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Abstract—Context-Aware (CA) systems that adapt their be-
havior based on their users’ current context have broad appli-
cations in areas from healthcare to smart environments. Context
Recognition (CR) is currently solved using machine and deep
learning approaches that require realistic datasets with ground
truth labels collected “in-the-wild” as users live their lives.
In such studies, users periodically label their current context
(current activity, body position, and location) while a mobile app
continuously gathers sensor data. Unfortunately, users sometimes
assign wrong or incomplete context labels, reducing the quality of
the labeled dataset; and causing lower classification accuracy. We
present COMEX, an interactive visual analytics tool that assists
analysts in identifying instances of mislabeled context data to
improve the quality of CA datasets. For this, we first provide a
conceptual categorization of mislabeling error types. Thereafter
we develop linked visualizations, augmented by anomaly scores
indicating suspected labeling issues, which provide richer insights
into the diverse characteristics of the target dataset. We validate
our approach on an open source dataset that contains context
information for 60 participants gathered over several days using
smartphones. With the help of COMEX, participants of our case
study identified numerous mislabelled instances in the dataset.
We re-ran the classification task after excluding mislabelled data
and saw improvements in classification accuracy.

Index Terms—Human Context, Context Recognition, Interac-
tive Visualizations, Mislabelled data, Machine Learning

I. INTRODUCTION

Context-Aware (CA) computing systems adapt their behav-
ior to the users’ current context and facilitate exciting new ap-
plications. CA systems must first recognize the user’s context
before they can adapt to it. State-of-the-art CA systems often
use machine or deep learning to perform Context Recognition
(CR) by classifying data gathered from sensors on the user’s
smartphone or wearables [1].

Creating accurate CR classifiers requires rich datasets gath-
ered from users while they live their lives (“in-the-wild”).
Subjects are recruited into context data gathering studies in
which they label contexts (e.g. place type, activity) while a
mobile application gathers data from their smartphones or
smartwatches continuously [2] [3]. Such datasets are used
to train CR machine learning classifiers [4]. Most smart-
phones are able to capture sensor data such as accelerometer,

gyroscope, temperature, humidity and light which provide
important clues to determine context.

However, the subjects in such CR studies may assign wrong
context labels for several reasons. For example, when labeling
retroactively, subjects may forget the time and place of their
contexts. Some users tend to be careless while labeling the data
which may lead them to mislabel their contexts. Such labeling
errors reduce the accuracy achievable by CR classifiers.

Human contexts are hard to describe because they involve
different factors and so a visual tool that can identify misla-
belled data in other domains such as image labelling does
not work here. To mitigate this problem, we designed a
visual paradigm to relate objective sensor data with human
provided labels along with other relevant features. We realized
that paradigm by implementing COntext Mislabel EXplorer
(COMEX), a web based tool with multiple visually linked
panes, to support the exploration and identification of misla-
belled instances of context.

Excluding such erroneous labels can improve the accuracy
and performance of machine learning classifiers. We validate
our approach using data from the ExtraSensory (ES) project,
which gathered smartphone and smartwatch sensor data from
60 subjects at the University of California San Diego who
provided context labels. Specifically, our work makes the
following contributions:

• We categorized various causes of context mislabelling
and then identified types of mislabels that they lead to
during the collection of the CR data set.

• We designed a visual paradigm to relate context labels
(treated as ground truth) with objective measures of their
“outlierness”, We then integrate this visual paradigm into
COMEX.

• We accounted for individual differences in users by
calculating “outlierness” of each session against all other
sessions of the same label in everyone’s data and in that
individual user’s data.

• We provide results from a case study that illustrates our
error identification process and shows improvements in
classification accuracy for some labels in the ES dataset.



II. RELATED WORK

A. Human Context Monitoring And Recognition

Using machine learning classifiers, smartphone sensor data
can predict human context [5], [6]. Context data can be
used to research important implications of human behavior
including well being. Wang et al [3] used smartphones to
gather data to infer the mental health and academic situation
of college students for the StudentLife project. He and Agu [4]
used the StudentLife dataset to predict sedentary behavior
of smartphone users for up to one hour in the future. Such
information can be leveraged to design CA systems that aim
to mitigate harmful behaviors [1]. Ghods et al [7] designed
a clinician in the loop monitoring system to track patient
behaviors for health care professionals using smart home data.

