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Abstract 
 
Diffraction and interference are optical phenomena 
which split light into its component wavelengths, hence 
producing a full spectrum of iridescent colors. This 
paper develops comput er graphics models for iridescent 
colors produced by diffractive media. Diffraction 
gratings, certain animal skins and the crystal structure 
of some precious stones are known to produce 
diffraction. Several techniques can be employed to 
derive solutions to the diffraction problem including: 
(1)Electromagnetic boundary value methods  
(2)Applying the Huygens-Fresnel principle (3)Applying 
the Kirchoff-Fresnel theorem (4)Fourier optics. 
Previous work in developing diffraction models for 
computer graphics has used boundary value methods 
and Fourier optics but no models using Huygens-
Fresnel principle have been published. This paper 
derives a set of diffraction solutions based on the 
Huygens -Fresnel principle, which are then used to 
extend well-known illumination models and are 
incorporated into a ray tracer.  
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1. Introduction 
 
Humans live in a world filled with beautiful colors. 
Iridescent colors refer to the different colors that are 
given off by some surfaces at different light source or 
viewer angles. New colors which were neither visible in 
the incident light nor the object being observed appear 
to have been created. These surfaces are sometimes said 
to “shimmer” as they are rotated. Common sources of 
iridescent colors include rainbows, shiny CD-ROM 
surfaces, opals, hummingbird wings, some snake skins, 
oil slicks and soap bubbles. Four mechanisms are 
known to produce iridescent color, namely, dispersive 
refraction, scattering, interference and diffraction. 

  

Diffraction occurs when light encounters some obstacle 
or aperture of a dimension comparable with its 
wavelength. For example, a diffraction grating has a 
series of finely ruled parallel grooves. Different 
wavelengths are diffracted at different angles; hence 
different colors are produced at different angles, leading 

to the phenomenon of iridescence. Common sources of 
iridescent colors include diffraction gratings, opals and 
some liquid crystals, hummingbird winds and some 
snakeskins. Diffraction, also referred to as a wavefront 
splitting phenomenon is distinguished from 
interference, an amplitude-splitting phenomenon [2].  

 

A common problem in optics is that of determining the 
outgoing light intensity, wavelength and color, given 
that light is incident on the diffraction surface at a 
certain angle and intensity and is comprised of specified 
wavelengths. In particular, a closed-form expression 
relating incoming and outgoing light permits diffraction 
surfaces to be elegantly modelled in computer graphics.  

 
Several techniques have been employed in the optics 
literature to derive solutions to this problem [9] 
including (1) Solutions derived by applying 
electromagnetic boundary value methods (2)Solutions 
based on Huygens-Fresnel principle (3)Kirchoff -Fresnel 
based solutions (4) Solutions using Fourier optics.  

 

Two main bodies of work have been identified which 
attempt to model diffraction in computer-generated 
imagery. Thorman [10] first developed a simple 
computer graphics model for diffraction by using the 
grating equation derived by applying electromagnetic 
boundary value methods. Stroke [9] derives the 
geometrical conditions for iridescence. Thorman [10] 
then uses Stroke's results and addresses the specific 
issue of modelling iridescent color s produced by 
diffraction in computer graphics. Thorman's work 
focuses on determining directions in which the grating 
equation would produce peak responses , and hence 
render images accordingly. Specifically, the grating 
equation used by Thorman is not a continuous function 
but only gives the directions for perfect constructive 
interference. No information is given on the behavior of 
the reflected light at angles which are away from those 
of perfect constructive interference. Also, Thorman 
erroneously assumes that all peak intensity values are 
equal. A continuous function needs to be derived which 
gives the behavior of light in all outgoing directions.   

 

Stam [8] has published work using Fourier analysis. 
Fourier optics solutions are believed to give the most 
accurate but also most complex solutions. However, 
detailed information about both the scene configuration 



and diffraction surface profile are vital before Fourier 
solutions can be evaluated and in fact, each solution is 
valid only for one configuration. In order to arrive at a 
Fourier optics solution, Stam makes assumptions about 
the scene configuration, as well as the profile and 
distribution of the grating surface. The fact that the 
actual form and nature of Fourier solutions are 
configuration-dependent increases their complexity.  
 
In what follows, we will apply the Huygens -Fresnel 
principle to derive a continuous function that defines 
the behavior of light in all outgoing directions and then 
include it in a complete illumination model, showing 
clearly how to use the model to render pictures of 
surfaces with diffraction.  
 
