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Abstract— Traumatic Brain Injury (TBI) is caused by a
head injury that affects the brain, impairing cognitive and
communication function and resulting in speech and lan-
guage disorders. Over 80,000 individuals in the US suffer
from long-term TBI disabilities and continuous monitoring
after TBI is essential to facilitate rehabilitation and prevent
regression. Prior work has demonstrated the feasibility of
TBI monitoring from speech by leveraging advancements
in Artificial Intelligence (AI) and speech processing tech-
nology. However, much of prior work explored TBI detection
using audio captured using a mobile device while subjects
performed scripted speech tasks such as diadochokinesis
tests or read a passage. Such scripted approaches require
active user involvement that significantly burdens partici-
pants. Moreover, they are episodic and do not provide a lon-
gitudinal picture of the user’s TBI condition, which is use-
ful in monitoring recovery trajectory. This study proposes
a continuous TBI monitoring from changes in acoustic
features of spontaneous speech collected passively using
the smartphone. Low-level acoustic features are extracted
using parametrized Sinc filters (pSinc) that are then classi-
fied TBI (yes/no) using a cascading Gated Recurrent Unit
(cGRU). The cGRU model utilizes a cell gate unit in the
GRU to store and incorporate each individual’s prediction
history as prior knowledge into the model. In rigorous
evaluation, our proposed method outperformed prior TBI
detection methods on a dataset containing conversational
speech recorded during patient-therapist discourses fol-
lowing TBI, achieving 83.87% balanced TBI classification
accuracy. Furthermore, unique words that are important
in TBI prediction were identified using SHapley Additive
exPlanations (SHAP). A correlation was also found between
features acquired by the proposed method and coordina-
tion deficits following TBI.

Index Terms— Traumatic brain injury, Continuous moni-
toring, Acoustic features, Deep learning, Smartphone

I. INTRODUCTION

This material is based on research sponsored by DARPA under
agreement number FA8750-18-2-0077. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

Apiwat Ditthapron and Emmanuel O. Agu are with the Computer
Science Department, Worcester Polytechnic Institute, Worcester, MA
01609 USA (e-mail: aditthapron@wpi.edu, emmanuel@wpi.edu).

Adam C. Lammert is with the Biomedical Engineering Department,
Worcester Polytechnic Institute, Worcester, MA 01609 USA (e-mail:
alammert@wpi.edu).

Corresponding author: Emmanuel O. Agu.

TRAUMATIC Brain Injury (TBI) is a complex neurolog-

ical condition stemming from a physical insult or injury

to the head, which causes a wide range of physiological,

neurological, psychological, and behavioral issues. In the

United States, more than 1.4 million people are diagnosed with

TBI each year, with 80,000 of them developing permanent

disabilities [1]. While most TBI patients receive immediate

treatment and are discharged from the hospital, many patients

experience lingering issues that require clinician follow-up or

monitoring of symptoms in order to steer treatment and reduce

the risks of rehospitalization and premature death. These ad-

verse events are often caused by infectious, neurological, and

neurosurgical disorders, which are particularly significant in

moderate-to-severe cases [2]. Individuals with concussion, or

mild TBI (mTBI, can have long-term TBI-associated sequelae,

such as cognitive and communication impairment that disrupts

normal life activities [2]–[4]. The large and increasing number

of TBI cases is a source of concern in public health. There is

urgent need for automated monitoring of TBI symptoms and

ailment trajectories to prevent adverse events and fatalities, and

assist patients in the recovery from long-term TBI sequelae.

Speech and language disorders are common communica-

tion impairments following TBI and are often used as TBI

biomarkers [4]. Speech contains rich paralinguistic (e.g., affec-

tive and health-related) information, in addition to its linguistic

content [5], making it an effective biomarker for detecting

neurological disorders including depression, bipolar disorder,

and TBI [6]–[13]. Gathering speech samples for analyses is

non-invasive and can be performed passively outside the clinic

using ubiquitous sensing devices such as smartphones. More-

over, passive recording of speech on smartphones significantly

reduces participant burden, increasing participation rates and

provides access to the 85 percent of Americans who own a

smartphone [14], [15]. Previous work proposed TBI detection

systems based on speech captured using a mobile tablet with

TBI classification performed on a server [11]–[13]. How-

ever, these previous work required active user involvement

and collected speech while users were performing assigned

speech assessment tasks, such as diadochokinetic rate and

passage reading, or elicitation, such as describing a picture.

Approaches that require active user involvement present more

burden than the completely passive approach we explore and

are episodic and do not monitor participants’ TBI condition

continuously, which is important in recovery monitoring. In

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on April 08,2022 at 15:12:57 UTC from IEEE Xplore.  Restrictions apply. 



2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3158840, IEEE Journal of
Biomedical and Health Informatics

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

this study, we propose a TBI detection model (binary classifi-

cation) that continuously evaluates TBI status passively from

spontaneous speech collected on the smartphone. Our TBI

speech analyses pipeline is illustrated in Figure 1.
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Fig. 1: Pipeline in the proposed continuous TBI monitoring

and conventional TBI detection

To passively and continuously monitor TBI using smart-

phones, two primary challenges are: mitigating interfering

noise and assessing speech from continuous recordings. Noise

reduction is a critical issue when processing speech captured

in an uncontrolled environment that has background noise

or cross-talk. Noise mitigation for speech assessment were

previously addressed in [12], [16]. This study addresses the

issue of assessing subjects from continuous speech, which is

an important component to monitor TBI recovery passively.

In contrast with previous works [8]–[13] that evaluate speech

within a discrete interval of interest (e.g. before and after

high TBI risk activity), our proposed method can assess TBI

risk continuously at various monitoring intervals (e.g., hourly,

daily or weekly) throughout the day without user engagement.

Our system facilitates taking into account and fully integrating

temporal relationships between assessments. Inspired by prior

work [8], [13] that utilize the time-delayed feature to capture

changes in the strengths of formant coupling to detect TBI de-

tection, we propose a cascading Gated Recurrent Unit (cGRU)

that continuously classifies the smartphone user’s current TBI

state from continuous speech using speaker-dependent prior

knowledge stored within the cell unit of GRU. cGRU analyzes

a cascaded representation of the speech signal at different

scales, which is done using a sliding window and skipped layer

connections, allowing data at different scales to pass through

the GRU’s cell unit. Another advantage of using the cGRU

to process time-series data is that it eliminates the need for

additional data storage, as only the cell unit is retained and

overridden in each time frame.

The cGRU performs on acoustic speech features, in which a

parametrized Sinc filter (pSinc) feature, Convolutional Neural

Network (CNN) feature, Low-Level-Descriptors (LLD) of

speech, and formant frequencies are considered. In rigorous

evaluation, we found that the pSinc feature yielded the best

TBI detection performance and enabled model interpretation

in the frequency domain. pSinc and CNN features have

previously been proposed for the speaker recognition [17]

and Automatic Speech Recognition (ASR) tasks [18], respec-

tively. Conceptually, acoustic features extracted from pSinc

are similar to those extracted from a band-pass filter. They

have an advantage over CNN feature in that they learn to

capture complex spectral features that benefit TBI detection.

Our architectures of pSinc and CNN differ from the previous

works in that we incorporate a skip layer connection, which

yielded significantly improved TBI detection performance.