B. Data Visualizations to Analyze Behavior

Data visualization is a powerful technique to understand
human behavior. The time-series nature of human data makes
it challenging to analyze and find patterns and trends in
behavior, due to the presence of unimportant co-occurring
information. Visualizations can help filter important data for
analysis. Nguyen et al [8] designed a tool called U4 to detect
anomalies in user interaction sequences. They proposed the
notion of ”multi-semantic linking” where they would highlight
information in sequences that were semantically similar, thus
allowing users to gain information about only relevant event
sequences. Polack et al [9] created Chronodes, a tool to mine
human activity data to compare groups of human behaviors,
based on event sequences. Data visualizations can also be used
to design systems that aim to intervene and mitigate harmful
behaviors. Sharmin et al [10] proposed data visualizations as
tools to design intervention systems for stress management.

III. BACKGROUND

A. The ExtraSensory Study

COMEX was designed and evaluated using context data
from the ExtraSensory (ES) project [2]. This project recruited
60 subjects to provide ”in-the-wild” context data as they lived
their lives. Sensor data was continuously gathered from the
subjects’ smartphones and smartwatches, while they period-
ically assigned context labels (activity, location/place, phone
placement) to the data.

Subjects installed the ES smartphone and smartwatch apps
for labeling their contexts. The app had an intuitive interface
to label contexts including activities, location/place, phone
placement. The app gathered data such as the accelerometer,
gyroscope and magnetometer along with audio features from
smartphone and smartwatch sensors. The app also collected the
phone’s battery level, state, light intensity around the phone,
humidity and temperature.

During a data gathering “session”, the app would contin-
uously run in the background and gather sensor and discrete
data for twenty seconds between one minute intervals. The
participants had the option of stopping the app from collecting
data. The project also gave participants optional smartwatches

Fig. 1. Example of mislabelled context using a smartphone.

with the ES app for more sensor data. The watch was paired
with the phone application to enable collection for the same
twenty second window as the phone.

The participants could label their current, previous and
future contexts (activity, location/place, phone placement and
phone state) using the app’s interface and also by responding to
notifications. The ES app recorded context as a large number
of binary labels that could be true or false at any point in
time. Multiple context labels could be labelled to be true at
the same time. For example “Driving” while “Sitting” and
“Talking”. These activities are considered as co-occurring.

The app let the users set the frequency at which they
received notifications, prompting them to record current or
past context labels. The app had a “History Page” that had
a list of labels ordered by time, which were provided by the
participants and predictions of labels for unlabelled time peri-
ods. This view allowed participants to retroactively label their
contexts, with the predictions serving as helpful reminders.

This dataset contained mislabeled contexts since it was
gathered by humans “in-the-wild”. As illustrated in Fig. 1,
a participant might label a time period as continuous “Sitting”
while in reality there were gaps. Mislabelled data sessions
negatively impact machine learning classifiers as these labels
are considered to be ground truth. Our goal is to make such
classifiers more robust by using a visual analytics approach to
identify and remove mislabeled data that “taint” the real data.

B. The ExtraSensory Dataset
The ExtraSensory (ES) project gathered data for 60 partic-

ipants for an average of 7.6 days each. The raw smartphone
sensors included the gyroscope, accelerometer and magne-
tometer along with discrete measurements such as phone state
(battery level, charging vs. unplugged), user location, and
phone placement. The app also collected audio for sessions
lasting twenty seconds. The app computed 13 Mel Frequency
Cepstral Coeffcients (MFCCs). The data was stored on the
phone temporarily before being sent to a server. The data
was used to calculate 255 features for every twenty-second
long data gathering session. The features extracted from the
sensor data included measurements such as mean and standard
deviation of each time segment for the high frequency sensors
such as the accelerometer and gyroscope.

IV. VISUALIZING HUMAN CONTEXT DATA

A. Challenges

• Visualizing the large feature set: Every twenty second
data session was converted into 255 features which makes



it difficult to visualize anomalies.
• Varied user interpretation: The participants were told

not to modify their lives in any way and label contexts
naturally. This meant that there could be discrepancies
in the ways people interpret the labels. For example,
some users co-labelled being “At Home” and “At School”
which might seem odd, but it may have made sense to the
users because many of them were students who resided
on campus. Different user interpretations could make it
hard to establish ground truth.

• Missing and inconsistent data: The smartwatch data was
unavailable for a large number of sessions which makes
it difficult to compare sessions.

B. Goals and Tasks

We analyzed the potential causes of mislabels to design our
visual paradigm. We installed the Android version of the ES
app [11] on a phone and evaluated the interface to identify
use cases that could lead a participant to wrongly label their
context.

