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Abstract—Alcohol abuse causes 88,000 deaths annually. In 

this paper, we investigate a machine learning method to detect 

a drinker’s Blood Alcohol Content (BAC) by classifying 

accelerometer and gyroscope sensor data gathered from their 

smartphone. Using data gathered from 34 "intoxicated" 

subjects, we generated time and frequency domain features 

such as sway area (gyroscope) and cadence (accelerometer), 

which were classified using supervised machine learning. Our 

work is the first to classify sway features such as sway area and 

sway volume, which are extracted from the smartphone’s 

gyroscope in addition to accelerometer features. Other novel 

contributions explored include feature normalization to 

account for differences in walking styles and automatic outlier 

elimination to reduce the effect of accidental falls. We found 

that the J48 classifier was the most accurate, classifying user 

gait patterns into BAC ranges of [0.00-0.08), [0.08-0.15), [0.15-

0.25), [0.25+) with an accuracy of 89.45% (24.89% more 

accurate than using only accelerometer features as in prior 

work). Our classification model was used to build AlcoGait, an 

intelligent smartphone app that detects drinkers’ intoxication 

levels in real time. 

I. INTRODUCTION 

Alcohol abuse results in physical harm, mental 
malfunction [10] and is responsible for 1 in 10 deaths among 
adults aged 20-64 years in the United States annually [19]. 
Despite these effects, binge drinking (defined as 4 or more 
drinks for women on a single occasion, and 5 or more drinks 
for men on a single occasion [19]) has been on the rise.  
Between 2002 and 2005, over a third of college students aged 
18-20 reported binge drinking [17].  

Drunk driving endangers not only the intoxicated driver 
but also pedestrians and other sober drivers [20]. In 2010, 
47.2% of pedestrian fatalities and 39.9% of vehicle occupant 
fatalities were caused by drunken driving [18]. However, in 
many Driving Under the Influence (DUI) cases, the drinker is 
unaware that they are over the legal driving limit. In this 
paper, we focus on a method for a drinker’s smartphone to 
passively sense their intoxication level from their gait (walk). 
Passive methods to continuously detect and log a drinker’s 
intoxication level can be used in multiple ways to either treat 
hard drinkers or to prevent alcohol-related mishaps. Use in 
prevention: Drinkers who are over the legal driving limit can 
receive just-in-time notifications of excessive alcohol 
consumption, preventing drunk driving. Preventive 
monitoring is timely since DUI offenses carry severe 
consequences including license suspension, fines, high 
insurance premiums and even jail time [37]. Use in treatment: 
a smartphone can log a frequent drinker’s drinking patterns 
and associated contexts (e.g. time, place, who with). Drinkers 
can reflect on their drinking logs, detect patterns of abuse and 
either self-correct or seek treatment. Counselors can use such 
logs as evidence to prescribe treatment. In cases where the 

 
 

drinker loses consciousness, emergency room physicians 
would have an accurate record of a patient’s drinking. 

Alcohol consumption raises the Blood Alcohol Content 
(BAC) of the drinker’s blood [24]. Alcohol penetrates the 
blood-brain barrier approximately 20 minutes after alcohol 
consumption, impacting neuromotor and cognitive functions 
[25]. Gait, or the manner in which a person walks is one of 
the neuromotor functions affected by alcohol consumption. In 
fact, aside from direct BAC or BrAC testing, neuromotor 
testing including analysis of gait is the most reliable way to 
determine intoxication in humans [8]. Leveraging this fact, 
the walk-and-turn field sobriety test used by the police is 
based on gait assessment. 

In this paper, we investigate a method to detect the BAC 

level of a drinker from their gait by classifying 

accelerometer and gyroscope sensor features gathered from 

their smartphone using a machine learning approach. This 

paper significantly improves on our previously proposed 

AlcoGait intoxication inference smartphone app [15] in 

several ways, yielding an accuracy of 89.45% for classifying 

user gait patterns into BAC ranges of [0.00-0.08), [0.08-

0.15), [0.15-0.25), [0.25+). Our initial AlcoGait app only 

had a classification accuracy of 57% for the task of 

classifying the number of drinks a user had consumed into 3 

bins: 0-2 drinks (sober), 3-6 drinks (tipsy) and > 6 drinks 

(drunk). Specific limitations in our prior effort that are now 

addressed in this paper include:   

1. Explore Gyroscope features: Time and frequency 

domain features were generated previously using only 

smartphone accelerometer data.  This paper explores the 

use of smartphone gyroscope features in addition to 

accelerometer features.  Ando et al [8] found that 

subjects’ postural sway increased after they ingested 

alcohol. Nieschalk et al [3] determined that sway area (a 

gait attributes widely used in posturography) was the 

most sensitive attribute for detecting increased body 

sway after alcohol ingestion. Posturography is a 

clinically validated approach for assessing balance 

disorders from gait. We synthesized gyroscope sway 

features, which when combined with accelerometer 

features yielded 89.45% classification accuracy 

(24.89% more accurate than accelerometer features 

alone as in prior work).  