Additionally, we improved the efficiency of TBI detection by

employing Vocal-Tract-Length-Normalization (VTLN) [19] to

suppress inter-speaker acoustic variability between subjects

in Coelho’s corpus [20]. VTLN reduces speaker to speaker

variability, which is an important factor in speaker recognition

but reduces the performance of speaker independent tasks such

as automatic speech recognition and speech assessment.

We compared cGRU to traditional GRU, Long short-term

memory (LSTM), Support Vector Machine (SVM), Random

Forest (RF), and Multi-Layer Perceptrons (MLP) on sponta-

neous speech collected during speech and language discourse

following TBI (i.e. Coelho’s corpus [20]). Additionally, pSinc

features are compared to three types of features previously

proposed for passive and continuous assessment features, for

the TBI detection task, namely Low-Level Descriptors (LLD),

Bag-Of-Audio-Word (BOAW) and formant coordinations. To

further interpret and analyze learned features, we used SHap-

ley Additive exPlanations (SHAP) method [21] to estimate the

effect of each input time-slice (or so-called attribution), on the

final TBI prediction. cGRU with pSinc feature was found to

have a correlation with formant coordination features. Certain

spoken words were also found to be more prominent among

TBI subjects vs controls based on the attribution scores in the

temporal and spectrotemporal domains.

The contribution of this work can be summarized as follows.

1) We propose and evaluate a cGRU for continuous TBI

assessment, which successfully detects and classifies

TBI based on acoustic features.

2) We demonstrate the benefits of TBI classification us-

ing pSinc features with skipped layer connections and

VTLN over traditional CNN and LLD.

3) We analyze the features learned within the proposed

cGRU to determine its association with conventional

acoustic features.

4) We extend the SHAP method to analyze input speech in

the temporal and spectral domains to find characteristics

of speech that are prevalent following TBI.

The rest of this paper is organized as follows. Previous

works in TBI detection and acoustic features are presented

in Section II. Then, the cascading GRU and experiment setup

are described in IV. The evaluation results of the proposed
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method are reported in Section V, followed by a discussion and

application of this study in Section VI. Finally, we conclude

our study in Section VII.

II. RELATED WORK

A. Speech and language disorders following TBI

Speech and language disorders are commonly identified

as communication impairments that impair an individual’s

ability to function normally after an injury. In severe TBI

cases with cranial nerves damaged, flaccid paralysis of the

muscles supplied by cranial nerves V (trigeminal), VII (facial),

X (vagus), or XII (hypoglossal) may present permanently,

resulting in various types of motor speech disorders [22].

Dysarthria, weakness or incoordination of speech musculature,

was indicated as a common alignment of TBI, with a preva-

lence rate ranging from 8% to 100% depending on incident

severity and on-set time after the injury [22]. In a case that has

a cerebral lesion, apraxia of speech, another common motor

speech disorder associated with TBI that affects motor plan-

ning, sequencing, control, and timing, may be observed [23].

Common symptoms of apraxia are increased speech initiation

difficulty and prosodic disturbance. Dysarthria and apraxia of

speech are often diagnosed in cohort studies of TBI [3].

Apart from the deficits in speech production, individuals

with TBI possibly manifests a degree of difficulty in formulat-

ing and comprehending speech, which are results of linguistic

and cognitive impairments [24]. Previously, the severity of

language disorders was determined by the nomenclature of

aphasia, which occurs when the Broca or Wernicke areas of

the brain are damaged. According to Normal et al., aphasia

is the most prevalent communication disorder among veterans

with a history of TBI, with the majority occurring in moderate

and mild TBI [3]. Individuals with TBI exhibit a wide range

of speech and language deficits, many of which are assumed

to be sub-clinical but nonetheless are present (e.g., [8]) and

can be used to detect TBI non-invasively and passively.

B. Previous acoustic-based TBI detection

Speech acoustics have recently gained more attention in

research into TBI assessment technologies because they are

non-invasive and can be collected passively on the smartphone.

In traditional TBI assessment, individuals suspected of having

TBI are often subjected to a diadochokinesis speech rate test

to determine their syllable alternating motion rate, which was

found to associate with TBI [25], through repetition of the

trisyllabic sequences pa-ta-ka [11]–[13]. Poellabauer et al. col-

lected speech from short sentences and trisyllabic sequences

in order to determine motor speech disorder following TBI

[11]. The recording includes seven measures, the first three of

which assess prosody, stress, and standard syllabic rate, while

the last four assess motion rate and sustained vowels. The

authors used existing speech and phonetic recognition tools

to locate word and vowel boundaries before extracting spoken

word speed, stressed word duration, fundamental frequency,

intensity, and diadochokinetic speech rate as features for a lin-

ear classification model with a classification result greater than

70%. Similarly, Daudet et al. [12] examined spectral-domain

and temporal-domain features using only the first six measures

for TBI detection. Using Logistic Regression, [12] was able

to achieve Area Under receiver operating characteristic Curve

(AUC) of 0.86 by combining spectral and temporal features.

Among the spectral features, formant frequency have re-

ceived much attention in automatic TBI detection due to their

well-understood relationship with movement of the speech

articulators [8], [10], [13]. Formant frequency indicates a

particular frequency where acoustic energy is concentrated and

corresponds to the resonances of the vocal tract. Helfer et al.

considered auto- and cross-correlations of first three formants’

(i.e., F1, F2, and F3) velocities and accelerations over short

periods to estimate ImPACT scores, an FDA-cleared concus-

sion assessment, of 32 high school athletes using a Grandfather

passage [8]. The classification was performed using a Support

Vector Machine (SVM) with Principal Component Analysis

(PCA) as a pre-processing step and archived an AUC of 0.95.

Similarly, Talkar et al. considered the same formant correlation

features set with gate features, to detect mTBI using Gaussian

Mixture Model (GMM) and a Convolutional Neural Network

(CNN) [13]. Additionally, they considered free speech, read

speech, and diadochokinetic and indicated that read speech

with CNN outperforms other setups with an AUC of 0.90,

and combining all three tasks improved the AUC to 0.96.

In another study, Falcone et al. collected the pronunciation

of ten digits from 105 male athletes before and following

a boxing tournament using a directional microphone [10].

The speech recorded prior to the tournament was used to

train a one-class SVM classifier which was then evaluated

using speech recorded after the tournament. Acoustic features

used to train the classifier included formant frequency, jitter,

shimmer, harmonic to noise, and pitch frequency. Formant

frequency was one of the top three most significant features

across digit words, with a maximum F1 score of 87.5.

Previous work has established that acoustic features of

speech are useful for detecting TBI, as evidenced by the

high detection accuracies in Table I. However, TBI assessment

that fully integrates temporal information available in acoustic

features into a system for passive and continuous monitoring

has not been demonstrated in the literature.

C. Acoustic features

Speech is typically represented as a waveform that repre-

sents changes in sound pressure over time. Waveforms are

recorded at a high sampling rate (typically > 16kHz), which

immediately introduces the curse of dimensionality problem

that causes training issues in machine learning. Consequently,

the previous TBI detections discussed in Section II-B do

not detect TBI directly on the waveform but its derived

acoustic features, such as Low-Level Descriptor (LLD) and

Formant coordination. We also consider Bag-Of-Audio-Word

(BOAW) feature as it demonstrated ground-breaking success

in language disorder assessment [26].