We identified three broad categories for causes of misla-
belling:

• Recall Bias (C1): Human memory is prone to biases and
retroactive labelling (“History Page”) may lead to some
participants mislabelling.

• Inopportune Interruption (C2): Participants may re-
ceive notifications at inopportune moments and in their
haste to deal with the notification, they may mislabel.

• Careless Reporting (C3): Some participants may not be
motivated to do a good job and may not make an effort to
accurately recall contexts or provide all relevant labels.

Keeping these causes in mind, we now characterize the
types of mislabels that may arise:

• Wrong Duration (E1): Participants may incorrectly re-
call (C1) the start and end times of context; thus under
or over estimate the duration of some activity or enter
a future activity into the app and then not perform the
activity.

• Incomplete Labels (E2): Participants may not report
all the relevant context labels (C1, C3). For instance, a
user may be “Eating” while “Sitting” but only labels for
“Sitting”.

• Wrong Labels (E3): Some participants may provide
labels that do not make sense and are unlikely to co-
occur if interrupted at a bad time (C2, C3). For instance
“Driving” while “Standing”.

The dataset contained multifaceted context data that needs
to be viewed holistically to judge its veracity. We designed
a visual paradigm that related contextual information such
as time of day, labelling mechanism used and co-occurring
labels with objective measures of irregularity of the underlying
data. To realize this, we implemented COMEX with several
interconnected visualizations that would visualize data at dif-
ferent levels of granularity that allow for cohort-level as well
as individual-level views. It is important to show both levels

as the habits of some individuals may not be captured at the
cohort level.

We designed four tasks that we wanted to accomplish using
COMEX:

• Get an Overview of the Data (T1): Allowing users
to get an overview of all data including the number
of data sessions for each label and their commonly
co-occurring labels. This cohort level analysis requires
minimal interaction.

• Evaluate Irregular Data (T2): Showing how unusual
some sessions were compared to other sessions. For
instance, the “outlierness” of a walking session could
be compared to other walking sessions. This measure
needs to be displayed in conjunction with other relevant
information such as participant ID, time of the activity,
co-occurring labels and labelling mechanisms.

• Filter and Mine Data (T3): This task allows analysts to
filter out irrelevant information and focus on the contexts
that they are interested in. The analyst would need a quick
way to filter data and display important features since the
dataset is massive.

• Mark Sessions for Exclusion (T4): The analyst should
be able to keep track of all mislabelled data sessions that
they discover. These sessions can then be marked and
excluded from classification.

C. Calculating Anomaly Measures

To realize our design paradigm, it is important to view
contexts with an objective measure of how “normal” the
underlying sensor data is for a session compared to other
similar instances. We used two anomaly detection methods:
a weighted z score (the number of standard deviations from
the mean) and the Isolation Forest [12] algorithm. The z
score assumes a normal distribution while Isolation Forest
assumes that outliers are sparse in the feature space. All the
sensor, audio and discrete data were used to compute 255
features for each individual session. Features have different
importance values based on their significance for classification;
for instance audio features might have a higher importance in
detecting a person talking while the magnetometer might be
relatively unimportant. For this reason, we weight the anomaly
score for each feature by the importance of that feature. We
calculated the feature importance values for the ”featurized”
data by training a Random Forest [13] classifier on the data.

We calculated the z-scores for all individual features and
aggregated the product of the z scores with their respective
importance value to get a weighted z score for each session.
The newly calculated scores are normalized to values between
0 and 1.

weighted z score =

N∑
i=1

feature Z score ∗ feature imp,

where N is the number of features.
The second method used the Isolation Forest algorithm.

Isolation forest assumes that outliers occur in a low-density



Fig. 2. COntext Mislabel EXplorer (COMEX).

space compared to the inliers. The algorithm is built on an
ensemble of isolation trees, where each isolation tree randomly
splits the data until every data point is uniquely identified.
The average number of splits required to isolate a point is
used to calculate the anomaly score. We set a ”contamination
parameter” that represents an approximation of the expected
percentage of data believed to be anomalous to 0.2. The
calculated values are normalized to values between 0 and 1.

Humans have different styles of performing Activities of
Daily Living (ADL) such as walking, speaking and phone
placement habits. This variation presents an issue when calcu-
lating anomaly measures for all the data across a diverse group
of people, which is why we used “Global” and “Individual”
approaches for the scores. For the “Global” approach, we
ran the two algorithms to generate scores for all the labels
collected across all participants. For the “Individual” approach,
we calculated the anomaly scores for the labels for each
individual participant’s data and not across the entire dataset.
Every data session has four anomaly scores associated with it
because of the two algorithms and the two approaches. The
analyst is able to select the desired score.

