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Abstract—Human context recognition (HCR), which involves
determining a user’s current situation (or context), has long
been an important task in context-aware systems. With the
widespread ownership of smartphones, HCR methods that utilize
signals from its built-in sensors have recently received increased
attention. We propose Context Recognition under label Un-
certainty using Fusion and Temporal Learning (CRUFT), a
novel method to recognize a diverse set of smartphone user
contexts, including long-term human activities, short-term human
activities, and phone placement (pocket or bag in which the
smartphone is carried). Context recognition is formulated as
a multi-label classification task. CRUFT uses both handcrafted
features and auto-learned deep learning features extracted from
raw time-series data in two separate arms. The handcrafted arm
includes a Multi-Layer Perceptron (MLP), while the raw data
arm utilizes a Convolutional Neural Network (CNN) along with a
Bi-Directional Long Short Term Memory (Bi-LSTM) model that
exploits temporal correlations in the input stream. As smartphone
sensor readings, assigned timestamps, and labels can be wrong
sometimes, CRUFT integrates an uncertainty module. CRUFT
outperforms the state-of-the-art baselines achieving 94.25% in
overall Balanced Accuracy (BA), which improves the best per-
forming baseline by 2.7%. Our detailed analyses demonstrate the
non-trivial contributions of each component in CRUFT.

Index Terms—Human Context Recognition, Mobile Ubiquitous
and mobile computing, Deep Learning

I. INTRODUCTION

Context-Aware (CA) systems, which can adapt their behav-

iors based on the user’s current context [1] have important

applications in healthcare. In CA systems, recognition of

the user’s context (or situation) is an important task. We

focus on HCR on smartphones as they are sensor-rich (e.g.

with accelerometers, gyroscopes, and location sensors) and

ubiquitously owned. Human context is often represented as a

tuple <activity, phone placement> that includes their current

activity and pocket or bag in which the phone is currently

placed. Phone placement is important as the smartphone’s

sensor signal may vary for the same context or activity with

different phone placements, making HCR challenging [1].

Using this tuple representation, smartphone HCR becomes a

challenging multi-label classification task.

In this paper, we propose an improved HCR model, which

exploits three observations we made about smartphone context

data patterns: 1) Label correlation: Distinct labels in the

context tuple may be correlated or co-occur. For example,

”Phone on Table, Facing Down” and ”Sitting” tend to co-

occur and have a high Pearson Correlation (PC) = 0.93.

Conversely, some contexts have are unlikely to co-occur. For

example, ”Sitting” and ”Walking” have low PC -0.15. Prior

HCR systems learned context labels independently but did

not exploit correlations between context labels. 2) Temporal
context sequences: Data instances tend to occur in bursts

causing several consecutive context segments to be similar.

3) Label uncertainty: Smartphone context data can be noisy

due to perturbations of the phone in the real world, wrong

timestamps, labels, and extremely imbalanced datasets, which

present additional challenges for HCR systems. We exploit

these three patterns in a single model to achieve significantly

better performance than prior HCR systems.
We propose the Context Recognition under Uncertainty

using Fusion and Temporal Learning (CRUFT), a deep learn-

ing method that recognizes a diverse set of smartphone user

contexts, including long-term human activities, short-term

human activities, and phone placement. CRUFT uses both

handcrafted features and auto-learned deep learning features

extracted from raw time-series data in two separate branches.

Temporal patterns are learned by a Bi-Directional Long Short

Term Memory (Bi-LSTM) model on the raw data arm. The two

branches are fused by concatenating the hidden vectors gener-

ated by 1) MLP 2) CNN+(Attention+pooling)+Bi-LSTM. An

additional fully connected layer is added for final prediction.

