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Abstract—In big data applications from digital health to
assisted living smart systems, only a fraction of data instances
used for training classifiers t end t o b e 1 abeled. O ne important
subfield o f w eakly 1 abeled 1 earning, c alled P ositive Unlabeled
(PU) learning, does not require a completely labeled dataset in
order to train a strong classifier. T hisi s c rucial a si n many
domains it is expensive or impossible to obtain a completely
labeled dataset. While prior PU work assumed that unlabeled
instances occurred with a random uniform distribution, we
observe that labeled (and unlabeled) data tends to occur in
long contiguous sequences (or bursts) due the prevalent burst
labeling behavior by human annotators. Burst labeling leads
to a sequential bias in PU data not addressed by state-of-the-
art methods. To tackle this open problem of learning under
sequential bias, we propose BurstPU, the first f ramework for
training a classifier o n s equentially | abeled P U d ata. BurstPU
addresses the challenge that two interdependent models must
be learned, namely, the classification m odel a nd t he labeling
likelihood model, with the later predicting the likelihood that
a given instance is labeled. The labeling likelihood model is then
needed during the training of the classification model to account
for the bias in the labeling process. Our experimental study
demonstrates that BurstPU consistently outperforms all state-
of-the-art PU methods on a rich variety of diverse real-world
datasets, and can learn from fewer labeled instances compared
to state-of-art PU methods.

Index Terms—Labeling likelihood, classification, incomplete
labeling, positive unlabeled.

I. INTRODUCTION

Background. Traditionally, supervised classification assumes

ground-truth class labels are available for all instances during
training. However, in many real-world scenarios involving big
data only a small fraction of the total data is labeled while the
majority of the data are unlabeled [1,2]. One example is the
domain of Human Activity Recognition (HAR) systems [1, 3]
that aim to recognize user activities from mobile sensors on
smartphones and other digital devices [1]. To develop robust
classifiers f or H AR s ystems, 1 arge q uantities o f s ensor data

are collected using smartphones and wearables over extended
periods as the owers of these smart devices go about their
normal routines [1]. This results in data that is more true to
life than data collected in a laboratory setting, but requires
individuals to label their own data. Unfortunately, since the
data is collected continuously [1], it is infeasible to expect
individuals to label every activity they perform throughout the
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day. Additionally, as there is an infinite number of activities
that an individual does not perform at a given time, HAR
data collection thus typically asks participants to provide only
positive labels for the activities that they indeed did perform
[1]. This results in data that contains reliable labels for only
the positive class while the rest of the data remains unlabeled.
Thus there is no straightforward way to disambiguate a true
negative instance from the unlabeled positive instances. This
type of data is known as Positive Unlabeled (PU) data [2].
PU data is prevalent across many applications [2,4]. For
instance, PU data may arise when labeling objects within
video streams for the purpose of scene description for the
visually impaired [5,6], and when annotating medical data
such as ECG sensor readings to detect abnormalities [7]. While
state-of-the-art PU methods assume that labels are assigned
independently of one another, we observe that this does not
match the reality of data collection in many domains.
Motivation for burst labeling patterns. Through conducting
our own HAR data collection study [8] and analyzing the
data from similar studies [1], we observed that annotators
often label data in bursts producing contiguous sequences
of labeled data [3]. We henceforth refer to this as the
burst labeling pattern. In the motivating HAR scenario, users
may label diligently during time periods when they are free
and fail to label for long periods when they are busy. To
reduce the tedium associated with labeling, some annotation
interfaces permit users to label batches of past or future sensor
data at a time (e.g., retrospectively during their free time at
the end of the day) [3]. While convenient, such interfaces
generate coarse-grained burst labels. From a PU perspective,
these burst labeling patterns result in a sequential bias in
the labeling. Instances are more likely to be labeled if their
surrounding instances are also labeled. An illustration of burst
labeling is shown in Figure 1. In the figure’s example, two
subsequences of ‘walking’ are shown. One subsequence is
partially labeled, while the other is completely unlabeled. This
implies that instances within the partially labeled subsequence
are more likely to be labeled than instances in the unlabeled
subsequence.
State-of-the-art and its Shortcomings. Typical semi-
supervised learning approaches require reliable samples from
both the positive and negative class, and are therefore inap-
plicable to PU data [9]. Thus, customized learning methods
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Fig. 1: In this sequentially biased Positive Unlabeled data
example, two sub-sequences correspond to the positive class
‘Walking’. Sub-sequence (a) has been partially annotated,
while (b) is completely unlabeled. In this burst labeling setting,
we observe that a positive instance is more likely to be labeled
if the preceding instance was labeled, and vice versa.