V. COMEX: THE CONTEXT MISLABEL EXPLORER

We researched and developed COMEX, a web-based tool
using a JavaScript library called D3.js [14], which realizes the
above requirements. The pane on the left (Fig. 2A) presents
an overview of all gathered labels. The user selects labels in
this pane for further analysis in the two panes on the right in
Fig. 2 (split horizontally). Next, we describe key features of
COMEX designed to achieve the tasks described in Section
IV B.

A. Overview of Labels Collected

The pane in Fig. 2 A provides an overview of all the
collected context labels. The labels are ordered from left to
right and from top to bottom by the number of data sessions
collected. For example, ”Indoors” and ”Sitting” labels had the

highest and third highest numbers respectively. Hovering over
a label’s circle causes co-occurring labels (other labels that
had happened at the same time) to also get highlighted. The
amount of fill in the circle represents the proportion of times
that the highlighted labels co-occurred with the hovered over
label. In Fig. 2 A, the user is hovering over ”Walking” and
the co-occurring labels for ”Walking” are shown.

Labels with no instance of co-occurrence are greyed out.
This pane performs task T1 by providing a quick overview
of the data without much interaction as the users can visually
discern co-occurrence frequencies by the level of fill, quickly
find unlikely co-occurrences (E3) and also see trends that
make intuitive sense, such as “Indoors and “Sleeping” co-
occurring often (E2). Using circles and ordering them makes
it easier to compact the fifty one labels into limited space.
The user can select a label by clicking on it which changes
the pane in Fig. 2 A to show the label’s co-occurring labels,
ordered by frequency from left to right and top to bottom.
The amount of fill in the circles represents the frequency of
co-occurrence.

Clicking on a circle also populates the pane in Fig. 2 C
with bars representing continuous ”chunks” of the selected
label. These represent periods of time in the dataset, when
successive data sessions for a participant had the same label
as the one that the user clicked in Fig. 2 A (details in section
V B). The user can filter (enabling T2) the chunks shown in
that pane (Fig. 2 C) by clicking on a co-occurring label to only
show the continuous activity chunks with at least one instance
of the co-occurring label being present.

B. Continuous Label Chunks

The pane in Fig. 2C displays continuous ”chunks” for the
selected label. These chunks are ordered from left to right and
from top to bottom by their lengths. These chunks represent
periods where the time difference between successive or back-
to-back collected data sessions was less than or equal to
sixty seconds and had the same label assigned by the same



Fig. 3. Label Chunk View.

participant. Since the app sent data after approximately every
minute, it is reasonable to consider successive sessions with
the same label as continuation of that context. The length of
the chunks represents the duration of the continuous label
instance or chunk. Encoding duration by length and then
ordering chunks makes it easier to compare relative durations.
The opacity of the chunks represents the average anomaly
score (between 0 - 1) for sessions comprising the chunk.
This supports task T2 and T3 as the user can focus on the
darker ones which contain anomalies. The user can update the
chunk opacity by selecting the anomaly score algorithm and
calculation mode in Fig. 2 B.

Clicking a chunk causes the Label Chunk View (Section
V C) to show on the pane (Fig. 2 D). This then shows the
detailed information about the underlying sessions comprising
the chunk.

C. Label Chunk View
The Label Chunk View (LCV) (Fig. 3) drills into continuous

chunks to see the underlying data. The user can see co-
occurring labels represented as horizontal lines above the bars
(Fig. 3 A). The user can hover over the lines to see labels
and the colors representing them (Fig. 3 B). This helps us to
find labels that are unlikely to co-occur (E3). The anomaly
scores for the sessions in the chunk are plotted as bars with
values between 0 and 1 (Fig. 3 D) (T2) (E1, E3). The score
calculation method and algorithm can be changed using Fig.
2 B. The continuity of the colored bars in Fig. 3 A shows
the continuous co-occurrence of the respective label. If the
user wants to view that continuous label chunk with the same
pane layout, they can click on the horizontal line for the co-
occurring label and a new pane with the information for the
co-occurring label chunk will be appended to the pane in Fig.
2 D.