1) Low-Level Descriptor: Low-Level Descriptor (LLD) is a

set of acoustic features that characterizes human speech over

a short duration. There are several descriptors, but they are

typically classified into prosodic, spectral, cepstral, and voice
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TABLE I: Previous speech-based TBI detection studies

Method Recording task Feature Classifier TBI subject ratio Performance

Poellabauer et al. and
Short sentence, pa-ta-ka Prosody, stress, motion rate, sound sustaining

LR
16% (n=581) AUC: 0.86

Daudet et al. [11], [12]

Falcone et al. [10] Digit words Formants, jitter, shimmer, HNR, pitch SVM 7% (n=105) F1: 87.51%

Helfer et al. [8] Passage reading Formant auto- and cross-correlations SVM 29% (n=32) AUC: 0.95

Talkar et al. [13]

Passage reading

Formant auto- and cross-correlations CNN 55% (n=21)

AUC:0.90
Free Speech AUC:0.89

Pa-ta-ka AUC:0.89
Previous three combined AUC:0.96

It should be noted that the evaluation metrics in the performance column are not directly comparable since the studies examined different populations.

quality features. Prosodic features, such as F0, energy, zero-

crossing, and loudness, are used to characterize an individual

speaker’s style, gender, dialect, and phonological factors. As

an alternative to the time-domain waveform, audio may be

represented in the frequency domain, which can be represented

as descriptors that contain information about the energy,

centroid, harmonicity, skewness, and kurtosis of each spectral

band. Voice quality features express the variety of speech

created by the larynx, such as formant, jitter, and shimmer.

Determining a collection of LLDs features is application-

dependent and typically requires clinical expert knowledge.

We include LLD as a baseline for acoustic feature as it has

been used to represent speech in sensor modalities to monitor

bipolar disorder [27] passively on the smartphone.

2) Formant coordination: To capture changes in articulatory

coordination following TBI, a time-delayed auto- and cross-

correlation of formant frequency was developed [8], [13].

Cross-correlation is computed between the first three formants,

and auto-correlation is applied on multi-scales time-delay

formants to construct a covariance matrix, which is used as

a feature to represent a short duration of speech. Although

formant coordination features have not yet applied to passive

recordings, [13] demonstrated that formant coordination works

effectively on conversational speech.

3) Bag-Of-Audio-Word (BOAW): BOAW is a dimension re-

duction method for LLD using the Bag-Of-Word (BOW)

algorithm. In order to reduce the number of parameters in

LLDs, some LLDs are selected as a reference point, and the

distance between each sample to the reference points is used

as an LLD representation. BOAW has been used in aphasia

detection [26], which is one of the co-morbidities associated

with TBI, but it has not yet been validated for TBI detection.

III. BACKGROUND

A. Parametrized Sinc filter: a DNN-based acoustic

feature extraction

Prior work has demonstrated that DNNs can be used to

extract acoustic features from raw audio (waveform) leading

to output superior to that of conventional acoustic features in

speaker recognition and Automatic Speech Recognition (ASR)

tasks [17], [18], [28]. This study examines how well the

parametrized Sinc filter (pSinc) learns acoustic features for

TBI detection. Each pSinc filters out frequency components

outside a trainable frequency range (fc1 ,fc2 ), which is deter-

mined by a subtraction of two sinc filters, which are described

mathematically in Equation 1. Multiple pSinc filters are used

in the first layer of the TBI detection model in order to learn a

set of frequency ranges that are relevant to TBI speech, (e.g.,

formant frequency.)

pSinc[n, fc1 , fc2 ] = [2fc2sinc(2fc2n)− 2fc1sinc(2fc1n)]
(1)

sinc(x) =
sin(x)

x
(2)

si[n] = x[n] ∗ pSinc[n, fc1 , fc2 ] (3)

We used pSinc filter to extract spectral features of speech

(si) from audio (x) in the nth sliding window, followed by

CNNs that extract a higher level of representation of speech.

Using a learning algorithm such as stochastic gradient descent,

fc1 and fc2 in a band-pass filter (Equation 1) were trained as

a Finite Impulse Response (FIR) convolution filter on x[n]
to allow only signals within frequency fc1 and fc2 to pass

through to subsequent CNN layers.

The primary benefit of using pSinc over CNN in the first

layer is that it forces the network to learn spectral features

of speech using only two parameters (fc1 and fc2 ) regard-

less of the kernel size, while the number of parameters in

CNN depends on the kernel size. Additionally, pSinc enables

interpretability in the frequency domain, allowing in-depth

analysis of acoustic features learned by the model. In terms

of performance, [17] demonstrated that pSinc outperforms

CNN-based architecture, such as VGGish [28], in speaker

recognition and phone recognition tasks with a higher degree

of network interpretability in the frequency domain. In speech

assessment, pSinc outperformed the LLDs in assessments of

neurodegenerative disorders and cognitive impairment based

on speech [29].

B. Gated Recurrent Unit (GRU)

A recurrent Neural Network (RNN) is a type of DNN that

specializes in capturing and learning patterns from sequential

data in the temporal domain. As such, the RNN has frequently

been employed to learn long-term temporal dependencies of

speech features [30], [31]) However, when processing long

sequential data, the vanilla RNN often encounters vanishing

gradients problem, caused by updating small gradients in

internal loop over a long sequential input [32]. We utilize the

Gated Recurrent Unit (GRU), a variant of the RNN that solves

the vanishing gradient problem and and has fewer parameters

than the Long Short-Term Memory (LSTM) [32], to process

sequential acoustic features. GRU enhances memory utility
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in the Long Short-Term Memory (LSTM) by combining the

forget gate and state unit into a single gating unit ht
i (for time

step t and cell i) as illustrated in Figure 2 with yti = ht
i =

ut−1
i ht−1

i +(1−ut−1
i )tanh

(

bi+
∑

j Ui,jx
t
j +Wi,jr

t−1
j ht−1

j

)

The update gate ut
i and reset gate rti are computed from ut

i =
σ
(

bui +
∑

j U
u
i,jx

t
j + Wu

i,jh
t
j

)

and rti = σ
(

bri +
∑

j U
r
i,jx

t
j +

W r
i,jh

t
j

)

respectively. The term W,U , and b denote recurrent

weight, input weight, and bias, respectively. Each gate contains

a sigmoid function (σ), which is a dedicated mechanism to

learn when to update, reset, hidden state ht, or when to

skip the irrelevant input xt. Gating mechanisms can improve

learning performance in TBI assessment, as not all acoustic

features are prominent in TBI speech.

𝜎𝜎 𝑡𝑎𝑛ℎ𝒉𝒕−𝟏
𝒙𝒕

𝒚𝒕 𝒉𝒕𝒓𝒊𝒕 𝒖𝒊𝒕 x 𝟏 − +

x

x

Fig. 2: Connections within a GRU

C. Vocal Tract Length Normalization

Vocal Tract Length Normalization (VTLN) has been widely

used to reduce interspeaker acoustic variability in modern ASR

systems by warping the frequency axis associated with cepstral

features. Rather than determining the exact vocal tract length

of each speaker, [19] proposed an expectation–maximization

algorithm for estimating a vocal tract length-related warping

factor (α) that produces the lowest error in ASR. Specifically,

α was optimized by argmax
α

Pr(Xα
i | λ,Wi) to increase

phoneme classification performance (W ) using a Gaussian

Mixture Model (GMM) and Hidden Markov Model (HMM),

denoted as λ, on cepstrum features (X) of each speaker i in

the coelho corpus [19].