2. Including physical attributes of subjects as features: 

Other alcohol-sensitive physical attributes such as 

subject weight, height and gender were included in our 

classification model.   

3. Gather data from more users: Our previous AlcoGait 

work gathered smartphone accelerometer data from only 

7 participants, which resulted in inaccurate machine 
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learning models. In this paper, data was gathered from 

34 participants wearing sensor-impairment goggles that 

simulate the effects of intoxication. 

4.  Exploring feature Normalization: to reduce 

inaccuracies caused by different walking styles. 

Normalization prevents a person whose sober gait 

sways a lot from being misclassified as being drunk.  

5. Investigating personalization (per-user machine 

learning models) and ensembling:  to compare per-user 

classification models to models trained on large 

numbers of subjects.    

6. Alcohol measured using BAC Level rather than the 

number of drinks: The intoxication of subjects was 

previously measured in terms of “number of standard 

drinks”, which was imprecise. In this paper, we measure 

subject intoxication in terms of BAC (the same measure 

as a breathalyzer). 

With over 2 billion individuals owning smartphones in 2016, 

smartphone apps for preventing alcohol abuse can become 

widely used and have great impact [26].   

II. RELATED WORK 

Intoxication detection devices: SCRAM: SCRAM 

Continuous Alcohol Monitoring [4] is an ankle-worn 

commercial alcohol detection device. It is mainly used for 

high-risk, Driving Under the Influence (DUI) alcohol 

offenders who have been ordered by a court not to consume 

alcohol. It samples the user’s perspiration every 30 minutes 

in order to measure their BAC levels. Kisai Intoxicated LCD 

Watch:  by TokyoFlash Japan [2] is a breathalyzer watch. In 

addition to being a normal watch, it has a built-in 

breathalyzer on its side. By breathing into its Breathalyzer, 

the watch determines and displays graphs of the user’s BAC 

level. These are dedicated devices that must be purchased 

and used, unlike smartphones which users already own. 

Intoxication detection using smartwatches: As smartwatches 

have emerged, attempts have been made to utilize them to 

detect alcohol consumption levels [18]. Gutierrez et al. [1] 

estimated if individuals wearing smart watches were 

intoxicated (BAC > 0.065) using Microsoft Band 

smartwatch sensor data. These investigators did not use 

accelerometer and gyroscope data while subjects were 

walking. Instead, they utilized the participants’ heart rates 

and temperatures. Moreover, smartwatch based detection 

will likely never be as ubiquitous as smartphones since less 

than a quarter of people wear wristwatches [7].   

Alcohol-related smartphone apps: Several alcohol-related 

apps exist on the iPhone and Android app markets.  Existing 

smartphone applications targeting alcohol abuse allow users 

to manually record their alcohol consumption, estimate 

Blood Alcohol (BAC) levels using built-in formulas, and 

offer manual cognition tests to assess users’ intoxication 

levels. Other applications attempt to encourage positive 

drinking habits. The smartphone application “Intoxicheck” 

can detect alcohol impairment in users [5]. Users take a 

“series of reaction, judgment and memory challenges before 

and after drinking, which are compared to estimate their 

intoxication level. However, Intoxicheck usage requires 

manual supervision, which may deter adoption and reduce 

its scalability.  

Tjondronegoro et al. [21] describe a mobile social 

smartphone application designed to encourage positive 

drinking habits in users. The application’s goal was to 

encourage drinkers to drink in groups and look out for each 

other. However, their app did not include any passive 

intoxication detection. Wang et al. [23] developed 

SoberDiary, a phone-based support system that lets 

individuals recovering from alcohol addiction self-manage 

and self-monitor their alcohol consumption over time. Users 

breathalyzed themselves using a portable breathalyzer that 

sent data to their smartphone. While SoberDiary was 

successful in reducing heavy drinking, it did not auto-detect 

intoxication from gait.  

Intoxication-detection from gait: Kao et al. [9] designed a 

passive phone-based system that used the smartphone’s 

accelerometer data to detect whether users had consumed 

alcohol or not (Yes/No), but did not try to estimate how 

much (BAC level or number of drinks) was consumed. 