for training classifiers specifically on PU data have recently
received much attention [9-12]. These state-of-the-art Positive
Unlabeled (PU) learning methods make the simplifying yet
unrealistic assumption that the occurrence of labeled data
instances are independent. They either assume the probability
of an instance being labeled is Selected Completely At Random
(SCAR) or Selected At Random (SAR), meaning the likelihood
of a true-positive instance going unlabeled is either constant
(i.i.d.) [10-12] or solely based on the local attributes of the
instance itself [9, 13], respectively. Existing PU methods, being
based on either the SAR or SCAR assumptions, fail to address
the burst labeling problem as they are not equipped to utilize
knowledge of burst labeling during their learning process [2].
Problem Statement.

In this work we tackle the problem of learning under burst
labeling. Burst labeling corresponds to the case where the
likelihood that a given instance is labeled depends on whether
its surrounding instances were also labeled, as illustrated in
Figure 2. Figure 2 a) shows that under existing PU models the
labeling likelihood for two instances with the same feature val-
ues is identical, regardless of whether or not the surrounding
instances are labeled. Figure 2 b) shows the scenario in which
our problem is set; where two instances with identical feature
values may have different labeling likelihoods depending on
whether the surrounding instances are labeled. Thus, our burst
labeling learning problem is to train a classifier to predict the
true class using PU training labeled by burst labeling. Our aim
is to optimize the performance of the PU classifier trained on
this PU data so that it is comparable to the performance of
a similar classifier trained on the fully labeled data, where
performance is measured using MSE.

Challenges. Burst labeling learning poses two challenges:

1) Learning with biased labels. During training, positive
labels for only some of the true positive instances are
available, while the remaining data (true positives and
all true negative instances) are unlabeled. Worse yet, as
the probability of label assignment is not constant under
burst labeling, the distribution of labeled instances is
biased and is thus not the same as the distribution of
true positive instances [2].
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2) Inference of unknown labeling and class likelihoods. The
likelihood that an instance is labeled needs to be inferred
in an unsupervised manner. If the true class likelihood
was known, then the labeling likelihood could easily
be inferred. Unfortunately, we face a chicken-and-egg
problem in that to train a classifier for the true class
likelihood, the burst likelihood would need to be known.

Labeling likelihood p1 = Labeling likelihood p1
a) SCAR and SAR Methods

W‘W@ s

Labeling Ilkellhood p1 Labeling erllhood p2

(b) Burst Labeling
Legend: |[[unes

Fig. 2: a) Under SAR and SCAR (top), two instances with the
same feature values will, by definition, have the same labeling
likelihood. b) Under our burst labeling (bottom), they could
have different labeling likelihoods depending on the labels of
their surrounding instances.

VaVaVi Instance
features

Our Proposed Approach: BurstPU. We propose BurstPU,
the first PU learning method that solves burst labeling learning
while leveraging the knowledge that labels are assigned in
sequentially. One innovation of the BurstPU learning method
is the design of a burst likelihood model that represents the
likelihood of a given instance being labeled given the labels
of surrounding instances. BurstPU then utilizes this burst
likelihood model to re-weight each PU instance during training
to address the challenge of learning with biased labels.
Secondly, we design a training algorithm for BurstPU that
utilizes an Expectation-Maximization algorithm and the novel
burst empirical risk to jointly learn both this burst likelihood
score along with the BurstPU classification model. This way
BurstPU succeeds to learn both the classification and burst
likelihood models using only observed data, thus solving the
above challenge of the inference of unknown labeling and
class likelihoods.