 
2. Our Optics Model 
 
The Huygens-Fresnel principle states that every 
unobstructed point of a wavefront, at a given instant in 
time, serves as a source of spherical secondary 
wavelets  (with the same frequency as that of the 
primary wave). The amplitude of the optical field at any 
point beyond is the superposition of all these wavelets 
(considering their amplitudes and relative phases). This 
principle arises because all vibrating particles exert a 
force on their neighbors and thus act as point sources. It 
explains why when a wave passes through an aperture 
or obstruction, it always spreads to some extents to 
regions that were not directly exposed to the oncoming 
waves and can be used to derive useful approximate 
solutions to the diffraction problem. 

   
In optics, distinction is also made between near-field or 
Fresnel and far-field or Fraunhofer diffraction. In 
Fresnel diffraction, the point of observation is so close 
to the aperture that the image formed bears a close 
resemblance to the aperture, the emergent waves are 
spherical and intensities received at a given point vary 
as one travels along the aperture width.  For Fraunhofer 
diffraction on the other hand, the point of observation is 
so far that the image formed bears almost no 
resemblance to the actual aperture, the emergent 
waveforms can be approximated as planar waves with 
uniform intensities from any point on the aperture 
width. We deal only with Fraunhofer diffraction in this 
paper since it encompasses almost all configurations of 
practical interest in computer graphics.   

 
We shall now apply the Huygens-Fresnel principle to 
derive an expression for the irradiance from an N-slit 
diffraction grating where N is sufficiently large and the 
point of observation is sufficiently far from the grating 
surface. Note that the following derivations apply to 
gratings with slits, transmissive and reflection gratings. 
Applying the Huygens-Fresnel principle, each slit or 
grating edge of a width much less than λ, now acts as a 
secondary source. The number of slits, N (typically in 
the thousands per inch of diffraction grating)   is 
tremendously large and their separation is small.  Figure 

1 is an example of such a grating. Only a few slits of the 
grating are shown in the figure for ease of illustration.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Diffraction System with N Slits. 

We wish to derive a closed form expression for the net 
contributions of these N slots of a diffraction grating at 
an arbitrary location in space P. The final closed form 
derivation will be approached in a simple two-stage 
process. First we derive the effect of one of these N slits 
at the point P, following which we shall consider the net 
effect of vector addition of several of these slits at the 
point P. 
 
 
 
 
 
 
 
 
 

Figure 2: Single Slit. 
 
Figure 2 shows a single slit of the diffraction grating. ds  
is the elemental width of the wave front in the plane of 
the slit, at a distance s from the center O, which we 
shall refer to as the origin. The wavelet emitted by the 
element ds, observed at the point P, will be proportional 
to the length of ds and inversely proportional to the 
distance x [4], [5], [6].  The general equation for a 
spherical wave can be written as:  
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where a is the amplitude at a unit distance from the 
source and  r is the distance of the observation point 
from the source. Hence, from Figure 2, the infinitesimal 
displacement produced at the point P by the 
infinitesimal element ds can be written as  
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The displacement varies in phase as the position of ds 
changes by a factor, due to the different path lengths to 
P0, which can be expressed as ∆ = s . sinθ .   So, at a 
given point s below the origin, the contribution will be      
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Integrating equation 3 from one edge of the slit to the 
other, we get  
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Hence, the resultant vibration is a simple harmonic one, 
the amplitude of which varies with position P. Thus, the 
intensity at the screen due to one slit is then 
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Now, considering a diffraction grating system of N slits, 
with apertures of width a, and width b of the opaque 
portion separating apertures (See figure 3).  Next, we 
shall determine the vector sum of several of these single 
slits at the arbitrary observation point P. The incident 
light is still at a normal angle of incidence and the phase 
difference, δ, between disturbances from corresponding 
strips of adjacent apertures is again  
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where d = a + b  specifies the distance between similar 
points in adjacent apertures as shown in figure 3 below:  
 

 
 

 
 
 
 
 
 

Figure 3: Diagram showing a and b in adjacent slits. 

Expressed as a complex quantity, the phase difference 
between disturbances from corresponding strips of 

adjacent apertures is δie −  . Hence, adding the net 
contributions of multiple slits of amplitude 
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as determined in the derivation for a single slit and 
observed at a point P in space,  the complex amplitude 
of the resultant is given by 
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Normalizing our result, we get  



















=

α

α

β

β
2sin

2sin
2

sin
2

1 N

N
oII               11 

 

here I0 is the intensity of the incoming light ray in the θ 
= 0 direction.  Equation 11 is our final expression for 
irradiance from an arbitrary N-slit diffraction grating. 