Arnold et al [15] created an app to detect intoxication from 

gait data. However, unlike this work, they did not utilize 

postural sway features extracted from gyroscope data, or use 

normalization to account for different walking styles. 

Moreover, intoxication was estimated in terms of number of 

drinks consumed rather than BAC and their reported 

accuracy was 57% compared to 89% achieved in this paper. 

III. METHODOLOGY 

Our methodology followed a typical machine learning 

classification approach with a flow diagram illustrated in 

figure 1.  Smartphone gyroscope and accelerometer features 

were gathered from 34 subjects as they walked while 

wearing special goggles designed to simulate intoxication. 

Extremal (outlier) data values were eliminated to reduce 

noise. Gyroscope and accelerometer features that are 

sensitive to alcohol consumption were extracted in the time 

and frequency domain. Feature normalization was also 

explored to account for differences in walking styles. The 

accuracy and performance of various classifier types (e.g. 

random forest, JVM, Naïve Bayes) were compared and a 

custom classification model was generated using 

Ensembling. This classification model was used to create an 

Android app that detected the BAC levels of smartphone 

users in real-time from their gait while they walked. 

A. Data Gathering Study 

Thirty four (34) participants (14 male and 20 female) were 

recruited via a pool of psychology students who receive 

academic credit for participating in user studies. Subjects 

were also recruited via email advertisements, social media 

advertisements, and word-of-mouth. 

Sensor-Impairment Goggles: Subjects wore sensor-

impairment goggles and walked while accelerometer and 

gyroscope sensor data was collected. These “Drunk Busters” 
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goggles use vision distortion to simulate the effects of 

alcohol consumption on the body [6]. Goggles rated at 

various Blood Alcohol Concentration (BAC) levels 

simulated the corresponding impairment causing wearers to 

experience intoxication effects including reduced alertness, 

delayed reaction time, confusion, visual distortion, alteration 

of depth and distance perception, reduced peripheral vision, 

double vision, and lack of muscle coordination [6]. These 

goggles have been used to educate individuals regarding the 

effects of alcohol on one’s motor skills. It is instructive to 

note that each alcohol goggle simulates an approximate 

BAC range (e.g. 0.08 – 0.15) and different people could 

move slightly differently while wearing the same goggles.  

 

 
Figure 1 Flow Diagram for data collection, feature extraction and classification 

 
Figure 2 Participants walking while wearing Drunk Busters 

Goggles 

Study Procedure: In an IRB-approved study, participants 

placed an Android smartphone in either their front or back 

pants pocket. The participants then walked normally (no 

impairment) for 90  seconds at a comfortable speed, while a 

data gathering app running MATLAB mobile recorded the 

smartphone’s gyroscope and accelerometer data (figure 2). 

Subjects then repeated the 90-second walk while wearing 

goggles rated at BAC of [0.04-0.06, 0.08 – 0.15, 0.15-0.25, 

0.25 – 0.35]. To explore the effects of different walking 

speeds on the gathered data, a few subjects were made to 

walk at various speeds while sensor data was collected.  

Reproducibility advantage of drunk busters goggles: Our 

study design using intoxication goggles is novel. In our prior 

work [15], accelerometer data was gathered from subjects 

after they drank (e.g. during an evening at a bar). The next 

day at noon, subjects then self-reported the quantity and 

timing of alcohol consumption. We found that the previously 

collected data collected was quite noisy with participants 

having difficulty in accurately estimating the number and 

timing of drinks consumed. These issues were mitigated by 

using drunk busters goggles to collect training data in a 

controlled study. 

B. Pre-Processing (including outlier removal) 

Gyroscope and accelerometer data was gathered from 

subjects and stored in segments of 5 seconds. As such no 

further segmentation was required. However, subjects may 

trip or fall while intoxicated, which would generate extremal 

gyroscope and accelerometer data values (outliers). We 

synthesized a simple outlier removal algorithm by sorting 

the accelerometer and gyroscope data and removing the top 

and bottom 1 percent of values on the x, y and z axes.   

C. Feature extraction 

Gyroscope features: The gyroscope’s x, y, and z axes (figure 

3 (left)) can be directly related to the three body axes, which 

are the mediolateral, anteroposterior, and superoinferior axes 

(Figure 3 (right)). 