Contributions. We make the following contributions:

o Characterize burst labeling, which captures labeling char-
acteristics of many applications;

o Develop the first burst labeling PU learning framework
that learns from data that follows this new burst labeling;

e Introduce a novel burst likelihood model that effectively
models the labeling process of burst labeling;

e Establish the error bound between a classifier learned
through minimizing the aforementioned burst risk to that
of one found by minimizing the true risk;

o Demonstrate experimentally that BurstPU consistently
outperforms state-of-the-art PU methods on real-world
datasets by 7% in mean squared error.
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II. RELATED WORK

Existing PU methods do not address burst labeling. Rather,
they fall into one of two broad categories: 1) those that make
the selected completely at random (SCAR) assumption, and 2)
those that make the selected at random (SAR) assumption.

SCAR is the most common assumption made by PU learn-
ing methods [4,10-12, 14]. Under SCAR, it is assumed that
each true positive instance has the same likelihood of being
labeled [10]. Thus, the labeling likelihood is constant. State-of-
the-art SCAR methods make use of empirical risk minimization
of the Positive Unlabeled risk [11]. An improvement to this
approach [12] introduced a non-negative PU risk estimator,
which is less prone to overfitting. SCAR is a restrictive
assumption, as it differs from BurstPU by not allowing for the
existence of any bias in the labeling process. For this reason
it is not applicable for the burst labeling learning problem.

Recently, SAR [9,13], a less restrictive assumption than
SCAR, is introduced that allows for simple bias in labeling.
That is, SAR assumes that the probability of an instance being
labeled is not constant and depends only on the instance’s
feature values. However, SAR only allows for the bias to
depend on the instance’s feature values. Unlike BurstPU, it is
unsuitable for learning under burst labeling as two instances
with identical feature values will be given the same labeling
likelihood regardless of surrounding instances.

III. PROBLEM FORMULATION: BURST PU LEARNING

Intuitively, in this work we solve PU learning under the
realistic burst labeling problem setting. This means that we
allow for the probability that a true positive instance is labeled
to vary depending on if its surrounding instances are labeled.
This is denoted by Pr(s; = 1ly; = 1) # Pr(s; = lly; =
1, sk#), where s; and y; are the observed label and true class
of the ith data instance respectively, and s;; is the label of all
other instances besides the ith instance. We call the likelihood
that a given instance x; is labeled the burst labeling likelihood
¢ = Pr(s; =1|y; = 1, Sp24).

More formally, we define burst labeling learning as follows:
Let D = {D*',D? ..., D"} be a dataset of n PU sequences,
where D7 = (X7,87,Y7). X9 = (2,2},...,2J,) denotes a
sequence of observed data instances, S/ = (s7, 53, ..., s}, ) an
associated set of observed variables indicating whether or not
the corresponding instance is labeled, and Y7 = (y], 43, ..., v2,)
the set of unobserved true class labels for all instances. We say
that yi is unobserved, because with PU data we do not have
access to the true class of each instance. Instead, instances that
are labeled are a subset of positive instances, while unlabeled
instances are a mix of some positive and all negative instances.
For the sake of readability we drop the superscript j and refer
to only a single sequence However, the actual dataset may
consist of multiple independent sequences.

As PU learning corresponds to learning a (binary) classi-
fier!, the unobserved class y; can take on the value of 1 or 0,

IWe henceforth focus on binary classifiers, while in multi-label HAR
classification, a binary classifier is trained for each of the activities.
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Symbol | Meaning
D Dataset of sequences of features (X), labels (S),
and unobserved true class (Y')
; Observed ith data instance.
Ti zERM M >1
Observed label indicator for x;.
si s; = 1 if labeled, 0 otherwise
Unobserved true class for x;.
Yi y; = 1 if the positive class, 0 otherwise.
] Unobserved labeling likelihood g; for z;
i qi =Pr(s; = 1y; = 1,502, T3)
Skt S —{si}
Unobserved number of directly preceding
T; . . o
instances of x; with positive true class
) Estimated value for any variable v
TABLE I: Reference for symbols used in this work.

such that y; is the binary class label where positive instances
of the class correspond to y; = 1, with y; = 0 otherwise. s;
is an indicator variable that indicates whether or not a given
instance is labeled such that s; = 1 if the instance is labeled
and s; = 0 otherwise.

