
A Middleware Architecture for Mobile 3D Graphics∗

Emmanuel Agu Kutty Banerjee Shirish Nilekar Oleg Rekutin Diane Kramer

Department of Computer Science,
Worcester Polytechnic Institute,

Worcester, MA 01609, USA

Abstract

Mobile graphics, which involves running networked
computer graphics applications on mobile devices across
wireless networks, is a fast growing segment of the networks
and graphics industries. Running networked graphics ap-
plications in mobile environments faces a fundamental con-
flict; graphics applications require large amounts of mem-
ory, CPU cycles, battery power and disk space, while mo-
bile devices and wireless channels tend to be limited in these
resources. In order to mitigate mobile environment issues,
some form of adaptation based on a client device’s capabili-
ties, prevailing wireless network conditions, characteristics
of the graphics application and user preference, is neces-
sary. In this paper, we describe the Mobile Adaptive Dis-
tributed Graphics Framework (MADGRAF), a graphics-
aware middleware architecture that makes it feasible to run
complex 3D graphics applications on low end mobile de-
vices over wireless networks. In MADGRAF, a server can
perform mobile device-optimized pre-processing of complex
graphics scenes in order to speed up run time rendering,
scale high-resolution meshes using polygon or image-based
simplification, progressively transmit compressed graphics
files, conceal transmission errors by including redundant
bits or perform remote execution, all tailored to the client’s
capabilities. MADGRAF exposes our Mobile Adaptive Dis-
tributed Graphics Language (MADGL), an API that facil-
itates the programming and management of networked 3D
graphics in mobile environments.

1 Architectural Firm Mobile 3D Graphics
Scenario

Ulo corporation is a multi-national architectural firm
with clients and workers in 50 countries across 5 continents.

∗Funding for this work was provided in part by the National Science
Foundation grant number 0303592

Ulo maintains a large database of 3D architectural draw-
ings of various types of buildings. Some of Ulo’s clients are
located in remote areas in with limited internet access and
low bandwidth links. Additionally, to accommodate work-
ers at various levels, Ulo has found it useful to equip its
workers with PDAs, laptops and cell phones with graphics
capability. Different teams of architects work on different
projects which are maintained in Ulo’s database. Initially,
an Ulo team visits a client and after preliminary discus-
sions, retrieves possible design solutions and show them to
the client. These serve as starting points of the design pro-
cess. After the client selects a viable option and requests
modifications, the architects annotate the diagrams and re-
turn to Ulo’s office to make necessary amendments. Peri-
odically, the architects return to the client to show progress
and seek more feedback, towards a mutually agreeable de-
sign. In cases where the client resides in a remote loca-
tion, the architects can select a disconnect operation mode,
in which case the relevant drawings are pre-downloaded
(hoarded) onto the client, before disconnection. On recon-
nection, the hoarded files are reconciled with the database.

2 Introduction

Mobile graphics, which involves running networked
computer graphics applications on mobile devices across
wireless networks, is a fast growing segment of the net-
works and graphics industries. In on-site consulting sit-
uations (such as the Ulo scenario above), an interior de-
signer or architect can show clients preliminary designs
and seek feedback towards a mutually agreeable final so-
lution. Field service technicians repairing complex equip-
ment such as copiers and automobiles can retrieve and play-
back synthetically-generated animations of repair manuals,
focussing on relevant sections from new viewpoints. In
electronic commerce, major corporations are already using
interactive 3D catalogs to demonstrate product features, en-
abling rich interaction and virtual product examination.

Running networked graphics applications in mobile en-

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

vironments faces a fundamental conflict; graphics applica-
tions require large amounts of memory, CPU cycles, bat-
tery power and disk space, while mobile devices and wire-
less channels tend to be limited in resources. Specific is-
sues to be dealt with include mobile device limitations,
wireless channel, mobility and network infrastructure issues
[3]. Mobile device limitations in memory, CPU power, disk
space, screen size and battery-life make it difficult to load
and manipulate very high resolution geometric models or
run sophisticated rendering algorithms that are necessary
for visual photorealism. Highly interactive distributed ap-
plications cannot be supported due to wireless channel is-
sues such as low transmission bandwidths and high, vari-
able Bit Error Rates (BER) that lead to prohibitively high,
variable model download times. For wide area networks
with wireless hops, network infrastructure issues such as
variable latency and low bandwidth caused by slow network
routers, switches and backbones further exacerbate net-
working. Mobility issues such as disconnection and hand-
off require additional algorithms to manage the changing
network topology, network address resolution, and guaran-
tee continuous service. Finally, any progress made in algo-
rithms that run on the Graphical Processing Unit (GPUs) of
graphics cards have limited use since most mobile devices
are still not equipped with 3D graphics accelerators.

In order to mitigate the above issues, some form of adap-
tation based on a client device’s capabilities and prevail-
ing wireless network conditions is necessary. Application-
Aware Adaptation [13] in mobile computing dictates any
trade-offs made should exploit the specific nature of each
type of mobile application. The mobile graphics industry is
already embracing the adaptation theme for mobile graph-
ics in directions that include the development of new effi-
cient 2D vector graphics standards such as Scalable Vec-
tor Graphics (SVG), reduced command-set languages and
versions of graphics libraries such as OpenGL ES, wireless
gaming engines, and low-power GPUs. However, most of
these directions are niche solutions and more general solu-
tions for mobile 3D graphics have been slower to appear.