 
Figure 3 The three gyroscope rotation axes in Android devices 

and their relationship with the three axes of the body 

In prior work, Nieschalk et al [3] found that a gait attribute 

called sway area, which was measured using a force plate, 

was the most sensitive attribute for detecting increased body 

sway after subjects ingested alcohol. While much of prior 

work on sway area and posturography has utilized 

accelerometers and force plate measurements in clinics, 

Kaewkannate [27] showed that gyroscope features can 

accurately capture posturography variables (including sway 

area). To the best of our knowledge, our work is the first to 

utilize sway area and postural sway features of a smartphone 

gyroscope as features for machine learning classification of 

BAC levels [3].  

The smartphone gyroscope sensor returns the rate of rotation 

around the smartphone’s X, Y and Z axes in radians per 

second. Sway area is calculated by plotting values from two 

of the gyroscope’s axes (figure 3 (top)). For the XZ sway 

area, all observed gyroscope X and Z values in a segment 

were projected unto an X-Z plane (see figure 4(top)). The 
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area of an ellipse that encloses the 95 percent confidence 

interval of all observed points was returned as the XZ sway 

area. This methodology is similar to that used for calculating 

sway area using force plate readings [3]. However, our use 

of the gyroscope to synthesize these sway areas is novel.  As 

a further contribution, we synthesized gyroscope-based sway 

volume, the 3D analogue of sway area as a novel feature 

explored (See figure 4 (bottom)). Sway volume is the sphere 

that contains the 95 percent confidence interval of all X, Y, 

Z points in a segment. Accelerometer and gyroscope features 

were generated from the sensor data gathered from all study 

participants. Table 1 lists gyroscope features extracted and 

their formulas, while table 2 lists accelerometer features 

extracted and their formulas.  

 

 
Figure 4 XZ Sway area (top) and Sway Volume (bottom) Plots 

Feature Normalization: No two individuals walk exactly the 

same, especially while intoxicated. To minimize such inter-

person differences in gait patterns, users’ sway area and 

sway volume features were normalized per person. This task 

involves dividing each subject’s intoxicated sway area by 

the average of sway area values calculated while they were 

sober. The formulas for average sway area and normalized 

sway area can be seen below (equations 1 & 2). 

Average sway area =
𝛴 (𝑠𝑜𝑏𝑒𝑟 𝑠𝑤𝑎𝑦 𝑎𝑟𝑒𝑎 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠)

# 𝑠𝑜𝑏𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠
 (1) 

Normalized sway area =
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒′𝑠 𝑠𝑤𝑎𝑦 𝑎𝑟𝑒𝑎)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑤𝑎𝑦 𝑎𝑟𝑒𝑎
 (2) 

D. Machine Learning Classification 

All gyroscope and accelerometer features were imported into 

the Weka machine learning library to explore classification. 

The accuracy of various classifiers were compared.   

User-Specific Classification Model Using Ensembling: A 

general machine learning model trained from data gathered 

from all users was used as the default in our classification 

model. Per-user models (i.e. classification models trained for 

an individual using only their data). We combined per-user 

data with data for all users using ensembling. Ensembling 

methods are “learning algorithms that construct a set of 

classifiers and then classify new data points by taking a 

weighted vote of their predictions” [11]. Possible 

improvements using ensembling were also explored.  

IV. RESULTS 

We now present results of analyses and classification of gait 

data from our 34 participants (20 female and 14 male). 

Participants’ heights ranged from 150cm to 200cm (mean = 

172cm, s = 10.22cm), weights ranged from 100lbs to 250lbs 

(mean = 155lbs, s = 31.96lbs), and ages ranged from 18 to 

22 (mean = 20 years, s = of 1.32 years). 

We plotted and visually examined all features. Figure 5 

shows that gyroscope sway areas (1 participant) generally 

increased as they became more intoxicated, as expected. 

Normalization generally compressed the ranges of sway area 

boxplots and separated them more (more statistically 

significant), which improved classification accuracy. 

 
Figure 5 Boxplots showing gyroscope sway area as participants 

became more intoxicated (normalized) 

A. Feature Exploration using Correlation-Based Feature 

Selection (CFS) 

To quantify the predictive value of each extracted feature, 

we used Correlation-Based Feature Selection (CFS) [13] 

wherein each feature’s correlation with the subject’s BAC 

level and p-value are computed.  The features that are most 

strongly correlated with BAC levels (p-value < 0.05) have 

the highest predictive value. Figure 6 is a table of p-values 

and correlation coefficients for all our features. Features that 

are statistically significant (p-value < 0.05) are highlighted 

in green.  