Further, we make the standard positive unlabeled as-
sumption [10] that negative instances are not labeled; i.e.,
Pr(s; = 1ly; = 0) 0. Note that the inverse is not
true; we do not assume that all true positives are labeled;
ie, Pr(y; = 1lls; = 0) # 0. Additionally, we assume
that if the previous instance was a true positive then the
current instance is also likely to be positive, expressed by
Pr(y; = 1ly;-1 = 1) # Pr(y; = 1lly;-1 = 0). This
corresponds to the belief that positive instances occur in bursts
or subsequences, which as discussed in Section 1 is realistic
for a broad range of real-world applications.

Definition 1. A PU dataset is labeled under burst labeling
if the likelihood of an instance being labeled is dependent on
the labels of the preceding and surrounding instances. Thus,
Pr(s; =1y, = 1) # Pr(s; = 1y = 1, sp.2).

We do not make the rigid SCAR assumption that the
likelihood of a positive instance being labeled is the same for
all positive instances. Instead, we perform our PU learning
under the more realistic but more difficult burst labeling
problem setting (Def. 1). Burst labeling differs from the SAR
assumption [9], in that unlike SAR, we now leverage the
sequential dependency between the labels of neighboring data
instances. Lastly, we tackle the challenge that the labeling
likelihood is not known during training, as in the real world
this value would rarely be known.

Problem Definition: Our burst labeling learning problem is
to train a classifier f(z;) = Pr(y;|z;) to correctly predict the
true class y; given only PU data applied under burst labeling.
That is, where the true class y; is unknown, the indicator
s; has been applied under burst labeling (Def. 1), and the
likelihood that a given instance x; is labeled, g;, is unknown.
We measure success by whether or not the PU classifier
achieves comparable performance to a classifier that is trained
on perfectly labeled data, with the performance measured by
the MSE between the predicted probabilities and the true class
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labels of a held-out test set.

IV. PROPOSED BURST PU LEARNING METHODOLOGY
A. Burst Likelihood Function

To perform PU learning under burst labeling, we introduce
the burst likelihood function, which estimates the burst labeling
likelihood.

Definition 2. [Burst Likelihood Function] The burst likeli-
hood function for the ith instance, x;, is defined as:

Qn(xusk;ﬁzv 1) PT‘(81|yl =1 Sk;émTz)

where s,; = S — {s;} and T; is the number of directly
preceding true positive instances, such that 7; is defined as:

{

Intuitively, T; measures whether the ith instance, z;, is in a
burst of positive instances and, if so, for how long the sequence
had occurred up until that point. This measure serves two
purposes: 1) In the case where a given instance x; has no
surrounding labeled instances, T; informs the burst likelihood
function of whether the surrounding instances were not labeled
due to being true negatives or if they were unlabeled true
positives. 2) T; captures the observation that when individuals
perform burst labeling, if they decide to label a sequence they
may incorrectly record the start and end times.

Clearly we can not calculate 7; directly from the data as the
true class y; is an unobserved variable during training. Instead,
we estimate 7T as:

maxy St Yi—1 = Yi—2 = ... ify;_1=1

0

T, =Yi—k .
otherwise

i — =i if Qi—1.: 1
otherwise

(D

where gy; is an estimated class label. ¢j; can be estimated
from another PU learning method, such as SAR-EM [9].
These initial estimated class labels are not as accurate as the
final class predictions obtained using BurstPU as they do not
account for burst labeling. However, we have experimentally
validated that using T for the initial estimation in the learning
process of BurstPU improves classification performance.