IV. METHODOLOGY

A. Coelho corpus

The proposed cGRU was evaluated on the Coelho corpus

[20], which contains conversational speech collected dur-

ing discourses following TBI. The discourse included story

retelling, story generation, and conversation collected from

55 native English speakers with non-penetrating head injuries

and 52 native English speakers with no brain injury (con-

trol subjects). Here, we only used speech gathered during

conversational discourse and analyzed topic initiation, topic

maintenance, and response appropriateness of the participant.

Proficiency in these three skills are fundamental to fluent

communication, which individuals with TBI experience some

levels of difficulty.

Study protocol: Each subject participated in a 10-15 min-

utes conversation discourse examined by a speech-language

pathologist. The first conversation was initiated by the ex-

aminer with the question “Why are you here at the hospi-

tal/rehabilitation centre today?”, and was then shifted by either

a subject or the examiner. Speaking turns and utterances were

counted to analyze topic maintenance. Response appropriate-

ness was measured in terms of responses and comments to

the previous conversation. The study statistically indicated that

TBI subjects produced more utterances in their response to the

examiner, produced less comments, and required more story

shifting from the examiner [20].

Deep learning dataset creation: All 55 subjects with TBI

met the criteria of having recovered a high level of functional

language – they had achieved the ability to converse fluently

and did not demonstrate appreciable deficits on traditional clin-

ical language tests. The dataset includes a diverse demographic

range in gender (Male:39, Female:16), age (28.53±12.31), ed-

ucation level (13.01±2.38 years), working class (Unskilled:19,

Skilled:18, Professional:18), TBI severity (Coma duration:

16.95±22.10 days) and recording on-set time after the accident

(10.35±17.78 months). The causes of brain injury for subjects

in this corpus are motor vehicle accident (45 subjects), fall (6

subjects), struck by car (3 subjects), and other (1 subjects).

B. Proposed cascading GRU detection model

As demonstrated in [8], [13], changes in the complexity of

correlation between acoustic features is associated with speech

production after TBI. These previous studies employed auto-

correlation to capture time-delayed linear correlation in time

series of formant frequencies [8], [13]. Motivated by prior

work, we incorporated the GRU, which is capable of capturing

linear and non-linear correlations of acoustic features, and

pSinc to monitor TBI. The specific architecture we utilized

is called cascading GRU (cGRU) as it passes on individual

hidden states throughout the continuous TBI monitoring. The

cGRU is illustrated in Figure 3.

Pre-trained pSinc: Our proposed cascading GRU model is

composed of three pre-trained layers from the SincNet model,

which includes 64 pSinc with a kernel size of 251 and Leaky

ReLu activation in the first layer. Following the pSinc, two

layers of CNNs with 32 filters, kernel size of 5 and max

pooling with a kernel size of 3 are included in the second and

third layers. These configurations were fine-tuned from the list

shown in Table II using grid search. The model was pre-trained

using the Librispeech corpus [33] with tuned hyperparameters

from [17]. pSinc features were extracted on a short duration of

audio using a sliding window of 200 ms with 25 ms intervals,

which was fine-tuned as explained in Section IV-E. Then,

features were accumulated over 20 sliding windows as an input

to the cGRU for TBI detection. This step is crucial, as audio

within a single sliding window is too short to extract high-level

features of TBI.

Prior to cascading features through the temporal domain,

two skip layer connections are applied to aggregate acoustic

features learned by pSinc and CNN at various stages. Through

experimentation, we discovered that skip layer connections

enhance TBI detection efficiency and avoid the vanishing

gradient problem.
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Stacked features 
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CNN with 32 filters
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GRU with 8 filters
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FC with Sigmoid

Cell gating unit

TBI Prediction

High-level feature layers

Fig. 3: Architecture of the cascading GRU model for TBI

detection

Domain adaptation layer: The aggregating layer is pre-

ceded by a dropout layer to mitigate overfitting, as we discov-

ered that regularization is critical for pSinc layers even though

transfer learning was used. Then, two CNN layers consisting

of 32 filters with BN, LReLU, and 20% dropout are included

to extract high-level audio features for TBI detection. This

latent feature at this step is used as an input (xt) to the GRU.

TBI classification using GRU: The parameters in the cell

gating unit (ht−1) were randomly assigned before training

for each subject using Glorot initialization. Any subsequent

hidden state from the same subject will adopt ht from the

previous hidden state and replace it with the current ht+1. To

perform TBI classification, the continuous outputs yt from 20

sliding windows (4 seconds each) are combined or flattened

into a single dimension using a fully connected layer followed

by a Sigmoid activation function with a threshold set to

0.5 for positive TBI speech. We tuned the proposed model’s

hyperparameters as described in Table II.

The proposed cGRU detects TBI over each 4-second win-

dow of speech using a hidden state stored within GRU’s cell

gating unit, leveraging temporal information across multiple

recordings. The cell gating unit, which attempts to solve the

data storage problem while retaining high TBI prediction

accuracy, is the only additional parameter to store when

tracking TBI over time.

C. Data preprocessing and implementation of cascading

GRU model

The speech recording includes a dialogue between an in-

terviewer and a participant, from which we extracted only

participant speech using the Coelho corpus’s transcript with

time boundaries. Due to poor sound quality, three TBI and one

control subject were omitted from the experiments. The audio

signals were downsampled to 16000 Hz and then normalized

by the maximum value of each subject’s absolute value.

Additionally, we applied VTLN to suppress the inter-speaker

variation from vocal tract length.

VTLN: We performed VTLN on spectrogram using a

bilinear transform with warping factor α calculated, between

0.6 and 1.4 with 0.05 incremental, for each speaker over

all utterances. The frequency-warped spectrogram was then

converted back to its original waveform using the Griffin-Lim

algorithm [34] that iteratively estimates audio phase based on

the redundancy of Fourier transform.

Implementation and training: The cascading GRU model

was implemented in Python 1 using the Pytorch library [35]

and trained on two NVIDIA Tesla V100 GPUs. Mini-batch

optimization was performed using the RMSprop optimizer

and Binary Cross-Entropy loss
(

− 1
N

∑N

i=0 yi log(ŷi) + (1−
yi) log(1− ŷi)

)

.

As the optimization mechanism that performs gradient de-

scent over a subsample, we discovered that it works best to

train the proposed model using a mini-batch of 16 samples

(N ), each with 4000 ms audio length to predict the TBI class

likelihood (ŷi) , from different subjects. The model was trained

for a total of 120 epochs, but pre-trained pSinc layers were not

optimized in the first 20 epochs as a domain adaptation phase.

At epoch 21, fine-tuning starts, which optimized all parameters

as an end-to-end model. The learning rate was fine-tuned to

be 0.003 with a decay rate of 1e− 6.

Although the Coelho corpus contains almost equal numbers

of subjects with TBI subject and healthy controls, subjects

spoke for different lenghts of time, resulting in an unbalanced

class problem in each mini-batch. We alleviated this problem

by constructing each training batch to have equal numbers

of TBI and healthy control classes, randomly at the beginning

of each training epoch, and discarding any remaining samples.

We found that discarding the remaining audio as an alternative

to sampling with replacement resulted in a higher detection

performance.