B. Results of Classification 

Using the Weka machine learning library, the extracted 

features (normalized vs non-normalized) were classified into 

the labeled ranges of [0.04 – 0.06, 0.08-0.15, 0.15-0.25, 

0.25-0.35]. The accuracy of the J48, JRip, Bayes Net, 

Random Forest, Random Tree, and Bagging classification 

algorithms were compared. The classification accuracy of 

normalized vs. not normalized data were investigated, in 

addition to removing certain generated features (all 

gyroscope features, all accelerometer features, certain 

gyroscope features, and certain attributes describing the 

participant such as height, weight, and gender). To evaluate 

the performance of a classifier, its percent accurate, 
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precision, recall, F-measure, and ROC area [15] were 

evaluated. Figure 7 below summarizes our main results. 

Figure 10 shows all our results. Our main results were:  

i. All features with normalization: When classifying all 

generated features from both sensors (with sway areas 

and volume normalized), ID, height, weight, and gender, 

the J48 classifier using percentage split, 99% train and 

1% test had the highest accuracy of 89.45% and an 

ROC area of 0.916.  

ii. All features, no normalization: When classifying all 

generated features from both sensors (with sway areas 

and volume not normalized), ID, height, weight, and 

gender, the J48 classifier using percentage split, 99% 

train and 1% test had the highest accuracy of 88.89%.  

iii. Accelerometer features only: When classifying all 

generated features from just the accelerometer, Random 

Forest using cross-validation, 10 folds had the highest 

accuracy of 64.56% (24.89% less accurate than all 

features+ normalization) and an ROC area of 0.851.  

iv. Gyroscope features only: When classifying all generated 

features from just the gyroscope, Random Forest using 

cross-validation, 10 folds had the highest accuracy of 

75.79% (13.66% less accurate than all features+ 

normalization) and an ROC area of 0.919. 

P-Value Correlation Coeff Feature 

0.21537 -0.02881 Steps 

0.21441 -0.02887 Cadence 

4.26E-12 -0.1601 Skew 

3.71E-10 -0.14496 Kurt 

0.002902 -0.06918 Gait Velocity 

0.2366 -0.02752 Residual Step Length 

NaN NaN Ratio 

8.22E-06 0.10344 Residual Step Time 

2.38E-18 -0.20114 Bandpower 

NaN NaN SNR 

NaN NaN THD 

8.49E-18 -0.19788 XZ Sway 

6.71E-13 -0.16596 XY Sway 

2.87E-24 -0.23314 YZ Sway 

3.59E-08 -0.12763 Sway Volume 

0.95949 0.001181 Weight 

0.71924 -0.00836 Gender 

0.69053 0.00926 Height 

0.29829 0.024188 Participant ID 

Figure 6 P-values and correlation coefficients for all features 

(statistically significant values are shaded in green) 

Including participant gender, weight and height as features: 

Since intoxication is affected by weight, height and gender 

we explored including them as features in our classification. 

Including weight, height and gender as features improved 

classification accuracy. For example, when classifying the 

normalized data using Random Forest with percentage split 

(66% train, 33% test), including gender, height, and weight 

was 5.3% more accurate than using features and weight. 

 

Figure 7 Classification Accuracy of features into [0.04-0.06, 

0.08-0.15, 0.15-0.25, 0.25-0.35] ranges 

Comparison of classifier types: The J48 and Random Forest 

classifiers were 21% to 39% more accurate in classification 

compared to the other classifiers explored (Random Tree, 

Bagging, JRip, and Bayes Net).  

Investigating personalization: We investigated the idea of 

personalization, which involved training classifiers using 

only single user’s gait data. Unfortunately our results were 

inconclusive: personalization improved classification 

accuracy for some subjects, but worsened it for others.  

Figure 9 shows the results of our personalization 

exploration, with rows highlighted in green if 

personalization was more accurate than our general model.  

V. ALCOGAIT SYSTEM DESIGN AND IMPLEMENTATION 

 
Figure 8 AlcoGait app Main screen (left) Notification sent to  

user when they have reached their pre-set BAC limit (right) 

Using our classification model trained with data from our 34 

subjects, we developed AlcoGait, an Android application 

77



  

that detected the BAC level of smartphone users in real-time 

based on their gait data. Figure 8 shows the main screen of 

our AlcoGait app (left) and a notification delivered to the 

smartphone owner when they have reached their pre-set 

BAC limit (right). 