If the burst labeling likelihood was known, then we could
perform PU learning under the burst labeling scenario through
PU empirical risk minimization as is done by [12]. That is,
we could reformulate the empirical risk equation to take into
account the burst likelihood score similar to how [9] utilize
the propensity score for empirical risk minimization. We define
the estimated burst PU risk as:

Rburst(gimia Si) = — Zsz(

{maxk St Pic1 = Yi—a = ...

+(1= )C(3)

()
+ (1 = s:)Co(9i)

where C'is a loss function and C1 (§) and Cy(g) are the costs
incurred from predicting § = 1 and § = 0 according to that
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loss respectively. C' can be a standard loss function such as the
hinge loss or logistic loss (which is the loss used for BurstPU).
The properties required for choices of loss function C are
described in [12].

Minimizing the empirical burst risk is appropriate for train-
ing a classifier as the burst risk is equal in expectation to the
true risk [9]:

Theorem 1. ]A%bwst(g”qi, 8;) is an unbiased estimation of the
true risk R(3;|y;).

Proof.
E[Rurst (§il4i, 51)] = Zyz%( (G:) + (1 - *)Co( )
+ (1 - yiqi)Co(yi)
== Z%Cl 9i) + (1= 4i)Co(9:)
(yilyi)

|

Theorem 1 shows that the empirical burst likelihood risk
is an unbiased estimator of the true risk. Thus, minimizing
the empirical burst likelihood risk is analogous to minimizing
the standard risk that would be minimized if we had perfectly
labeled data.

If the burst likelihood score is known, we can train a
classifier f to predict the true class y; by minimizing the
burst risk in Equation 2. The re-scoring process corresponding
to minimizing Equation 2 addresses the challenge of biased
labeling, as re-weighting each instance by the burst likelihood
score would then account for the bias in the labeling process.

Below, we establish a bound on the error of a classifier
trained through empirical risk minimization of the burst likeli-
hood estimator. This bound represents how much the empirical
burst risk may differ from the true standard risk within a
probability of 1 — n. In effect, it quantifies the maximum
difference between our classifier trained on PU data and a
classifier trained on perfectly labeled data. Note that this bound
differs from the bound under the SAR assumption [9], because
the labeling likelihood is not independent and identically
distributed under burst labeling.

Theorem 2. Let f* = argmin; wa.st( f) be the classi-
fier found through empirical risk minimization of the burst
likelihood risk in hypothesis space H, where R is chosen
with appropriate C' such that R is c-Lipschitz with respect
to the Hamming metric on R. Then, with probability 1 — n
Ruurst (F*1iy52) < RO Tyi) + /262 8]0 22, where
A, is the mixture coefficient matrix.

Proof.

Pr(Rburst(f*Mia 5i) — R(f*yi) > ¢€)
< Pr(V(Ryurst(f*]air 8:) — R(f*|yi)) > €)
||

< Zpr(éburst(f*m% 51’) -

i=1

R(f*y:) > €)
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Then, by the Kontorovich inequality [15]
2

€
<[H[|-2- exp(—m) =1

Solving for €, we find

2
€= \/202||An||goln7{
n

Note that the mixture coefficient matrix A, is a matrix
containing values that quantify the dependence of our random
variables as defined in [15].

It is important to note here that in practice, the burst
likelihood score is likely to be unknown. Unfortunately, we
cannot use the burst likelihood risk (Equation 2) to estimate
the burst likelihood score as we would need an estimation
of the true class labels in order to do so. We cannot obtain
estimates for the true class labels without an estimation of
the burst likelihood score. This is the aforementioned first
challenge of inference of the interdependent unknown
labeling likelihoods and the class likelihoods (Section 1).

In the case of unknown labeling likelihoods, we would need
to estimate this burst likelihood score from the data itself. After
estimating the score for each instance, we then could train a
final classifier by minimizing the above risk function using the
estimated burst likelihood scores.