CRUFT integrates an uncertainty module to deal with noisy

smartphone data due to wrong assigned sensor timestamps and

labels. Various pooling strategies are utilized to compress raw

data better, and an attention mechanism is used to focus on

the most predictive parts of the data. CRUFT outperformed

the other state-of-the-art methods, achieving 94.25% Balanced

Accuracy (BA) on a real-world context dataset.
Our work is related to Human Activity Recognition (HAR)

research, including those that utilized data from multiple body-

worn sensors [2].
However, our work focuses on HCR on smartphones. Prior

smartphone HCR work uses MLP to classify handcrafted

features extracted from in-the-wild data gathered from both

a smartphone and smartwatch [3]. Neural networks have also

been utilized for smartphone HCR [4], including combining

MLPs and CNNs [5], fusing multimodal sensor data and

classification using a bi-LSTM [2], using multiple sensor

streams with shared weights [6] or converting sensor data to

a 2D image that is then analyzed using CNNs [7].
Our research differs from the prior work above in the

following ways:

1) Learning temporal data correlations: Prior work treats
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each data instance independently. In contrast, CRUFT

uses a Bi-LSTM to learn temporal correlations in se-

quential data and across labels using joint learning.

2) Combining handcrafted and auto-learned features:
CRUFT incorporates and combines the advantages of

handcrafted and auto-learned deep learning features to

improve model performance.

3) Combining local and temporal deep learning models:
MLP and CNN models extract local information while

a Bi-LSTM learns temporal patterns. An attention mech-

anism focuses on the most predictive parts of the data.

Pooling strategies were used for data compression.

4) Uncertainty estimation module for mitigating real-world
noise: and reducing the impact of user movement and

wrong labels and timestamps on prediction performance.

The main contributions of this paper are three-fold:

1) We propose CRUFT, a novel deep learning framework

that solves the multi-label HCR problem. CRUFT com-

bines a CNN that captures label correlations with a

novel Bi-LSTM model that captures the inter instance
temporal correlations between sequential data instances.

For contexts such as continuous human motion that

generate long streams of similar sequences, exploit-

ing temporal relationships achieves significantly better

performance than treating data instances independently.

Prior work [3] only learned temporal correlations within

each data instance (intra-instance).

2) We explored multiple methods for uncertainty estima-

tion, which improved HCR in many scenarios.

3) We rigorously evaluate CRUFT, demonstrating that it

outperforms state-of-the-art baselines, achieving an over-

all Balanced Accuracy (BA) of 94.25% on a real smart-

phone context dataset. Our ablation study demonstrates

that the contributions of each component of CRUFT to

overall model performance are non-trivial.

The remainder of this paper is organized as follows. Sec-

tion II describes the context data collection and pre-processing

steps for our experiments. Section III introduces our proposed

approach. Section IV describes our evaluation and results.

Finally, Section V concludes our work.

II. CONTEXT DATASET

We evaluated CRUFT and compared it to other base-

line models using real-world context data gathered in the

DARPA-funded Warfighter Analytics for Smartphone Health-

care (WASH) project. The over-arching goal of the WASH

project is to passively assess the health status of smartphone

users by utilizing high-specificity smartphone biomarkers or

health tests performed in specific contexts. The scripted WASH

dataset was collected from 109 subjects who visited contexts

and performed activities in a scripted fashion while carrying

a smartphone running an app that passively gathered sensor

data. During data collection, each candidate placed their phone

in different pockets/bags (in a bag, in the pocket, in hand,

on a table, and facing up or down). Human proctors labeled

TABLE I
WASH SCRIPTED CONTEXT LABELS

Category Label Support(sec) Ratio(%)

Phone
Placement

In Pocket 52,049 11.76
In Hand 69,798 15.77

In Bag 54,805 12.39
On Table Face Down 20,493 4.63

On Table Face Up 7,987 1.81

Long

Term
Activity

Lying Down 1,863 0.42
Sitting 23,501 5.31

Walking 129,834 29.34
Sleeping 4,477 1.01

Talking On Phone 2,945 0.67
Bathroom 6,535 1.48
Standing 13,246 2.99
Jogging 4,366 0.99

Running 3,769 0.85
Stairs - Going Down 5,364 1.21

Stairs - Going Up 1,890 0.43
Typing 8,049 1.82

Jumping 3,140 0.71
Trembling 1,274 0.29

Short
Term

Activity

Laying Down (action) 1,216 0.27
Sitting Down (action) 719 0.16

Sitting Up (action) 873 0.20
Sneezing 642 0.15

Coughing 664 0.15
Standing Up (action) 954 0.22

TABLE II
HANDCRAFTED FEATURES FOR 3-AXIAL SENSOR MEASUREMENTS

Features Description
Mean Meanm = 1

N

∑N
i=1 mi

Standard Deviation Stdm =
√

1
N

∑N
i=1(mi − m̄)2

Moment-k k

√
1
N

∑N
i=1(mi − m̄)k, k = 3, 4

Percentile-k the score at k percentile of magnitude, k=25, 50, 75

Value Entropy-k
−∑k

i=1 pi × log(pi),
a histogram of the magnitude values to k bins, k=20

Time Entropy −∑N
i=1 abs(mi)× log(abs(mi))