CONCLUSION AND FUTURE WORK 

Alcohol abuse kills 88,000 people annually in the United 
States. In this paper, we investigate a machine learning 
method to detect the BAC level of a drinker by classifying 
accelerometer and gyroscope sensor features gathered from 
their smartphone. Our work is the first to classify body sway 

features such as sway area and sway volume, which are 
extracted from the smartphone’s gyroscope in addition to 
accelerometer features. We found that the J48 classifier was 
the most accurate, classifying user gait patterns into BAC 
ranges of [0.00-0.08), [0.08-0.15), [0.15-0.25), [0.25+) with 
an accuracy of 89.45% (24.89% more accurate than 
accelerometer features only as in prior work). As future 
work, we would like to gather intoxicated gait data for a 
large number of subjects who are also breathalyzed and 
explore the effects of differences in alcohol tolerances, 
walking patterns and confounding factors such as fatigue 
and mood, which also affect gait. 

 

 

 

Table 1: Features Generated from Gyroscope Data 

Feature 
Name 

Feature Description Formula Reference 

XZ Sway 
Area 

Area of projected gyroscope readings from Z (yaw) and X (pitch) axes 𝑋𝑍 𝑆𝑤𝑎𝑦 𝐴𝑟𝑒𝑎 = 𝜋𝑟2 [3] 

YZ Sway 
Area 

Area of projected gyroscope readings from Z (yaw) and Y (roll) axes 𝑌𝑍 𝑆𝑤𝑎𝑦 𝐴𝑟𝑒𝑎 = 𝜋𝑟2 
Our 

contribution 

XY Sway 
Area 

Area of projected gyroscope readings from X (pitch) and Y (roll) axes 𝑋𝑌 𝑆𝑤𝑎𝑦 𝐴𝑟𝑒𝑎 = 𝜋𝑟2 [13, 14] 

Sway 
Volume 

Volume of projected gyroscope readings from all three axes (pitch, roll, yaw) 𝑆𝑤𝑎𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 =
4

3
𝜋𝑟3 

Our 
contribution 

Table 2: Features Generated from Accelerometer Data 

Feature 
Name 

Feature Description Calculation Ref. 

Steps Number of steps taken 
calculation of signal peaks above one standard deviation away from mean of 

gravity corrected magnitude of signal [15] 
[15] 

Cadence Number of steps taken per minute cadence = 
# 𝑠𝑡𝑒𝑝𝑠

𝑚𝑖𝑛𝑢𝑡𝑒
 [15] 

Skew 
Lack of symmetry in one’s walking 

pattern 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)3

[
1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)2]
3/2 

Where xi is the data sequence, and 𝜇𝑥 is the average of all 𝑥𝑖 [16] 

[15] 

Kurtosis 
Measure of how outlier-prone a 

distribution is 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)4

[
1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)2]
2 

 Where xi is the data sequence, and 𝜇𝑥 is the average of all 𝑥𝑖 [16] 

[15] 

Average 
gait 

velocity 

Average steps per second divided by 
average step length 

average gait velocity = 
( 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑒𝑝𝑠 / 𝑠𝑒𝑐 )

𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ
 [15] 

Residual 
step length 

Difference from the average in the 
length of each step 

residual step length = 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

# 𝑠𝑡𝑒𝑝𝑠
 [15] 

Ratio Ratio of high and low frequencies ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑟𝑎𝑡𝑖𝑜 =
∑ 𝑉𝑖𝑖=1,3,5,…

∑ 𝑉𝑗𝑗=2,4,6,…

 

 Where Vi is the amplitude of odd-ordered harmonic frequency and Vj is the even-

[15] 
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Classifier Configurations Accuracy ROC Area 

219171 J48 Cross-validation 10 folds 76.70% 0.843 

219171 J48 Percent Split 66% train, 33% test 75% 0.768 

219171 Random Forest Cross-validation 10 folds 80% 0.967 

219171 Random Forest Percent Split 66% train, 33% test 75% 0.915 

1506627 J48 Cross-validation 10 folds 93.30% 0.976 

1506627 J48 Percent Split 66% train, 33% test 75% 0.773 

1506627 Random Forest Cross-validation 10 folds 97% 0.998 

1506627 Random Forest Percent Split 66% train, 33% test 75% 0.964 

1520109 J48 Cross-validation 10 folds 76% 0.86 

1520109 J48 Percent Split 66% train, 33% test 80% 0.888 

1520109 Random Forest Cross-validation 10 folds 90% 0.942 

1520109 Random Forest Percent Split 66% train, 33% test 85% 0.972 

Figure 3 Results of exploring personalization. Users (highlighted in green) showed improvement with personalization 

 

Classification Configuration Results 

Attributes 
Classified 

Classifier Test Set 
Accuracy 

When 
Normalized 

Precision Recall 
F-

Measure 
ROC 
Area 

Accuracy 
(Unnormalized) 