B. The Burst Likelihood Score Model

In order to estimate the burst labeling likelihood, ¢;, defined
in Definition 4.1, we assume that g; can be modeled through
some classifier with parameters ®. Additionally, due to the fact
that in practice when there is a long enough duration between
subsequences of true positives, the labeling of an instance in
one burst is effectively independent of whether or not the
earlier burst was labeled, we assume that for 0 < § << 1
there exists a k > 0 such that corr(z;,xx) < (Vi >> k).

Thus, this implies that:

G(@i, skzi, Tis @) = Pr(silys = 1, 8i—pei—1, 80+ 100+ k, Tj)
~Pr(silys = 1,8 pi—1,51 + 114+ k,T;)
= (@i, Si—kei—1, 51 + 11+ K, T;; @),

We can therefore train ¢; using the indicator, s;, of only the
preceding and succeeding k instances, and not all instances.
Further, we assume that Pr(s;|y;, S$i—kwi—1,i+1:i+k, 13) can
be modeled by Pr(s;|y;, County(x;),T;), where County(x;)
returns the count of labeled instances within a window size of
k around the given instance x;. In other words, we assume
that the likelihood that a given instance is labeled depends
on whether the surrounding instances are labeled such that
this dependency can be captured by the number of labeled
instances among the surrounding instances.
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Datasets

Characteristics EEG  Occupancy Ozone ITW HAR
# Features 4 7 73 52

# Instances 14640 20560 2536 26798
Binary? Yes Yes Yes No

C. Learning the Burst Likelihood Model and Classifier

Note that the burst labeling likelihood is conditioned on the
true class y;, as stated in Definition 2. This means we cannot
train a burst labeling likelihood model from PU data in a
straightforward manner, as y; is an unobserved latent variable.
In order to overcome this “chicken and the egg” problem,
we learn §; jointly with f, where f(x;;©) is the model for
Pr(y;|z;). We do this through an expectation-maximization
(EM) process as this has been shown to be effective for
PU learning in other PU scenarios [9]. We utilize our EM
algorithm to train ¢; and f by maximizing the likelihood of
Pr(z;, si,yi), where:

Pr(x;, si, yil ki, Ti) ~Pr(xs) Pr(y|z:) Pr(silys, skzi, T;)

Learning the burst likelihood score in this way addresses the
aforementioned second challenge of learning with biased
labels (Section 1).

D. Local Sequence Certainty Parameter

[9] showed that a classifier f , which predicts the probability
of being labeled rather than the probability of being the
positive class, and a propensity function (in our case, the
burst labeling likelihood function) that always predicts that
the instance is labeled, will perfectly model the observed
data. Obviously, this is not the desired solution, as instead
we want to encourage the burst likelihood function to be
small for unlabeled positives and large otherwise. We thus
need to weigh the output of the burst likelihood estimator by
a positive value < 1. We expect the labeling likelihood of
a given true positive instance to decrease as the number of
directly preceding instances with a high probability of being
labeled increases.

Thus, we now propose to weigh ¢; by (1—X)(+ V™" where
0 < A << 1 and m is given by:

m
m* = argmaxz flzizy),

s.t. rnd(f(zi—1))

andsi,l

e =rnd(f(zi—m)) =1

e = Si—m = 07

where rnd is the rounding function. Here, m* therefore
denotes the number of preceding instances that f predicts to
be positive instances. This means (1 — \)+2)™" begins as a
term close to 1 when the previous instance is predicted as a
negative instance, but decreases towards O as the number of
consecutive previous unlabeled instances that are likely to be
true positives increases.
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Fig. 3: MSE of BurstPU vs the state-of-the-art PU meth-
ods and baselines for the Ozone [16], Occupancy [17], and
EEG [18] datasets. As we introduce various levels of unlabel-
ing into these datasets in this experiment, the percent unlabeled
corresponds to the ratio of labeled instances to true positive
instances. Results are averaged over 5 runs.