Log Energy

Band-[a,b]
log(

∑
i fft(mi)

2), fftfreq(mi),
[a,b] = [0, 0.5], [0.5,1], [1,3], [3,5], [5,+∞] Hz

Spectral Entropy −∑N
i=1 fft(abs(mi))× log(fft(abs(mi)))

Period Duration between two peak autocorrelations of m
Normalized Autocorrelation Normalized highest autocorrelation of m after main lobe

Mean Meanx = 1
N

∑N
i=1 xi

Standard Deviation Stdx =
√

1
N

∑N
i=1(xi − x̄)2

Inter-axis
Roxy = Cxy/

√
Cxx × Cyy , Cxy = Cov(x, y)

Correlation Coefficients

each smartphone sensor data instance with 25 different binary

labels, which were then used to compose the context tuple

(See Table I).

Two important points need to be clarified: 1) Each instance

can be tagged with multiple labels. For example, a subject

may be “talking on the phone” with “the phone in hand”. 2)

As shown in table I, this is an extremely imbalanced dataset

in which positive labels are rare and sparse.

A. Handcrafted Features

The handcrafted features utilized are listed in Tables II

and Table III, where magnitude m =
√
x2 + y2 + z2. Table II

lists features generated from spatial sensor data including the

accelerometer, gyroscope, raw and unbiased magnetometers.

Other features are listed in Table III. These features were

previously utilized by Vaizman et al [3]. They were extracted

from 5 sensors: accelerometer (Acc), gyroscope (Gyro), loca-

tion (Loc), raw and calibrated version of the magnetometer

(raw Mag and proc Mag), and phone state (PS). After re-

moving identical features, 145 features were left. Continuous

feature values were normalized by subtracting their mean and
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TABLE III
OTHER FEATURES

Features Description
Number of Updates number of changed location

Log of Latitude-range log(max(latitude)−min(latitude))
Log of Longitude-range log(max(longitude)−min(longitude))

Min/Max Altitude min(altitude)/max(altitude)
Min/Max Speed min(speed)/max(speed)

Best Horizontal Accuracy min(horizontal accuracy)
Best Vertical Accuracy min(vertical accuracy)

(Log) Diameter
(Log of) Longest geographic
distance between two locations

Screen Brightness, Light, Low Frequency Measurements

Directly Taken from Sensors

Built in to the Phone

Pressure, Relative Humidity,
Battery Level, Proximity,

Temperature Ambient

Battery State
{unknown, unplugged, not charging,
discharging, charging, full}

On The Phone {True, False}
Ring Mode {normal, silent no vibrate, silent with vibrate}
Wifi Status {True, False}

Time(Hour) of The Day {[0,6], [3,9], [6,12], [9,15], [12,18], [15,21], [18,24]}

22
11

33

44

55

66

77

88

99

1010 1111

Fig. 1. Our CRUFT architecture.

dividing by their standard deviation. Categorical features were

one-hot encoded.

B. Auto-learned Features and Splitting

Features were auto-learned from raw 3-

axial accelerometer and gyroscope data

xt = (acctx, acc
t
y, acc

t
z, gyro

t
x, gyro

t
y, gyro

t
z), which were

sampled to the desired length of 50 samples and then

concatenated. To show that our model’s inference generalizes

well to new, previously unseen users, we used subject-level

such that each subject’s data was included in only one of the

training, validation, or test sets. We created training (80%),

test (10%), and validation (10%) splits.

III. OUR NOVEL CRUFT FRAMEWORK

Our proposed Context Recognition under Uncertainty using

Fusion and Temporal Learning (CRUFT) framework is a Joint-

Learning model (See Fig 1). Details of each layer are described

in Table IV. Optimal parameter settings were determined using

a grid search. The model has three main parts:

1) Multi-Layer Perceptron (MLP) that handles handcrafted

features with a fully-connected reshaping layer to gen-

erate the hidden vector (shown as step 2-4).