D. Baselines

We used the acoustic features discussed previously in Sec-

tion II-C, namely LLD, BOAW and formant coordination, as

baseline features for pSinc and five classifiers, namely Support

Vector Machine (SVM) [36], Random Forest (RF) [37] and

Multi-Layer Perceptron (MLP) [38] and LSTM as Baseline

models for cGRU.

1) Baseline features:

LLD: LLDs were previously proposed to detect TBI by

extracting LLD around vowels and feeding them into an

SVM as acoustic features [10], [11]. This study used vowel

boundary detection, a Praat script 2 by Hugo Quené with

some modifications to locate vowel boundary in speech. The

script was implemented following [39], which determines the

vowel by identifying the peak in the pressure contour. LLDs

1http://github.com/aditthapron/speech-based-tbi-detection-using-psinc-cgru
2http://phonetics.linguistics.ucla.edu/facilities/acoustic/
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TABLE II: A list of tuned hyperparameters in all models.

Model Parameter(/Kernel) Values

Proposed model Sliding window (s) 1,2,4,8
Number of pSinc filter 16,32,64,128
pSinc filter size 101,151,201,251,301,351
Number of CNN layer 1,2,3
Number of CNN filter 16,32,64,128
Dropout rate (%) 0,10,20,30,40,50
Number of GRU layer 1,2
GRU filter size 4,8,16

SVM C / All 0.001, 0.01, 0.1, 1, 10, 100
γ / All 0.001, 0.005, 0.01, 0.05, 0.1
d / Poly 2, 3, 4, 5

RF Max features 1-10
Number of estimator 100 - 500 with a step of 50
Max depth 5 - 21 with a step of 3

MLP [(layer),(unit)] [(0,1,2,3),(4,8,16,32,64)]
Dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5

were extracted using the OpenSMILE library [40] with the

COMPARE 2016 configuration [41]. A total of 130 LLD

features were extracted over 20 ms audio length with a 10

ms time step. The LLDs within the vowel boundary were

combined as an instance followed by a Principal Component

Analysis (PCA) of 12 components, experimentally tuned, to

reduce the dimension of LLD’s.

BOAW: BOAW was used in place of PCA to minimize

the dimensionality of LLD. After extracting the COMPARE

2016 features, two BOAW codebooks were created using

OpenXBOW [42]. Each codebook contained 1000 audio words

and was used to vectorize COMPARE 2016 features.

Formant coordination: Praat was used to extract the first

three formant tracks from speech. We followed the steps in

[43] to build a matrix of correlation and covariance coefficients

for the first three formants over four time-delayed scales of 10

ms, 30 ms, 70 ms, and 150 ms. At the final step, total power

and entropy constant values were estimated and included to

the feature set. PCA was applied to reduce data dimensionality

with 8 components.

2) Baseline models:

Machine learning classifier: As a machine learning base-

line, we considered Support Vector Machine (SVM) [36], Ran-

dom Forest (RF) [37] and Multi-Layer Perceptron (MLP) [38].

Moreover, the GRU in cGRU was replaced with LSTM to

quantify the benefit of GRU. All machine learning classifiers

were implemented using the Scikit-learn library [44] with

hyperparameters configured as reported in Table II.

Proposed cGRU without sharing cell gating unit and

cLSTM: To examine the cell gating unit utility, we trained

and evaluated the cGRU with different sequence sizes, i.e.,

the hidden state was re-initilized when the model accessed n
samples from the same subjects where n is an independent

variable. For cLSTM, we replace GRU with LSTM, which

has an additional gate, to compare with the GRU.

E. Evaluation method and Metrics

The Coelho corpus is balanced in terms of class between

TBI and controlled, but is imbalanced in terms of gender, age,

and education. These demographics have a significant impact

on results. Consequently, we used multi-label classification

method [45] that preserves the distribution of data across

10 folds. The subjects in Coelho’s corpus were stratified

into ten groups using the process introduced in [45]. Each

model configuration and hyperparameters were determined

using nested cross-validation, i.e. the testing fold was left

out during this step. Specifically, the inner cross-validation

preserves 8 folds for training and 1 fold was used to select

the hyperparameter and to execute early stopping. The trained

model with the lowest validation loss was then evaluated on

the testing set that was left out in the outer fold. We report

Balanced Accuracy (BAC=(Sensitivity + Specificity)/2), F1

score (F1 = (2 × Precision × Recall)/(Precision + Recall)),
AUC score, sensitivity (recall) and specificity of testing set

with standard error (
∑m

i=1(Ei−E)2/
√
m), where Ei denotes

estimated performance of fold i from m folds. To compare

the model’s effectiveness, the Wilcoxon signed-rank test was

used to compare the rank between two distributions of mea-

surements in all experiments.

F. DNN interpretation

Although DNN has exhibited state-of-the-art performance,

outperforming conventional algorithms, in various domains, it

is regarded as a blackbox model that is difficult to interpret. In

this study, we applied SHapley Additive exPlanations (SHAP)

method [21] to the proposed model in order to analyze the

acoustic features learned by the cGRU. The impact score or

contribution score of speech components to the TBI prediction

was estimated at each time-slice of the audio. Based on the

contribution score, determined correlations of the input at

specific timepoints to the TBI target labels, allowing us to

perform analysis at word-level. We chose the attribution score

over the TBI likelihood predicted by the Sigmoid activation

in the final layer of cGRU because the Sigmoid activation

predicts values over 4 seconds of audio, which is too coarse

for the following experiment.

SHAP: We considered individual time-slices as features to

the cGRU, which were compared in terms of impact to the

TBI prediction using the SHAP method. The SHAP approach

is based on the Shapley value from coalitional game theory,

which distributes a fair gain or loss to a set of players in

coalition. SHAP defines explanation model g(z′) over a coali-

tion vector z′ in a form of φ0 +
∑M

i=1 φiz
′
i where and φi is a

feature attribution of feature i from m feature, which can be es-

timated from
∑

z′⊆x′

|z′|!(M−|z′|−1)

M ! (fx(z
′)− fx(z

′|z′ = 0)).
φi is computed on the the original model f (proposed TBI

detection model) and input sample x over all z′ that are subsets

of the non-zero x′, which is a simplified binary mapping of

x, when feature z′ is not provided (z′|z′ = 0).

We used the GradientSHAP [21] explainability method

implemented in Captum library [46] to estimate the attribution

score from the trained cGRU model. Gradient SHAP is a

gradient method to compute SHAP values. The final SHAP

values represent the expected value of gradients * (inputs -

baselines). By averaging the scores within word boundaries,

we conducted statistic analysis to evaluate the discrepancies

between TBI and control subjects based on the spoken word.
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Spectral-temporal attribution scores: Given the presence

of pSinc in the first layer of our model, additional attribution

scores could be extracted in the spectral domain, allowing

us to examine important components of a spectrogram. We

considered the latent vector after the pSinc layer as an input to

the model. This latent vector is similar to the filterbank feature,

which can be used to estimate a frequency’s attribution scores

as follows. Let lj and lj be low frequency band and high

frequency band learned filter j of N filters. Attribution φfreq

can be estimated from
∑N

j=1 φ
′
j(

1
s[n] ) using pre-computed φ′

j

that corresponds to filter j with s[n] = 2fcsinc(2fcn). To

analyze spectral feature, we summarized the attribution score

for each work in the spectral domain and compared them

between TBI and controlled subjects.