V. EXPERIMENTAL STUDY
A. Datasets

To study the ability of our BurstPU method for PU learning,
we evaluate it on four real-world sequential datasets from the
literature. For three of the datasets, all ground truth labels
are known. For these datasets, we introduce various levels of
unlabeling and compare our method against state-of-the-art
methods for these unlabeling scenarios. The fourth dataset is
a HAR dataset, and thus is already naturally a PU dataset. For
this reason, we do not introduce additional mislabeling when
performing analysis on this ITW HAR dataset. For all datasets,
a 70-30 train-test split was used. For the 3 non-HAR datasets,
the last 30% of the sequence was used. For our HAR dataset,
the split was random and on the user level. We will release
this split when release the HAR data pending IRB approval.

e EEG Eye State [18]: This dataset was collected in
a controlled study. A participant wore an Emotiv EEG
Neuroheadset which collected EEG data from the partic-
ipant for 117 seconds while a video of the participants’
eyes was recorded. The EEG data was later annotated
with the eye state (i.e., eye open or closed) observed using
the recorded video.=

e Occupancy [17]: This dataset corresponds to the
binary classification task of determining whether or not a
room in an office was occupied given light, temperature,
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humidity and CO- data. Pictures of the office were used
by the researchers to assign the ground truth labels. .

e Ozone [16]: Atmospheric data was collected in Texas
in the Houston, Galveston and Brazoria area daily from
1998 to 2004. Corresponding information indicating
whether or not each day was classified as an “ozone
action day” is provided. The associated features are
statistical properties of atmospheric conditions, such as
the peak wind speeds and temperatures at various times
throughout the day. More details on the variety of features
in this dataset were made available in [16].

e ITW HAR [8]: Our research group collected an in-the-
wild ITW) HAR dataset, where “in the wild” refers to
the fact that the dataset was collected from participants as
they went about their normal routines. Participants were
asked to annotate a finite set of activities as they went
about their day. Data was collected every minute, and thus
participants could label their activities down to a 1-minute
granularity. However, due to the burden of fine-grained
labeling, participants were allowed to annotate their data
at a granularity of their choosing; i.e., they could select
an hour of data and apply the same label to the entire
time period. This resulted in burst labeling behavior by
the participants. For this analysis, 52 statistical features
were computed from the accelerometer and gyroscope.
These features are standard features computed in HAR
studies, and are the ones used by [1] in their study.

B. Compared Methods

We compare BurstPU’s performance to the following algo-
rithms, which include the state-of-the-art PU learning methods
as well as standard baselines commonly found in PU stud-
ies. As each method can use an arbitrary classifier for the
classification step, in our experiments all methods use the
same base classifier. We use a logistic regression classifier
with the same hyperparameter settings used in Sci-Kit Learn’s
implementation of logistic regression in version 0.21.3 [19].

e nnPU [12]: nnPU is the leading method for training deep
networks on PU data. nnPU corresponds to the process
of minimizing the empirical PU risk given in Equation
1 under the SCAR assumption. Additionally, due to the
property that the PU risk can be infinitely negative and is
thus liable to overfit during training, nnPU clips the risk
over the unlabeled instances to be no less than 0.

e SAR-EM [9]: SAR-EM corresponds to the leading PU
method for learning under biased labeling. SAR-EM
jointly trains a classifier and label likelihood model using
an EM algorithm. Any machine learning or deep learning
model that returns a prediction probability can be used
within SAR-EM.

e Naive Classifier: We use a logistic regression classifier
that treats all unlabeled instances as negative instances. In
other words, this method makes the standard assumption
that the labels available during training correspond to the
true class. We expect this method to perform worse as
the total percentage of unlabeled instances increases. As
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Fig. 4: Comparative Study of BurstPU vs the other comparative methods on the ITW HAR dataset measured by MSE. (a)
MSE averaged out across all 8 activities in ITW HAR dataset, while (b) to (i) instead report the average MSE for each of the
particular classes; i.e., (b) for Phone-in-Bag activity, etc. For MSE, lower is better.

this is the most straightforward and naive way to address
the PU problem, we expect the other PU methods to
outperform this method.

o Ground-Truth Classifier: We apply a logistic regression
classifier to three datasets where the ground truth labels
are known. This method is thus able to perform standard
binary classification, as it is trained on the true class.
Generally, we expect PU methods to perform worse than
this method as unlike this ground-truth classifier they are
trained incomplete data. This gives a baseline of ideal
performance.

