 35, 39, 45,

51, 56, 57, 58}
– Cluster 1: {Subject 10, 17, 18, 23, 24, 31, 33, 52}
– Cluster 2: {Subject 0, 1, 5, 8, 14, 15, 20, 30, 32, 36, 42, 43, 44, 46, 47,

49, 50, 53, 59}
– K-means

– Cluster 0: {Subject 3, 4, 7, 12, 13, 16, 19, 22, 27, 39, 45, 51, 10, 31, 0,
1, 8, 15, 46, 53, 59}

– Cluster 1: {Subject 17}
– Cluster 2: {Subject 18, 23, 24, 33, 52}
– Cluster 3: {Subject 5, 14, 30, 47}
– Cluster 4: {Subject 2, 9, 34, 35, 56, 57, 58, 20, 32, 36, 42, 43, 44, 49,

50}

For each cluster, a discriminative SBPa model (leveraging all current and
historical contextual behaviors and sedentary behaviors) with time bucket size
set to 20 minutes and length of history used set to 4, is trained and used for
prediction. In Figure 24, the orange bar represents the best predictive model
(trained using all subjects’ data) achieved in previous experiments. The blue
bars represent the predictive models for each EM cluster respectively and the
green bars represent the predictive models for each K-means cluster (using
Euclid distance function) respectively.

Generally, models trained with data from a given cluster have better pre-
dictive accuracy on members of this cluster than the models trained with
everyone’s data. It is noteworthy that K-means Cluster 1 contains only one
subject and has the best accuracy. This finding implies that we may consider
training models for each person individually using his own data to achieve
higher accuracy.
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Fig. 24 Comparison of SBPa models trained for clusters

6.5 Time Consumption

All the SBP models we designed in this study were trained and tested on a
Dell PowerEdge T20 server 4, which had an Intel Xeon E3-1225 v3 3.2GHz
(Turbo Speed: 3.6 GHz, Cores: 4, Threads: 4) CPU 5 and 16GB (2 x 8GB dual
channel) DDR3 memory.

For the 108 discriminative SBP models, 10,896 to 196,803 instances—
depending on the size of time bucket for discretization—are used for training
and testing. Three-fold cross-validation is used for evaluating the predictive
models. As shown in Figure 25, training discriminative SBP models on 2/3 of
the dataset takes a significant amount of time. Also, as the order of the model
increases, the training time increases especially, for SBPa models where the
training time increases exponentially with model order. Please note that the
Y-axis in Figure 25 is in a logarithmic scale.

On the other hand, testing time—time consumed for applying a trained
model on a single instance—is substantially lower. For example, the training
time for the SBPa4 model with a 20-minute bucket size is 9 orders of magnitude
higher than its testing time (37,810 seconds vs. 33 microseconds). Please note
that the time shown in Figure 26 is the average time consumed by testing a
trained model on an instance. The unit of X-axis in Figure 26 is microseconds
(vs. seconds in Figure 25).

In real-world scenarios, model training may not need to be done frequently
as user’s sedentary behavior patterns may not change very often. Also, this
computationally expensive task could be done in the cloud to reduce the train-
ing time. We will expound on the discussion of this topic in the next section.

4 Dell PowerEdge T20 Owner’s Manual, https://dl.dell.com/topicspdf/

poweredge-t20_owners-manual_en-us.pdf
5 Intel R©Xeon R©Processor E3-1225 v3 https://ark.intel.com/content/www/us/en/ark/

products/75461/intel-xeon-processor-e3-1225-v3-8m-cache-3-20-ghz.html

https://dl.dell.com/topicspdf/poweredge-t20_owners-manual_en-us.pdf
https://dl.dell.com/topicspdf/poweredge-t20_owners-manual_en-us.pdf
https://ark.intel.com/content/www/us/en/ark/products/75461/intel-xeon-processor-e3-1225-v3-8m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75461/intel-xeon-processor-e3-1225-v3-8m-cache-3-20-ghz.html
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Fig. 25 Time consumed for training SBPh, SBPc, and SBPa models with different orders
and bucket sizes

Fig. 26 Average time consumed for testing SBPh, SBPc, and SBPa models with different
orders and bucket sizes on a single instance

6.6 Summary of Predictive Models

– Discriminative models uniformly outperform generative models when mak-
ing context-aware predictions with the StudentLife dataset.

– We can predict prolonged sedentary behaviors in the next 20 minutes better
than prolonged sedentary behaviors with other lengths of time window.