2) CNN with attention and pooling layer followed by a Bi-
LSTM network with a similar reshaping layer for auto-

matically learning hidden vectors from sequential/time-

series raw data (shown as step 5-8).

3) Joint Fusion and Uncertainty Estimation concatenates

hidden vectors learned from the two previous steps and

generates predictions and uncertainty (steps 9-11). For

overlapping outputs, a simple voting strategy is used to

make the final prediction and estimate uncertainty.

A. MLP with handcrafted features as input

The handcrafted features are fed into a one-hidden-layer

MLP. A fully connected layer is then used to project the

vector learned by MLP into the same level of magnitude as

the hidden vector learned from the raw signal. This projection

ensures that the hidden vectors from one arm of the design

(parts 1 and 2) do not overwhelm or underwhelm the other

part after concatenation. We apply dropout as an implicit

Bayesian approximation [8], reducing both overfitting and

model uncertainty [9].

B. CNN + Attention/Pooling + Bi-LSTM processing raw data

This part is composed of a CNN, followed by a bi-LSTM

network. Several pooling methods were applied between CNN

(local context) and Bi-LSTM (temporal context)

to condense the data and extract useful information. CRUFT

takes w = 10 multiple consecutive, overlapping o = 5 in-

stances as input.

In this setting, Xt = [xt, xt+1, . . . , xt+10] and

Xt+5 = [xt+5, xt+6, . . . , xt+15] would be two consecutive

valid inputs to our model. For one input Xt ∈ N10∗6∗50, each

instance xt ∈ N1∗6∗50, t ∈ (t, . . . , t+ w) is processed

separately by the CNN to extract feature vectors

at ∈ N1∗128∗6. CNN’s output is further condensed using

three mapping/pooling strategies: self-attention, max pooling,

and mean pooling. These three pooling results are then

concatenated and fed to later networks. For each instance in

At, the CNN outputs bt ∈ N384. CRUFT uses a bi-LSTM

network with dropout to learn temporal patterns in the

time-series context data. A linear layer is used to project the

hidden vector generated by the Bi-LSTM into a lower hidden

space, making it compatible with the output vector of part 1.

C. Joint Fusion and Uncertainty Estimation

Finally, we concatenate the representation vectors learned

from both CRUFT arms using a hidden layer with dropout

and LeakyReLU as the activation function. A linear projection

maps it to yt = [y0, y1]. The output can be written as:

outputt = [μ(ŷt), δ
2(ŷt)]

T = [y0, softplus(y1)]
T (1)
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TABLE IV
DETAILED CRUFT FRAMEWORK ARCHITECTURE

Step Index Layer Name Previous Layer Input Shape Output Shape Parameter Setting & Description
1 Input - - - Load raw data as input
2 Handcraft 1 - 10× 145 Extracting handcrafted features
3 MLP 2 10× 145 10× 64 #hidden layer=1, dropout = 0.05
4 FC reshape1 3 10× 64 10× 64 Reorganize weights and shape

5.1 Conv1 1 10× 6× 50× 1 10× 6× 25× 32 kernel=(1,9), #kernel=32, stride=(1,2), padding=(0,4)
5.2 MaxPool1 5.1 10× 6× 25× 32 10× 6× 12× 32 kernel=(1,2), stride=(1,2)
5.3 Conv2 5.2 10× 6× 12× 32 10× 6× 12× 64 kernel=(1,3), #kernel=64, stride=(1,1), padding=(0,1)
5.4 Conv3 5.3 10× 6× 12× 64 10× 6× 12× 128 kernel=(1,3), #kernel=128, stride=(1,1), padding=(0,1)
5.5 MaxPool2 5.4 10× 6× 12× 128 10× 6× 6× 128 kernel=(1,2), stride=(1,2)
5.6 Conv4 5.5 10× 6× 6× 128 10× 1× 6× 128 kernel=(6,1), #kernel=128, stride=(1,1), padding=(0,0)
6.1 Attention 5.6 10× 1× 6× 128 10× 128 attention pooling of one dimension, squeeze dimension 1
6.2 Maxpool 5.6 10× 1× 6× 128 10× 128 max pooling of one dimension, squeeze dimension 1
6.3 Meanpool 5.6 10× 1× 6× 128 10× 128 mean pooling of one dimension, squeeze dimension 1
7 BiLSTM 6.1, 6.2, 6.3 10× (128 + 128 + 128) 10× 128 #layer=2, dropout=0.05, hidden dim=64, bidirectional
8 FC reshape2 7 10× 128 10× 64 Reorganize weights and shape
9 Concatenate 4,8 (10× 64) * 2 10× 128 Concatenate output of two networks. dropout=0.25
10 Prediction 9 10× 128 10× 25 Generate predictions
11 Uncertainty 9 10× 128 10× 25 Generate uncertainties