C. Experimental Results

1) Performance of BurstPU for Various Levels of Unla-
beling: In this experiment, we evaluate BurstPU’s ability to
perform PU learning under the burst labeling assumption. The
goal is to train BurstPU on PU data, and then evaluate the per-
formance of its classifier to perform positive-negative binary
classification on testing data. We transformed the fully labeled
datasets: Occupancy, Ozone, and EEG, described above into
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PU datasets by removing the labels from all negative and a
subset of the positive instances.

To capture the burst labeling scenario, the unlabeling of the
positive instances was done in bursts. To accomplish this, we
unlabeled consecutive positive instances such that the average
length of each applied unlabeled burst was 90 instances with
a variance of 3 instances.

We varied the total number of unlabeled bursts to control the
measure of unlabeling. We define the measure of unlabeling
as the ratio of labeled instances to true positive instances;
i.e., measure of unlabeling = 257:1;
unlabeling is 1 then all positive instances are labeled, and if it
is 0 no positive instances are labeled. We compared BurstPU
with three different window sizes (10, 50, 100) against nnPU,
SAR-EM, a naive classifier which treats unlabeled instances
as negative instances, along with a standard classifier that is
always given the true class labels during training.

Results are shown in Figure 3. BurstPU outperforms all
other methods, and performs the best with a window size of
100. Counter-intuitively, both BurstPU and SAR-EM perform

If the measure of
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Without 7; | With T;
Phone in Bag 0.304 0.269
Phone in Hand 0.234 0.217
Phone in Pocket 0.134 0.139
Phone on Table 0.199 0.198
acing Up
Phone on Table 0.161 0.180
Facing Down
Sitting 0.211 0.210
Walking 0.230 0.222
Laying Down 0.262 0.259

TABLE II: The MSE for each class in the ITW HAR
dataset for BurstPU with and without the hyperparameter T
(described in Equation 1). Using this feature increases the
performance of BurstPU for the majority of classes.

better than the classifier that was given perfectly labeled
data while they were trained on data with moderate levels
of unlabeling. However, we note that the phenomenon of PU
methods outperforming standard positive-negative classifiers
has been given theoretical justification by [20].

2) Classification with PU Data: In this experiment we eval-
uate the ability of BurstPU to perform classification on an real-
world PU dataset, ITW HAR. We do not introduce additional
unlabeling into the dataset as ITW HAR already has mislabeled
data. We train all methods on the user-annotated data. We
then evaluate all methods on a held-out test set that consists
of 30% of the total dataset. The splits where conducted on a
user level. As ITW HAR is a multi-label dataset, we train each
method as a binary classifier for each activity separately. To
evaluate the performance of each method we measure the MSE
of the predicted class probabilities returned by each method
with the class labels of the testing set. Results are shown
in Figure 4. For all but one class in ITW HAR, BurstPU
significantly outperforms all other compared methods. The
next best method is SAR-EM. This indicates that there might be
feature-level biases in the user’s labeling behavior for certain
classes in addition to the sequential labeling dependencies
captured by BurstPU.

3) Importance of T;: BurstPU’s burst likelihood estimator
is given an estimate of the number of instances since the clos-
est previous predicted negative instance occurred, as described
in section 4.1. In order to validate the importance of this input,
we evaluate the performance of BurstPU on the ITW HAR
dataset for a version of BurstPU with and without this input.
Results are shown in Table II. For most classes in the ITW
HAR dataset, including this extra input decreased the MSE and
thus increased classification performance of BurstPU.

VI. CONCLUSION

We have identified burst labeling, a new PU unlabeling
pattern that had not previously been identified. We proposed
BurstPU, a framework for PU learning under the burst
labeling scenario. Additionally, we provided a theoretical
error bound for our BurstPU method. We also demonstrated
its effectiveness through extensive experimental evaluation.
Future research includes the development of new PU burst
labeling learning algorithms not using EM as well as of PU
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learning under alternate bias types.
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