Relationship between learned cGRU’s features and other

acoustic features: All baseline acoustic features were derived

from a short segment of audio, which can be matched with

attribution scores from the cGRU using timestamps. For each

acoustic feature, we computed correlations of TBI likelihood

predicted by the acoustic feature with SVM to the correspond-

ing SHAP score of the cGRU model. This analysis provides an

import link between features developed by experts in speech

processing to the features auto-learned by the cGRU.

V. RESULTS

A. An evaluation of Cascading GRU for TBI classification

Hyperparameter tuning results: The proposed cGRU’s

hyperparameters are the number of CNN layers, which are lo-

cated after the pretrained pSinc layer, and the number of GRU

layers. The CNN and GRU configurations listed in Section IV

were determined from a variety of configurations, as shown

in Table II. The CNN and GRU hyperparameters were tuned

together. The reported performances in CNN configuration

were obtained from a GRU with 8 filters without dropout,

while the reported performance for the GRU configuration

were obtained from two layers of CNN with 32 filters with

a 20% dropout rate. When tuning CNN hyperparameters, a

configuration with two layers of CNN, 32 filters, and 20%

dropout rate produces the highest balanced accuracy, as shown

in Table III. We discovered that increasing the number of

layers and the size of the filters could result in the overfitting

problem, even when a dropout is used as a regularizer. The

other two configurations in two layers of CNN also performed

well in terms of F1 score and AUC, but we consider BAC

as the primary metric. We also observed that a single layer

of GRU with a filter size of 8 without dropout offered the

highest balanced accuracy. This configuration was specifically

tuned for the Coelho dataset, which had 50 subjects from each

class. In a scenario in which more training data is available,

increasing the number of GRU layers or substituting LSTM

for GRU should be considered. The sliding window length is

adjusted to 4 seconds as it maximizes TBI detection BAC.

Compared to 2 seconds and 8 seconds, statistical significance

is met at the 0.01 level using Wilcoxon’s signed-rank test.

cGRU evaluation: To measure the benefit of cell gating unit

in GRU, we plotted BAC across temporal steps, on which the

cell gating unit is passed to the next sample in Figure 4. The

temporal step in Figure 4 is a step between speech instance not

the internal temporal step within the GRU cell. Without the

prior cell gating unit, the performance of the cGRU is reduced

to 63% BAC. The performance of cGRU is stable when the

model has access to at least 50 samples, i.e., 200 seconds of

spontaneous speech is required by the proposed method.

cGRU enhancement: The cGRU is enhanced further by

including VTLN and skip layer connections, as shown in Table

IV. VTLN normalizes the differences in vocal tract that may

results from gender, age and other demographics whereas skip-

ping layer connections provide different scale and complexity

of temporal and spectral acoustic features to the latter layers

in cascading GRU. We found that skip layer connections and

VTLN substantially improve the cGRU at the 0.01 and 0.05

statistically significance levels respectively using Wilcoxon’s

signed-rank test. When cGRU is used in conjunction with skip

layer connections and VTLN, the maximum output of 83.87

percent BAC is obtained (Wilcoxon signed-rank test, p-value

< 0.01). VTLN normalizes vocal tract differences caused

by gender, age, and other demographic variables, whereas

skip layer connections provide different scale and complexity

of temporal and spectral acoustic features to the subsequent

layers in cGRU. All baselines are outperformed by cGRU with

VTLN and skip layer connections. It can be observed that

using the cell gating unit as an individual history improves

the TBI detection BAC by 21.83 %.

Compared with baseline models: Furthermore, we com-

pared the cGRU with cLSTM, SVM and MLP on three

different features which were pSinc, LLD and formant fre-

quency as shown in Figure 5. For the pSinc feature, cGRU

outperforms cLSTM (Wilcoxon signed-rank test, p-value 0.05)

and other models (Wilcoxon signed-rank test, p-value < 0.01).

For formant frequency features, the performance of cLSTM

and cGRU are similar and outperform other models (Wilcoxon

signed-rank test, p-value < 0.01).

Compared with baseline feature: Using cGRU and

cLSTM, pSinc significantly outperforms LLD and formant

frequency (Wilcoxon signed-rank test, p-value < 0.01). pSinc

with cGRU model are indicated as the most effective TBI

detection in this study. Among the baselines, formant coordi-

nation stood out from the others and are closed to cGRU. We

speculated that formant coordination features may share some

similarity with cGRU, which was explored as an additional

experiment below.

B. Interpretation of the cGRU’s network

Temporal and Spectral features: We investigated inter-

preting the acoustic features learned within cGRU using the

SHAP attribution score for two distinct inputs to the model:

1) audio input (temporal attribution), and 2) pSinc features

(spectral and temporal attributions).

Based on the audio input, We analyzed which words in-

creased or decreased the likelihood of TBI prediction using the

attribution score. The twenty most frequently spoken words in

Coelho dataset were analyzed, namely, the, and, i, a, to, it,

yeah, uh, in, that, was, so, like, it’s, of, they, you, um, he, and

but. The attribution scores between TBI subjects and healthy
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TABLE III: Cascading GRU for TBI detection: hyperparameter tuning

cGRU configuration BAC F1 AUC TPR TNR FNR FPR

1 CNN layer of 16 filters with 0% dropout 62.74 (1.22) 69.26 (1.25) 65.62 (0.87) 74.83 (2.16) 52.53 (2.25) 25.17 (2.16) 47.47 (2.25)
32 filters with 0% dropout 64.33 (1.23) 70.84 (1.28) 63.32 (0.74) 72.27 (2.00) 58.59 (1.92) 27.73 (2.00) 41.41 (1.92)
64 filters with 20% dropout 64.84 (1.23) 70.14 (1.35) 64.22 (0.80) 75.72 (2.29) 57.25 (2.18) 24.28 (2.29) 42.75 (2.18)

2 CNN layers of 16 filters with 0% dropout 65.05 (1.47) 71.42 (1.22) 79.30 (1.02) 75.02 (2.16) 56.03 (1.94) 24.98 (2.16) 43.97 (1.94)
32 filters with 20% dropout 68.23 (1.41) 71.38 (1.42) 79.08 (0.89) 72.62 (2.34) 63.92 (2.09) 27.38 (2.34) 36.08 (2.09)

64 filters with 20% dropout 66.78 (1.45) 70.29 (1.53) 79.52 (1.00) 70.06 (2.08) 63.18 (2.19) 29.94 (2.08) 36.82 (2.19)
3 CNN layers of 16 filters with 20% dropout 65.73 (1.50) 70.12 (1.46) 70.45 (1.03) 77.07 (2.26) 55.14 (2.07) 22.93 (2.26) 44.86 (2.07)

32 filters with 20% dropout 66.18 (1.51) 70.43 (1.35) 69.73 (0.90) 72.73 (2.22) 61.54 (2.30) 27.27 (2.22) 38.46 (2.30)
64 filters with 40% dropout 63.52 (1.41) 68.94 (1.13) 69.12 (1.03) 70.43 (2.14) 55.26 (2.26) 29.57 (2.14) 44.74 (2.26)