 

Finally, we modify our results to take into account 
oblique incoming and outgoing angles. Consider the 
following diagram: 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Oblique Incidence. 

 
In the case of oblique angles, the general expression for 
irradiance stays the same. However, the phase 
difference between disturbances (contributions) from 
successive slots is given by 
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and 
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where ,......2,1,0 ±±=m  Equation 15 is widely known 
as the grating equation and gives the locations of 
maxima.   

 
We can see from equation 15 that different wavelengths 
(and hence different colors) will peak at different angles 
with different (sinθ - sinθi ) as shown in figure 5. 
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Figure 5: White Light Incident Perpendicular to the Surfaces 
of a Grating and the First Order Diffraction Spectrum on Each 
Side. 
 
 
 
 
 
 
 
 
Figure 6: View in the Diffraction Plane of a Monochromatic 
Incident Ray and the Diffracted Rays of First Order on Each 
Side.  
 
Likewise, we can see from figure 6 that according to 
equation 15, different modes peak at different angles. 
 
 
3. Our Illumination Model 
 
In this section, we shall outline our new illumination 
models which are based on the Huygens -Frsenel 
principle, include diffraction and can render iridescent 
surfaces. We can express our diffraction illumination 
model as  

 
I = Ambient  + Diffuse  + Diffraction                     16 

 
We introduce a new diffraction component in equation 
16 above to account for both the directional specular 
and diffraction effects. The ambient and diffuse 
components in equation 16 are the same as those used 
in the Phong model [7]. 
 
The diffraction component in equation 16, I(θ) is 
expressed as (see equation 11)   
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where equation 17 is a summation of equation 11 over a 
discrete set of wavelengths and α  and β  equals the 
values expressed in equations  13 and 14 and Io,λ is the 
light intensity at a summation wavelength, λ. The 
summation above is over a chosen set of discrete λs, [ 
λ] in the visible range. We recall that the visible 

spectrum has wavelengths in the 380nm to 700nm 
range.  

 
In our illumination model of equation 16, we have 
replaced the specular term that was used previously in 
the Phong model by a more general diffraction 
component that also incorporates the Phong (or Cook-
Torrance) specular component.  In rendering the model, 
positions of peak wavelengths for each position are pre-
calculated and care taken to include the peak intensity 
in the rendered image. 
 
 
4. Rendering Our Models 
 
In this section, we discuss how to use our illumination 
model to render pictures with diffractive surfaces. A ray 
tracer is used as our  rendering system. However, first, 
we shall outline issues which need to be taken into 
consideration before these models can be used. 

 

Thus far, our expressions for our illumination model 
have not reflected the fact that the grating or diffractive 
surface may be transformed into new arbitrary  3D 
positions of the user’s choice. A convenient way of 
incorporating transformations and including the 3D 
case, is by expressing our illumination model using the 
half vector. It is interesting to note that in the case 
where the diffraction grating is coincident with the z-
axis, the term sinθ + sinθi   in our diffraction expression 
is equal to the z -component of the normalized halfway 
vector, H . Hence, we can simplify equation 17 by 
replacing sinθ - sinθi   with H.z. We can thus re-write 
equations 12-14 as  
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This single substitution is very powerful and greatly 
simplifies our expression and eases manipulation within 
a rendering system.  It is also possible to create patterns 
using by introducing an arbitrary twist in the grating 
direction or by creating checkerboard patterns.  

 

Color for display in computer graphics is usually 
specified by relative amounts of a set of primary colors 
(e.g. Red, Green and Blue or their RGB values) which 
they contain. Since, the models for iridescence which 
were described in the preceding sections as well as the 
accompanying trigonometry, were specified on a 
wavelength basis, conversion from wavelength to RGB 

Incident 
ray 

m = 0 
reflected 

m = -1 
diffracted 

m = 1 
diffracted 



becomes necessary. Furthermore, following conversion, 
some colors which are readily specified in wavelengths 
may fall outside the gamut of RGB tuples which the 
CRT can display. In such a case, these colors need to be 
systematically converted or transformed to triples which 
can be displayed by the CRT. The underlying process of 
truncation or transformation is known as color clipping. 
In our ray tracer, we have investigated and implemented 
three alternative policies for color clipping. These are 
clamping, intensity scaling and constant intensity 
scaling. Hall [3]  has a complete discussion of these 
three scaling techniques. 
 

In a ray tracer, the illumination models are evaluated 
per pixel and it is sufficient to describe what steps are 
taken to render a pixel. For each pixel that hits a 
diffraction surface, the following steps are taken: 

 

1. Determine hit point: determine the first object the 
eye sees through this pixel while looking into the 
scene to the ray traced.  