– Overall, Context-Aware Predictive (CAP) models leveraging information
in both current and historical contextual behaviors and sedentary behaviors
have higher accuracies.
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– Prediction accuracy can be improved by clustering users first and then
building predictive models for each cluster. It is natural to extrapolate
and guess that training models for each individual could yield even better
accuracy. However, in real-world applications, we do not always have the
historical data of each person initially, which makes it impossible to build
predictive models at the beginning.

7 Discussion and Future Work

7.1 Real World Performance

When being deployed with real-world smartphone applications, our proposed
SBP models will encounter issues that did not exist in our experimental envi-
ronment.

Missing data: “Missing values” will be the most common issue. In our
experiments, missing data were not an issue because we trained and applied
models on a large dataset (196,803 instances). However, when our models
are utilized/applied in the real world, the chances of reliably having valid
values for all input variables of our SBP models will be considerably lower.
Data could be missing for several reasons. Sensors on smartphone may fail
to acquire data as input for the model. For instance, GPS may have spotty
signal when user’s smartphone is used indoors. The magnetometer could be
interfered with nearby motors and speakers. The microphone could be covered
by a cloth resulting in a noise or no sound being captured. Even if all sensors
are working as expected, the smartphone operating system may kill our sensor
data collection service running in the background 6. Finally, the user may
choose to turn off their phones. Strategies for filling missing data and how
they affect the accuracy of our SBP models in real-world applications are
interesting questions we will address in our future work.

Training time: Another issue our proposed SBP models may face in the
real world is expensive model training. Training does not only require large
amounts of training data, but also takes a long time to train, especially the
high-order SBPa model. For example, training the 4th order SBPa model in
our experiment with 196,803 instances took more than 10 hours. In future,
we believe such computationally expensive model training task could be per-
formed in the cloud with more powerful servers, or it could be done using
decentralized federated learning [74].

7.2 Health Behavior Intervention

On current generation of smartwatches such as the Apple Watch and Fitbit,
sedentary alert systems are rather primitive. They either remind users to stand
up and move for a minute every hour or ask users to walk at least 250 steps

6 “Dont kill apps, make them work!” website, https://dontkillmyapp.com/

https://dontkillmyapp.com/
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every hour (Figure 27). We envision that our SBP models could be deployed in
smartphone and smartwatch applications to predict users’ deleterious seden-
tary behaviors and to intervene before they even occur.

Fig. 27 An example of Apple Watch’s “Stand Remidners” (left) and an example of Fitbit’s
hourly 250-step “Reminders to Move” (right)

Our envisioned sedentary behavior prevention system consists of six parts
(Figure 28): (1) Sedentary behavior prediction module , a module based
on a set of computational models—discussed in this paper—to predict user’s
future sedentary behavior based on a combination of historical behaviors and
contexts; 2) Availability prediction module , a module based on a set of
computational models to predict if a user will be available to accept inter-
ventions in future; 3) Determinant inference module , a module to in-
fer the causes (e.g., occupation) of sedentary behaviors; 4) Intervention
recommendation system , a recommendation system to retrieve the best
suited intervention from a database of interventions; 5) Intervention de-
livery channel , a proper communication channel for delivering the inter-
vention, e.g., smartwatch notification and SMS (if the system runs in cloud);
and 6) Real-time monitor , an always-on monitor (e.g., smartphone or fit-
ness tracker) tracking the user’s sedentary behavior to help evaluate whether
previous interventions altered (e.g., improved) a user’s behavior.

In this study, the sedentary behavior prediction module has been tack-
led. In our previous work, real-time monitor and intervention delivery
channel have been explored in On11 in [12], and real-time monitor has
been researched and implemented as “RecFit” in [75]. In future, we would
like to conduct a user study to evaluate our sedentary behavior prevention
system with all modules integrated.
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Fig. 28 Envisioned architecture of our sedentary behavior prevention system

8 Conclusion

Sedentary behaviors now constitute a significant and growing public health
problem, which have been associated with increased risk of several ailments
including diabetes, cardiovascular disease and all-cause mortality. Current in-
terventions are mostly reactive. However, models that predict future sedentary
behaviors from a user’s history can support prevention of sedentary behav-
iors. In this paper, we characterized user patterns of sedentary behaviors by
analyzing smartphone-sensor data in a real world dataset. Our work reveals
the most predictive location types (where), times of day/week (when) and
smartphone contexts. Building on our insights, we proposed a set of context-
aware probabilistic models that can predict future sedentary behaviors from
smartphone sensor data. Specifically, our Context-Aware Predictive (CAP)
models leverage smartphone-sensed contextual variables and user’s history
of sedentary behaviors to predict future sedentary behaviors. Our rigorous
evaluation of our models demonstrates that they are reliable.
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