where softplus(y1) = log(1 + exp(y1)) and μ(ŷt) and

δ2(ŷt) represents the mean and variance of the prediction

respectively. The variance ŷt measures the uncertainty of our

prediction. In cases where multiple predictions are generated

due to overlapping inputs, a simple “vote” is used to generate

the final prediction. In the situation with chunk size w = 10
and overlap o = 5, the output of Xt = [xt, xt+1, . . . , xt+10]
and Xt+5 = [xt+5, xt+6, . . . , xt+15] are

Yt = [μ(ŷt), μ( ˆyt+1), . . . , μ( ˆyt+10)] and

Yt+5 = [μ( ˆyt+5), μ( ˆyt+6), . . . , μ( ˆyt+15)]. Thus, the prediction

for timestamp t+ 5 is the average of Yt+5[0] = μ( ˆyt+5)
and Yt[5] = μ( ˆyt+5). The Bi-LSTM network’s output at

timestamp t is learned from the hidden vector at timestamp t
but is also influenced by vectors from other timestamps.

The uncertainty estimation method we utilized in

CRUFT was previously proposed by RDeepSense [9]

and APDeepSense [10] to estimate the model’s uncertainty

in a single pass. Other emerging uncertainty methods have

been proposed including 1) Dropout-based methods [8]–[11]

and 2) Ensemble methods [12]. Dropout-based uncertainty
estimation: such as MCDrop [8] and ADF [11] interpreted

dropout as a Bayesian approximation of the Gaussian

process. These methods average the mean and variance of

the neural networks model trained with different dropout

values as a measure of the model’s uncertainty. However,

these methods are too computationally complex for resource-

constrained mobile devices, require multiple passes and either

overestimate or underestimate the model’s uncertainty [9].

In the RDeepSense uncertainty estimation method, a

scoring rule achieved a balance between overestimating and

underestimating uncertainty.

D. Loss Function

We utilize a loss function adapted from Yao et al [9]. It

is a linear combination of two parts: weighted mean square

errorlossmse and weighted negative log-likelihood lossnll,
controlled by hyper-parameter α. The higher the value of α,

the more the model emphasizes making an accurate prediction.

To mitigate the extreme imbalance in our context dataset, we

introduced instance-pair weights ωn,l into the loss function.

Lossmse = 0.5×
N∑

n=1

C∑

l=1

(ωn,l(yn,l − μ( ˆyn,l))
2) (2)

Lossnll = 0.5×
N∑

n=1

C∑

l=1

(logδ2( ˆyn,l)+
(yn,l − μ( ˆyn,l))

2

δ2( ˆyn,l)
) (3)

Loss = (1− α)× Lossnll + α× Lossmse + λw‖W‖22 (4)

IV. EXPERIMENT

We evaluated our CRUFT and baseline models on scripted

WASH data using different sliding window size and step ratio
combinations. step size = window size× step ratio.

A. Baselines

We compared CRUFT to state-of-the-art models, including

both machine learning and deep learning methods. Some

baselines are individual components of the CRUFT model.

• ExtraSensory Multilayer Perceptron (MLP): utilized by

Vaizmanet al. for context recognition on smartphones and

smartwatches [3]. Its inputs are 145 handcrafted features

extracted from the accelerometer, gyroscope, magnetome-

ter, location, phone state, and low-frequency measure-

ments. Labels were assigned weights corresponding to

their inverse frequency ratio.