1 GRU layer of 4 filters with 0% dropout 56.35 (1.24) 63.41 (1.11) 70.13 (1.15) 68.45 (1.86) 50.31 (1.06) 31.55 (1.86) 49.69 (1.06)
8 filters with 0% dropout 68.23 (1.41) 71.38 (1.42) 79.08 (0.89) 72.62 (2.34) 63.92 (2.09) 27.38 (2.34) 36.08 (2.09)
16 filters with 0% dropout 65.85 (1.46) 71.75 (1.50) 76.41 (1.77) 75.42 (1.41) 69.84 (2.66) 24.58 (1.41) 30.16 (2.66)

2 GRU layers of 4 filters with 0% dropout 58.72 (1.48) 68.52 (1.08) 71.51 (0.95) 66.62 (1.98) 52.62 (1.18) 33.38 (1.98) 47.38 (1.18)
8 filters with 0.3% dropout 63.26 (1.68) 72.41 (1.64) 78.26 (1.06) 75.61 (2.62) 57.33 (2.06) 24.39 (2.62) 42.67 (2.06)
16 filters with 0.3% dropout 58.15 (1.73) 70.63 (1.58) 78.60 (1.10) 75.57 (2.73) 52.82 (1.98) 24.43 (2.73) 47.18 (1.98)

Sliding window length of 1 second 52.73 (2.08) 68.53 (1.52) 65.11 (0.85) 56.33 (2.04) 49.90 (2.43) 43.67 (2.04) 50.10 (2.43)
2 seconds 56.64 (2.63) 70.12 (1.55) 72.41 (1.11) 66.42 (1.13) 52.78 (1.29) 33.58 (1.13) 47.22 (1.29)
4 seconds 68.23 (1.41) 71.38 (1.42) 79.08 (0.89) 72.62 (2.34) 63.92 (2.09) 27.38 (2.34) 36.08 (2.09)

8 seconds 62.98 (2.25) 71.21 (1.63) 74.12 (1.48) 65.11 (2.31) 60.22 (1.88) 34.89 (2.31) 39.78 (1.88)

Note: All results reported in this table does not apply VTLN on the input and do not have skipping layer connections.

TABLE IV: TBI detection results

Model Configuration BAC F1 AUC TPR TNR FNR FPR

cGRU: 68.23 (1.01) 71.38 (1.42) 79.08 (0.89) 72.62 (2.34) 63.92 (2.09) 27.38 (2.34) 36.08 (2.09)
with VTLN 72.02 (1.51) 74.91 (2.11) 75.37 (1.20) 78.15 (1.57) 66.14 (1.62) 21.85 (1.57) 33.86 (1.62)
with skipping layer connections 77.35 (1.46) 83.91 (1.58) 89.52 (1.10) 82.15 (1.31) 75.24 (1.10) 17.85 (1.31) 24.76 (1.10)
with VTLN and skipping layer connections 83.87 (1.65) 85.09 (2.58) 87.44 (1.21) 90.55 (2.98) 77.02(1.97) 9.45 (2.98) 22.88 (1.97)

LLDs: SVM (RBF,0.01,0.05) 56.37 (1.46) 60.14 (1.14) 59.62 (1.20) 62.62 (1.81) 51.11 (1.98) 37.38 (1.81) 48.89(1.98)
RF (4, 250, 8, 8, 2) 52.18 (0.96) 77.66 (1.30) 76.27 (1.23) 51.14 (0.83) 52.75 (1.13) 48.86 (0.83) 47.25 (1.13)

MLP (2,8,0.1) 52.85 (1.21) 74.32 (1.43) 74.12 (1.15) 53.41 (0.97) 51.96 (1.09) 46.59 (0.97) 48.04 (1.09)

BOAW: SVM (RBF,1,0.01) 66.05 (1.36) 74.44 (1.21) 71.41 (2.00) 71.03 (1.22) 60.25 (2.49) 28.97 (1.22) 39.75 (2.49)

RF (3, 100, 6, 11, 2) 50.14 (1.46) 73.72 (1.72) 72.17 (1.15) 47.02 (0.95) 52.15 (1.32) 52.98 (0.95) 47.85 (1.32)
MLP (2,4,0) 62.97 (1.23) 66.74 (1.20) 75.28 (1.49) 78.08 (1.03) 57.04 (1.62) 31.92 (1.03) 42.96 (1.62)

Formant coordination: SVM (RBF,10,0.01) 76.95 (1.56) 82.93 (1.87) 86.92 (1.90) 79.26 (1.94) 69.42 (1.88) 20.74 (1.94) 30.58 (1.88)

RF (4, 150, 8, 11, 5) 66.53 (1.78) 80.24 (1.55) 72.55 (2.11) 78.22 (1.18) 62.41 (1.06) 21.78 (1.18) 37.59 (1.06)
MLP (2, 8, 0.1) 72.73 (1.62) 80.37 (1.00) 75.84 (1.30) 79.33 (1.02) 64.03 (2.50) 20.67(1.01) 35.97 (2.50)

Proposed method without sharing cell gating unit 68.84 (1.42) 75.22 (2.08) 76.90 (2.24) 76.39 (1.88) 67.90 (1.64) 23.61 (1.88) 32.10 (1.64)
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Fig. 4: Temporal step (data sample) of cGRU. The number of

temporal steps is plotted against TBI detection accuracy.

controls are statistically different on the words the, uh, and

um (Mann Whitney U Test, p-value < 0.001).

Additionally, we analyzed the attribution of these words

in the spectral-temporal domains, but found no statistically

important results. The example of spectral-temporal is shown

in Figure 6. Due to the vast differences in vocal tract and

word sustaining, we were unable to stack words from different

speakers as in the previous experiment on the spectrogram.

However, the attribution score can be used to examine seg-

ments that contribute to the TBI prediction, which are mostly

located in high frequency bands.

Correlation between cGRU and other acoustic features:

Scatter plots of pSinc attribution score and likelihood of TBI

prediction from other acoustic features are shown in Figure 7.

Pearson’s correlation coefficients of 0.001, 0.192 and 0.910 are

obtained for LLD features, BOAW and formant coordination,

features respectively. According to the correlations, LLD and

BOAW have no relationships with the cGRU. However, the

BOAW plot demonstrates some patterns, which have two

clusters of correct prediction and a narrow band of incorrect

prediction when the attribution score of the cGRU is close

to zero. The correlation indicates a strong relationship be-

tween cGRU and the formant coordination feature, which is

consistent with the high TBI detection results. This analysis

underlines the importance of continuous or delayed acoustic

features.

VI. DISCUSSION

A. Principal findings

The proposed cGRU with pSinc features effectively de-

tects TBI from spontaneous speech, outperforming previously

proposed TBI detection methods and features by 6.92-27.5%
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Fig. 5: TBI detection performance of cGRU, cLSTM, SVM

and MVP using pSinc, LLD and formant frequency features
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Fig. 6: Top: components of a spectrogram that the proposed

model considered to be normal, center: components of a

spectrogram that the proposed model considered to be TBI,

bottom: input spectrogram

BAC. We demonstrated that the TBI detection benefits from

continuous speech as carrying GRU’s hidden state of the

current sample to the next sample from the same subject

increases BAC. Figure 4 demonstrates that once 60 samples

(240 seconds of audio) are provided to the cGRU, the improve-

ment ceases and the signal becomes steady. The model still

benefits from data with fewer than 60 samples (240 seconds of

speech) , but there is considerable volatility. A larger sliding

window should be considered when more training data are

available, allowing the model to run less infrequently and

improve time efficiency. The main advantages of GRU come

from the use of skipping layer connections followed by a hard

dropout, which enables subsequent CNN layers to learn on

audio representations extracted at different scales, and the use

of VTLN, which reduces inter-speaker variation, allowing the

model to learn TBI features that are less related to individual

speech components. VTLN requires an additional ASR run to

determine the warping factor for a new speaker, but the cost

is negligible because it only needs to run once per speaker.