2. Compute ambient and diffuse components 

3. Build light and eye vectors and compute 
normalized Half Vector, H  

4. Transform grating direction vector, normal vector, 
twist grating vector  

5. Replace ( sinθ + sinθi )  with H.z (half vector 
component in the grating direction) in equation 17 

6. Search for all vis ible modes and corresponding 
wavelengths that peak at this angle. If no modes or 
wavelengths are visible, return diffuse + ambient 
color. If mode zero  is visible, return specular 
component. 

7. Evaluate equation 17 at peak wavelengths. 

8. Convert peak wavelengths to RGB colors as 
described in section 4 and evaluate iridescent color. 

 

While steps 1-3 above are the same as previous ray 
tracers, steps 4-8 are related to our diffraction models. 
 
 
5. Results  
 

 
Figure 7: Scene showing a diffraction grating and a reflective 
cube on a wood textured surface 

 
Figure 8: Scene showing a cube and cylinder with diffractive 
sides on a wood textured surface 
 

 
Figure 9: Scene showing a checkerboard diffraction grating 
pattern on a wood textured surface 
 

 
Figure 10: Scene with checkerboard diffraction pattern cube 
and cylinder with alternated groove twist angle. 
 
Figures 7 through 11 are all images incorporating our 
models and show some iridescent colors.  We have 
demonstrated a basic diffraction grating with and 
without an arbitrary twist in the grating direction. We 
have also demonstrated variants of the checkerboard 
pattern alternating with a diffuse surface, as well as 
alternating the twist angles. The patterns created were 
extremely colorful and resembled real life iridescent 
diffraction patterns. Additionally, we have shown other 
geometries, such as the cube and cylinder that have 
been made from these diffractive gratings or patterns. 
Finally, we have also rendered a CD-ROM surface 
exhibiting iridescence.  Simple animations were also 



produced to illustrate the color variance as viewer and 
surface orientations were altered. 
 

 
Figure 11: Scene showing a CD-ROM whose surface 
demonstrates iridescence, and an image-mapped can on a 
wood textured surface 
 

 
6. Conclusion 
 
In this paper, we have defined the concept of angle-
dependent iridescent coloration of certain materials, due 
to the optical phenomenon of diffraction. We have 
introduced other optical phenomena such as 
interference, dispersive refraction and scattering that 
also produce iridescent colors. Two earlier attempts by 
Thorman and Stam, to develop diffraction illumination 
models have been reviewed and the shortcomings of 
these attempts clearly stated.  
 
We have developed diffraction shading models for 
computer graphics. Our models were developed in two 
distinct phases; first, we developed an optics model, 
which describes the interaction of incident light with 
our diffractive surface. Next, we included our optics 
model in our complete illumination model.  
 
In developing our optics model, we have applied the 
Huygens -Fresnel principle. In our derivations, we have 
made assumptions which make sense for computer 
graphics applications. These include assumptions that 
incident light is non-polarized, that the grating is 
several wavelengths away from the point of observation 
such that emergent waves can be approximated as plane 
waves (Fraunhofer diffraction). 
 
We have incorporated our optics model into a complete 
illumination model for computer graphics by adding 
diffuse and ambient terms, similar to those used in the 
Phong and Cook-Torrance illumination models. We 
have rendered these models using a ray tracer and 
practical issues encountered discussed. Photorealistic 
scenes with diffractive surfaces, including diffraction 
gratings, checkerboard patterns and CD-ROMs, have 
been produced. Possible areas for future research 
include:  
 
§ Efficient, radiosity-based solution: Since several 

diffraction surfaces are shiny and highly reflective, 

it would be worthwhile to investigate radiosity-
based solutions which can efficiently render the 
diffraction models described in this paper, 
especially because one of the advantages of 
radiosity is its ability to track and render surface 
inter -reflections.  

§ Different light sources: Since diffraction is simply 
a separation of wavelengths in a light source, 
different light source geometries and constituent 
wavelengths have an effect on images produced 
and will need to be studied in the future.  

§ Three-dimensional gratings: Our diffraction models 
deal only with two-dimensional gratings. It would 
be desirable to derive a similar closed-form optics 
model for three-dimensional diffraction in crystals. 

§ Diffraction in animals: It would be impressive to 
model animals such as snakeskins and butterflies 
which exhibit iridescence.  

 
It is our hope that the present work may be of use in 
attacking these more complex problems. 
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