• Random Forest (RF): is an ensemble tree classifier, which

has been utilized extensively in the HAR literature, includ-

ing on wearable device sensors [13]. We used Random

Forest (RF) to classify the same 145 handcrafted features

as the ExtraSensory MLP.

• CNN: model automatically extracts features from raw

accelerometer and gyroscope data. We use the same CNN

architecture listed in Table IV, followed by a fully con-

nected layer to make predictions.

• Bi-LSTM: uses the same raw data as the CNN and is

followed by a fully connected layer to make predictions.

• GaitAuth [14]: was previously used to authenticate smart-

phone users from their gait. It uses a sequence of CNNs
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TABLE V
MODEL PERFORMANCE ON SCRIPTED WASH, WINDOW SIZE=3, STEP RATIO=0.5

Category Label
Model

ExtraSensory Bi-LSTM CNN GaitAuth GaitIden Random Forest CRUFT

Phone
Placement

Phone In Pocket .905 .883 .892 .927 .912 .812 .947
Phone In Hnad .877 .835 .871 .871 .869 .841 .889
Phone In Bag .920 .905 .929 .930 .927 .901 .967

Phone On Table-Face Down .824 .807 .809 .810 .814 .555 .881
Phone On Table-Face Up .981 .977 .973 .973 .972 .859 .989

Average for Phone Placement .901 .882 .895 .902 .899 .794 .935

Long

Term
Activity

Lying Down .915 .801 .826 .863 .856 .500 .937
Sitting .814 .771 .789 .781 .784 .549 .870

Walking .950 .927 .933 .924 .938 .952 .958
Sleeping .981 .974 .972 .970 .967 .513 .989

Talking On Phone .937 .958 .977 .970 .973 .670 .983
Bathroom .851 .781 .773 .801 .800 .500 .876
Standing .814 .758 .785 .758 .748 .502 .893
Jogging .972 .974 .886 .977 .980 .577 .982
Running .980 .937 .957 .964 .970 .704 .981

Stairs-Going Down .932 .791 .885 .894 .865 .544 .955
Stairs-Going Up .942 .768 .842 .858 .839 .500 .946

Typing .982 .983 .987 .987 .987 .816 .965
Jumping .982 .949 .968 .967 .966 .866 .988

Trembling .960 .932 .968 .980 .954 .689 .978
Average for Long Term Activity .929 .879 .896 .907 .902 .635 .950

Short
Term

Activity

Layding Down (action) .906 .868 .911 .902 .895 .500 .956
Sitting Down (action) .859 .797 .848 .867 .864 .500 .912

Sitting Up (action) .931 .849 .898 .905 .897 .500 .973
Sneezing .931 .751 .755 .815 .715 .500 .841
Coughing .920 .766 .798 .883 .869 .500 .940

Standing Up (action) .888 .871 .880 .895 .865 .500 .970
Average for Short Term Activity .906 .817 .848 .878 .851 .500 .932

Average for All Labels .918 .865 .884 .899 .889 .634 .943

Fig. 2. Average Balanced Accuracy for different windows size for different step ratios

followed by LSTMs. The learned features are fed into a

fully connected layer that predicts the user’s context.

• GaitIden [14]: was previously used to identify smartphone

users from their gait. It uses a CNN and an LSTM to

extract features in parallel, concatenated, and fed to a fully

connected layer for final prediction.

B. Experiment Settings

1) Hyper-parameters: Optimal values of all other hyper-

parameters and settings were determined using grid search

on the dataset with window size = 3, and step ratio = 0.5.

The batch size was 128, learning rate to 0.001, and λw to

1e− 5. We used Adam as our default optimizer and l2 norm

regularization.

The bi-LSTM hidden layer size was set to 64, dropout to

0.05, and the MLP hidden layer size to 64. The coefficient of

the loss function α was set to 0.3. LeakyReLU was chosen

as the activation function across all layers. Details of other

parameters are listed in Table IV.

2) Evaluation Metric: As the scripted WASH dataset is

extremely unbalanced, we evaluated our models using the

Balanced Accuracy (BA) metric, which balances specificity

and sensitivity. We computed BA macro for each context by

averaging the BA of all its constituent labels. For each label,

BA =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (5)

C. Results

1) Detailed performance on one specific data setting: For

window size = 3 (secs), step ratio = 0.5, CRUFT outperformed

all baselines in all general categories, on most labels, and

overall with a 2.5% absolute improvement and 2.7% relative

improvement against the best performing baseline (ExtraSen-

sory MLP). Bold black indicates models with the best BA

performance for each label, and the overall average BA is in

the last row.