The header contains the duration of the continuous label,
the user’s ID (shortened to fit), time of day for the session
and the labelling mechanisms. The numbers in Fig. 3 C
represent the different label reporting sources used to label the
data sessions. There were eight categories for the reporting
mechanism such as using the “History Page”, replying to
notifications etc. The dataset used numbers between -1 to
6 to encode categories. Hovering over a number shows a
tooltip (Fig. 3 C) with information about the mechanism.
Clicking on a number highlights the bars for the sessions

which were labelled using the mechanism encoded by the
number. In Fig. 3, the user selected “1” which highlights
the bars in blue, with this reporting mechanism, and reduces
the opacity of others. The analyst can find instances of E1
and E2 by showing information about how the participant
interacted with the phone when they labelled. For example,
Fig. 3 shows the information for a continuous chunk of “Phone
in pocket”. We can highlight the sessions that were labelled
using “active feedback” (encoded as “1”) which is when the
participant provides labels on the app and sets a duration. The
co-occurring labels change during this chunk: “Walking” to
“Restaurant” and“Sitting”, and then back to “Walking”. The
anomaly scores for the “Phone in pocket” are consistently low
for the highlighted sessions and a few sessions beyond. The
anomaly scores are variable for other sessions which were
marked using the “History page” (encoded by “2”) on the
app. Such detailed, fine grained exploration is meant to aid in
finding errors E1, E2, which may be the result of recall bias
and careless reporting.

The user may conclude that they have found mislabeled data
which they want to exclude (T4). The user can drag the mouse
over the data sessions that they want to mark and then confirm
a pop up. The marked sessions are colored red to indicate their
selection as shown in Fig. 3 E. The user can view the selected
data sessions by clicking on “Marked Sessions” in the pane
in Fig. 2 A.

VI. EVALUATION

A. Case Study

In a small case study, we utilized COMEX to help us
identify and then remove mislabels for 13 labels. We chose
these labels because they have some unusual co-occurring
labels that did not make sense; for example, “Driving” while
being at “Home” and also because we could select enough
sessions to make a difference in classification accuracy. The
dataset is unbalanced and there were some labels for which
we would not have been able to select enough sessions to
noticeably change classification results.

We marked the data sessions keeping in mind the errors
and tasks discussed previously. We looked at unlikely co-
occurring labels, the calculated anomaly scores, label reporting
mechanisms used and time of day. After the data sessions
were selected, they were marked in the original dataset and



Label Number of Marked
Sessions Total Sessions Original AUC-ROC Recalculated AUC-ROC with

Marked Sessions Removed Change

Exercise 2111 8081 85.82 91.74 5.92
Toilet 911 2655 75.08 78.10 3.02
Passenger 436 2526 85.31 86.78 1.47
Walking 1756 22136 87.83 88.84 1.01
Phone in hand 2121 14573 75.77 77.01 2.24
Driving 2955 7975 93.19 95.71 2.52
Bicycling 1010 5020 93.59 95.54 1.95
Outside 1369 12114 91.98 92.79 0.81
On bus 305 1794 86.81 89.07 2.26
Running 201 1090 78.99 76.31 -2.68
Shower 661 2087 73.75 75.75 -1.00
Cleaning 1101 3806 63.60 63.21 -0.39
Standing 730 6224 74.90 74.75 -0.15

TABLE I
RECLASSIFICATION RESULTS

excluded from any subsequent machine learning training and
classification tasks.

For classifying the labels, we used the Gradient Boosted
Machines Classifier [13]. We re-ran a 5-fold cross validation
for the selected labels and computed the Area Under the Curve
of the Receiver Operating Characteristic (AUC-ROC) measure.
The AUC-ROC measures how effectively our classifier can
distinguish between classes, where a random classifier has
an AUC-ROC of 0.5. We chose the AUC-ROC over standard
accuracy as the AUC-ROC is more robust to class imbalance.

We observed improvements in the classifications results for
9 out of the 13 selected labels (see Table 1), which indicates
that overall, our approach worked.

VII. CONCLUSIONS

We introduced a novel visual analytics solution, COMEX,
for detecting human labeled behavior data traces that contain
mislabeled context data. Our evaluation study demonstrates
the effectiveness of our solution by supporting analysts in
exploring human context data and identifying mislabeled data
sessions. In particular, we demonstrated that removing misla-
belled data can improve labeled datasets that are amenable for
training higher quality models for more accurately classifying
human context data. Future work includes employing addi-
tional anomaly detection algorithms to identify outlier data
and using different data visualization strategies. Our approach
of using visual analytics to explore human labeled data may
also be applied to other application domains.
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