Among the baselines, formant coordination manifests the

highest TBI detection accuracy where we found it has a sub-

stantial link to our proposed method based on TBI prediction

likelihood. We speculate that the pSinc is capable of learning

to extract formant frequency features or other spectral features,

while the cGRU is capable of extracting linear and non-

linear correlations between these features and across temporal

domain, which are corresponding to the feature extraction

steps in formant coordination.

B. Limitations and passive speech recording concerns

1) Speech quality in smartphone recording: Although the

cGRU was not tested on speech captured from a smartphone,

this section discusses any degradations in recording efficiency

as audio recording systems have shown some effects on speech

assessment performance [6], [7].

Stasak et al. conducted an assessment, comparing three

smartphone models in terms of PHQ-9 score and mental

state predictions using LLD features [6]. The findings indicate

that the accuracy difference between voice recorded using an

acoustic cardioid and a smartphone in closed talks is less

than 5%, that there is no statistical difference between feature

extraction approaches, but that there is a difference between

machine learning models.

Smartphones have shown promising results in the mental

and neurological disorders detection [6], [7]. However, the use

of smartphones to assess TBI and monitor its recovery stage is

still in its infancy due to multiple challenges which this work

addresses. Specifically, we mitigate problems stemming from

passive recording by using pSinc features and proposed using

the cGRU to learn temporal relationships in acoustic features.

With an ultimate goal of passively monitoring signs of diseases

following TBI using speech collected on the smartphone, other

major challenges are speaker privacy, noise, cross-talk, limited

available data, language, and accents, which we aim to study

in future.

2) Privacy in speech feature: Given the importance of

speaker privacy, the use of passive recording in previous

speech processing is now discussed. The audio recording of

speech contains rich information on speech characteristics and

linguistic content. Speech characteristics may implicitly reveal

a speaker’s biometric identity, personality, physical traits, age,

gender, and health condition. Various encryption methods for

speaker authentication were categorized by [47] according

to three criteria. These three criteria posit that speech data,

in order to be considered privacy-preserving, need to be:

unlinkable, irreversible, and renewable. Unlinkability prevents

speech collected at different scenarios to be related. Irre-

versibility prevents features from being reverted back to raw

audio. Renewability is specific for forensic aspects of speaker

authentication, which does not apply in the study at this step.

Consider that all acoustic features in this work, including

the baseline methods, are extracted on the smartphone and

classified on the server. The main question is “To what extent

does the server have access to the user’s private speech?”
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(a) LLD feature (b) BOAW feature (c) Formant coordination feature

Fig. 7: Correlation between (a) LLD, (b) BOAW, (c) formant coordination features and TBI target labels classified using cGRU

TABLE V: Privacy in speech feature

Acoustic feature Unlinkable Irreversible Average

Raw audio 1 1 1
LLDs 2 2 2
BOAW 1 3 2
Formant coordination 2 3 2.5
pSinc feature 1 2 1.5

In Table V, we conceptually categorize the privacy level of

each acoustic feature. We rate the two criteria based on their

fundamental and previous works on a scale of one to three. If

the fundamental of acoustic feature does not meet the criteria,

a score of one is assigned. A score of two is assigned if

prior work has been conducted to demonstrate that the acoustic

function does not meet the requirements. A score of three is

assigned if no prior work has been conducted to determine if

the acoustic function violates the criteria. This privacy-focused

analyses of features is particularly important because due to

IRB restrictions, in order to maintain speaker privacy, speech

features are used in place of raw as a privacy preservation

mechanism. Specifically, in many speech assessment systems,

raw audio is featurized right on the smartphone. Thereafter

only the speech features and not raw audio, are stored on

servers and analyzed. Thus, it is important to fully understand

how well each feature type preserves the speaker’s privacy.

As a data source, raw audio is scored as one in all criteria

as. LLDs features include Mel-Frequency Cepstral Coefficients

(MFCCs), which are used for speaker recognition [48] and

can be inverted to raw audio [49]. BOAW algorithm incor-

porate unsupervised clustering based on LLD feature, which

violates the unlinkable property by its fundamental although

the cluster’s centroid is unknown, making it irreversible. For

formant coordination, formant track has been used for speaker

recognition [50], which shows that speech is linkable through

formant, but there is no work showing that speech can be

reconstructed from the formant to the best of our knowledge.

pSinc feature was developed and trained for speaker recogni-

tion task, which shows that the feature is linkable [17]. Even

though audio reconstruction of pSinc has not been examined,

previous work has shown that audio can be reconstructed from

spectral information using an autoencoder [51].

C. Future work

This study proposed a method to detect TBI in continuous,

spontaneous speech. However, before the framework can be

evaluated as an fully passive TBI assessment on smartphones,

it would need speech pre-processing step to minimize noise

in addition to our previously proposed work that isolates

speech during cross-talk [16]. We previously claimed that

cGRU benefited from hidden state information taken from

previous data recordings, but the evaluation in this study was

not performed on longitudinal data. It is possible that the

hidden state may fail to adapt on new speech recorded in a

different context or with a long interval to previous input.

VII. CONCLUSION

This study proposed a continuous TBI assessment for

spontaneous speech as an alternative to conversational speech

assessment that performs episodically during specific periods

of interest. The model performs on acoustic features using

learnable parametrized Sinc filter with GRU to cascade speech

overtime. The primary advantages of cGRU are due to the

cell gating unit, which provides the model with prior informa-

tion about each subject. We innovatively adopted the pSinc

function, which has previously learned to extract acoustic

features from raw audio for the TBI detection task. cGRU

outperforms all baseline methods in TBI detection with a

balanced detection accuracy of 83.87%. The proposed net-

work’s interpretation shows that features learned in pSinc and

GRU are correlated with formant coordination, and some filler

words are prominent among TBI subjects. In future work, the

framework proposed in this study can be extended to passively

monitor subject recovery following TBI using speech recorded

on the smartphone.
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[31] E. Rejaibi, A. Komaty, F. Mériaudeau, S. Agrebi, and A. Oth-
mani, “Mfcc-based recurrent neural network for automatic clinical
depression recognition and assessment from speech,” arXiv preprint
arXiv:1909.07208, 2019.

[32] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[33] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in IEEE ICASSP.
IEEE, 2015, pp. 5206–5210.

[34] D. Griffin and J. Lim, “Signal estimation from modified short-time
fourier transform,” IEEE Transactions on acoustics, speech, and signal
processing, vol. 32, no. 2, pp. 236–243, 1984.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[36] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[37] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[38] P. Werbos, “Beyond regression:” new tools for prediction and analysis in
the behavioral sciences,” Ph. D. dissertation, Harvard University, 1974.

[39] F. Cummins and R. Port, “Rhythmic constraints on stress timing in
english,” Journal of Phonetics, vol. 26, no. 2, pp. 145–171, 1998.
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