One exception was the label ’Sneezing’ as it is difficult

for CRUFT to learn useful information about a sound only

from accelerometer and gyroscope sensor data. CRUFT is

consistently over 6% better than other models at discriminating

some challenging pairs of labels such as sitting and stand-

ing, which are frequently confused for each other. CRUFT
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TABLE VI
ABLATION ON SCRIPTED WASH WITH WINDOW SIZE = 3 SECS

Model
Step Size

0.9 1.5 2.1

CRUFT .930 .943 .942
–MLP .915 .917 .918
–Uncertainty Estimation .928 .941 .936
–CNN+Attention/Pooling+bi-LSTM .922 .925 .927

performs well on both long and short term human activity

recognition. For Laying Down (action), Sitting Down (action),

Sitting Up (action), and Standing Up (action), it outperforms

baselines by over 5.0% on average. In contrast, Random Forest

performed badly on short term activities.

2) General performance on all data settings: Figure 2

shows performance of all models for various window sizes.

Random Forest was excluded as it performed significantly

worse than other models. Even though we show only average

BA due to space constraints, it is worth noting that CRUFT

also outperforms baselines by a similar margin on individual

labels. For window size = 1 and step size = 0.5, the average

BA drops a lot mainly because it has the smallest number of

instances among all datasets (150,882 instances vs 316,720,

and 294,512 for step size of 0.3 (secs) and 0.7 (secs) respec-

tively with a 1 second window size). Although all models’

performance decreases when the step ratio = 0.5, our CRUFT

and the ExtraSensory MLP models are more stable than

baseline models that only utilize raw data. This demonstrates

the power of using handcrafted features, which enables decent

predictions even with insufficient data. Random Forest always

has the lowest average BA, demonstrating that deep learning

outperforms traditional machine learning models. RF also fails

on Short Term Activities and other labels with small support

size such as Lying Down, Bathroom, Stairs-Going Up. This

shows that it suffers most when data is insufficient.

3) Ablation Study: We conducted an ablation study on all

datasets to show that each part of our model contributes to

the CRUFT model’s success. From our results in Table VI,

all three parts of our proposed CRUFT framework contributed

positively, including MLP, CNN+Attention/Pooling+bi-LSTM,

and Uncertainty estimation. Even after removing the raw time-

series arm of CRUFT, which reduces CRUFT to an MLP

with uncertainty, it still outperforms the pure MLP ExtraSen-

sory model. This indicates that the uncertainty estimations in

CRUFT contribute to its overall performance.

4) Impact of Uncertainty: We also evaluated how useful

uncertainty estimations were by gradually removing instances

from the test dataset, starting with predictions with the highest

uncertainty down to those with lower uncertainty. We ob-

served that removing highly uncertain predictions improved

the model’s overall BA. This implies that CRUFT could

improve real-world HCR in highly noisy and uncertain in-

the-wild scenarios by utilizing only context predictions that

have high certainty.

V. CONCLUSION

In this paper, we proposed CRUFT, an HCR deep learning

model comprising three parts: 1) MLP with handcrafted fea-

tures, 2) CNN+Attention/Pooling+bi-LSTM handling raw sen-

sor measurements, and 3) Uncertainty estimation. Our model

learns both local and temporal correlations within the context

data achieving a high Balanced Accuracy. Its uncertainty

module makes it more robust to data and labeling noise on

smartphones. CRUFT can discriminate the most confound-

ing activities such as sitting and standing and significantly

outperforms other state-of-the-art models by 5.6% and 7.9%

BA, respectively. It performs well o both long term as well

as short term human activities. The macro average BA over

25 labels outperformed the best baseline models by 2.7%.

As the context dataset utilized in this paper was gathered

in a scripted, controlled fashion, its sensor data and label

uncertainty levels are lower than that of a dataset collected in-

the-wild. In future work, we intend to demonstrate the power

of CRUFT’s uncertainty estimation module in mitigating real-

world noise in an in-the-wild context dataset.
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