Accelerometer 
features, 

gyroscope 
features, ID, 

height, 
weight, 
gender 

J48 
Cross-validation, 10 

folds 
69.53% 0.695 0.695 0.695 0.817 69.26% 

J48 
Percentage split, 66% 

train 33% test 
63.28% 0.63 0.633 0.631 0.786 65.74% 

J48 
Percentage split, 95% 

train 5% test 
73.12% 0.735 0.731 0.731 0.835 72.22% 

J48 
Percentage split, 99% 

train 1% test 
89.45% 0.912 0.895 0.895 0.916 88.89% 

Random 
Forest 

Percentage split, 66% 
train 33% test 

72.66% 0.723 0.727 0.721 0.892 69.18% 

Random 
Forest 

Percentage split, 95% 
train 5% test 

81.72% 0.816 0.817 0.809 0.924 75.56% 

Random Percentage split, 99% 73.68% 667 0.737 0.674 0.946 77.78% 

ordered harmonic frequency [16] 

Residual 
step time 

Difference in the time of each step 
residual step time =   

Where 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 is a sequence of stride intervals and 𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is average of all 
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 [16] 

[15] 

Bandpowe
r 

Average power in the input signal 
bandpower = bandpower(x)   

Where x is a matrix of the magnitude, and bandpower calculates the average 
power in each column independently [14] 

[15] 

Signal to 
noise ratio 

Estimated level of noise within the 
data 

[16] 

[15] 

Total 
harmonic 
distortion 

“Determined from the fundamental 
frequency and the first five harmonics 
using a modified periodogram of the 
same length as the input signal” [22] 

𝑡ℎ𝑑 =
√∑ 𝑉𝑖

2
𝑖= 2,3,4,5

𝑉1

 

Where 𝑉1 is energy contained within peak of PSD at the fundamental frequency 
and 𝑉𝑖 are the energy contained within the harmonics [15] 

[15] 
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Forest train 1% test 

Random 
Forest 

Cross-validation, 10 
folds 

73.74% 0.735 0.737 0.731 0.91 74.79% 

Random 
Tree 

Cross-validation, 10 
folds 

67.69% 0.68 0.68 0.68 0.782 66.26% 

Random 
Tree 

Percentage split, 66% 
train 33% test 

66.77% 0.672 0.668 0.669 0.771 63.44% 

JRip 
Cross-validation, 10 

folds 
50.29% 0.503 0.503 0.435 0.616 50.31% 

Bayes 
Net 

Cross-validation, 10 
folds 

43.60% 0.405 0.436 0.41 0.696 44.34% 

Bayes 
Net 

Percentage split, 66% 
train 33% test 

45.47% 0.348 0.455 0.386 0.691 42.46% 

Bagging 
Cross-validation, 10 

folds 
67.53% 0.673 0.675 0.674 0.792 70.94% 

Bagging 
Percentage split, 66% 

train 33% test 
60.25% 0.606 0.603 0.604 0.761 65.25% 

Figure 10 Results of training various classifiers on our dataset 

REFERENCES 

[1] Gutierrez, M, Fast M, Ngu A, Gao, B, Real-Time Prediction of Blood 

Alcohol Content using Smartwatch Sensor Data, Volume 9545 of the 

series Lecture Notes in Computer Science pp 175-186 

[2] Tokyoflash Japan, "Kisai Intoxicated LCD Watch," Tokyoflash Japan, 

2014. [Online]. Available: http://www.tokyoflash.com/en/watches/ 

kisai/intoxicated/. [Accessed 09 December 2014]. 

[3] Nieschalk, M., Ortmann, C., West, A., Schmäl, F., Stoll, W., & 

Fechner, G. (1999). Effects of alcohol on body-sway patterns in 

human subjects. Int’l Journal of Legal Medicine, 253-260. 

[4] SCRAM Systems, "SCRAM Continuous Alcohol Monitoring," 

Alcohol Monitoring Systems, Inc., 2014. [Online]. Available: 

http://www.scramsystems.com/index/scram/continuous-

alcoholmonitoring.[Accessed 09 December 2014]. 

[5] Intoxicheck® Phone App - Buzzed Driving App | Impaired Driving 

App | Impairment Assessment. (n.d.). Retrieved Dec 1, 2015, from 

http://fatalvision.com/intoxicheck.html 

[6] Lifeloc Technologies - Impairment Goggles. (n.d.). Retrieved Dec 1, 

2015, from https://lifeloc.com/c-60-impairment-goggles.aspx 

[7] Brown, B, Good Question: How many people still wear watches, CBS 

Minnesota, July 22, 2015. http://minnesota.cbslocal.com/2015/07/22/ 

good-question-how-many-people-still-wear-watches/ 

[8] S. Ando, T. Iwata, H. Ishikawa, M. Dakeishi and K. Murata, "Effects 

of acute alcohol ingestion on neuromotor functions, NeuroToxicology, 

vol. 29, pp. 735-739, 2008. 

[9] H.-L. Kao, B.-J. Ho, A. C. Lin and H.-H. Chu, "Phone-based Gait 

Analysis to Detect Alcohol Usage," in Proc ACM Ubicomp  2012. 

[10] K.-C. Wang, Y.-H. Hsieh, C.-H. Yen, C.-W. You, M.-C. Huang, C.-H. 

Lee, S.-Y. Lau, H.-L. Kao, H.-H. Chu and M.-S. Chen, "SoberDiary: 

A Phone-based Support System for Assisting Recovery from Alcohol 

Dependence," in Proc ACM Ubicomp 2013, Seattle, WA, 2013. 

[11] Dietterich, Thomas. Ensemble Methods in Machine Learning, (1-5). 

Retrieved Dec 4, 2015,  http://web.engr.oregonstate.edu/~tgd/ 

publications/mcs-ensembles.pdf  

[12] BACtrack, Long term DUI consequences,  http://www.bactrack.com/ 

blogs/expert-center/35042309-long-term-dui-consequences 

[13] Hall, M. A. (1999). Correlation-based feature selection for machine 

learning (Doctoral dissertation, The University of Waikato). 

[14] Mathworks. (n.d.). Bandpower. Retrieved April 20, 2016, from 

http://www.mathworks.com/help/signal/ref/bandpower.html 

[15] Arnold, Z, LaRose, D, and Agu, E  Smartphone Inference of Alcohol 

Consumption Levels from Gait, in Proc. IEEE ICHI 2015 

[16] Qi, Muxi. “A Comprehensive Performance Comparison of Signal 

Processing Features in Detecting Alcohol Consumption from Gait 

Data.” WPI Graduate Thesis, April 2016.  

[17] Substance Abuse and Mental Health Services Administration 

(SAMHSA) National Survey on Drug Use and Health. Underage 

Alcohol Use among Full-Time College Students. Issue 31, 2006.   

[18] Chambers, M., Liu, M., Moore, C.: Drunk driving by the numbers. 

United States Department of Education. 

[19] Fact Sheets - Alcohol Use and Your Health. (2015, December 17). 

Retrieved January 8, 2016, http://www.cdc.gov/alcohol/factsheets/ 

alcohol-use.htm 

[20] Impaired Driving: Get the Facts. (2015, November 24). Retrieved 

January 8, 2016, http://www.cdc.gov/motorvehiclesafety 

/impaired_driving/impaired-drv_factsheet.html 

[21] Tjondronegoro, D.; Drennan, J.; Kavanagh, D.J.; Zhao, E.J.; White, 

A.M.; Previte, J.; Connor, J.P.; Fry, M.-L., "Designing a Mobile 

Social Tool that Moderates Drinking," in IEEE Pervasive Computing, 

vol.14, no.3, pp.62-69, July-Sept. 2015 doi: 10.1109/MPRV.2015.62 

[22] Mathworks. (n.d.). Total Harmonic Distortion. Retrieved April 20, 

2016, from http://www.mathworks.com/help/signal/ref/thd.html 

[23] Wang, K., Huang, M., Hsieh, Y., Lau, S., Yen, C., Kao, H,. Chen, Y. 

(2014). SoberDiary. In Adjunct Proceedings ACM Ubicomp 2014 

[24] National Highway Traffic Safety Administration. (n.d.). The ABCs of 

BAC A Guide to Understanding Blood Alcohol Concentration and 

Alcohol Impairment. Retrieved April 20, 2016, from 

http://www.nhtsa.gov/links/sid/ABCsBACWeb/page2.htm 

[25] S. Demura and M. Uchiyama, "Influence of moderate alcohol 

ingestion on gait," Sport Sci Health, no. 4, pp. 21-26, 2008. 

[26] Smartphone users worldwide 2014-2019 | Statistic. (n.d.). Retrieved 

April 20, 2016,  http://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/ 

[27] Kaewkannate, K, The Correlation Among Body Sway Parameters 

from the Gyroscope Data Sets, in Proc Biomedical Engineering 

Conference (BMEiCON) 2013. 

 

80



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