The heart of the wireless graphics problem lies in the
scalability of the currently adopted polygonal mesh repre-
sentations, which show greater realism as the number of
faces in a mesh increases. Today’s state-of-the art meshes
that are automatically produced by 3D scanning can easily
consist of billions of faces (or hundreds of gigabytes (GB)),
each of which have to be rendered using a number of al-
gorithmic steps, leading to an explosion in rendering com-
plexity. Manipulating, processing and displaying such large
models can be extremely unwieldy.

Research in mobile graphics tries to exploit the char-
acteristics of graphics applications in adapting to resource
constraints in mobile environments. Mobile graphics appli-
cations have varying degrees of interactivity, latency toler-

ance, refresh frame rate and scene complexity. Thus, dif-
ferent mobile applications will benefit from different forms
of adaptation. For instance, a ray tracer performs thousands
of floating point computations per pixel to determine the
final pixel color, exhibits very low interactivity and would
benefit from remote execution to offload expensive compu-
tations to a high end server. A mobile gaming application
on the other hand would requires low latency and would
benefit more from a reduction in the resolution of geomet-
ric meshes, images and foreground graphics content to pre-
serve interactivity.

We present the Mobile Adaptive Distributed Graphics
Framework (MADGRAF)[1], a middleware architecture for
interactive 3D graphics in mobile environments. MAD-
GRAF exposes the Mobile Adaptive Distributed Graph-
ics Language (MADGL) which facilitates the programming
and management of networked 3D graphics in mobile en-
vironments. Specific research directions being investigated
as middleware components in MADGRAF include device-
optimized pre-processing of complex graphics scenes in or-
der to speed up run time rendering, automatically scaling
down the resolutions of complex scenes based on target
mobile device capabilities [14] the offloading of draining
rendering steps to more powerful servers (remote execution
and cyber-foraging) [3] efficient transmission via compres-
sion [16] progressive (batch) transmission and rendering of
large models [17]concealing the effects of wireless errors by
including redundant bits [18]and the use of graphics-aware
network protocols We are also investigating machine learn-
ing decision algorithms in our centralized decision module
at the MADGRAF server. By closely tracking resource
usage at the client as well as graphics application perfor-
mance, necessary trade-offs can be made to improve overall
performance.

3 MADGRAF

The generic functions of a graphics library such as
OpenGL and DirectX include scene modeling, import of
predefined scenes, scene viewing and rendering. It is in-
structive to note that MADGRAF and MADGL do not du-
plicate these functions, but compliment them by focussing
on aspects such as the import, adaptation and rendering of
remotely stored graphics files, remote execution and geo-
metric compression, which are of direct benefit to a mobile
device. Our proposed research thrusts are being developed
using MADGRAF as a foundation.

3.1 MADGRAF Middleware

It is envisioned that MADGRAF will service a diverse
spectrum of mobile graphics applications ranging from ray

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

tracers to mobile games, in different ways. A set of mid-
dleware components, can be combined in various ways for
different applications, exploiting any trade-offs that makes
sense for a given application. Therein lies the power of
the MADGRAF framework. The main middleware com-
ponents in MADGRAF are:

• Geometric simplification: algoritms convert an in-
put high-resolution mesh into a lower resolution ver-
sion (less polygons) of the original mesh [14] Figure
1 shows several representations of the same mesh that
are suitable for different mobile clients.

(a) Original Scene File
(112,400 faces, 56,200
vertices, 5.09MB)

(b) Scene File 50% simpli-
fied for a Laptop, 3.2MB

(c) Scene File 90% simpli-
fied for a PDA, 560KB

(d) Scene File 98% sim-
plified for a Cell Phone,
108KB

Figure 1. Various resolutions of a mesh suit-
able for different mobile clients

• Image based simplification: convert an input high res-
olution mesh into a sequence of high resolution im-
ages. The main advantage of converting to images is
that even at high resolutions, images (or textures) have
lower memory (storage) requirements than meshes.
However, images permit less interaction than meshes
[15].

• Remote execution: allows a portion of a computa-
tion task or rendering in the case of graphics, to be

performed on a remote server. In our many envisaged
usage scenarios, the original high resolution meshes
will be stored on the server and remote execution could
simply involve having the server start a portion of
the rendering process before transmitting partially ren-
dered results back to the client.

• Geometry compression: reduces the size of the ge-
ometric mesh prior to transmission [16]Unlike ASCII
compression (such as gzip on Unix systems), geometry
compression exploits the connectivity of input meshes
and is thus more efficient for meshes.

• Progressive Meshes: Large high-resolution graphics
mesh files can take a long time to download over most
wireless networks, which generally limits interactiv-
ity. In certain situations, a quick rough preview im-
age that could be improved iteratively, would be ade-
quate. For instance, an experienced interior designer
who is trying to match a blue leather sofa to a vir-
tual model of a room would probably reach a quick
decision just by seeing a rough rendered image of the
sofa in place. Progressive transmission [17] is a hierar-
chical data structure which encodes a large mesh such
that a small base mesh is transmitted and rendered at
first, followed by batches of mesh parts which could
be added iteratively to increase the resolution of the
rendered image [17].

• Unequal Error Protection (UEP): is a Forward Er-
ror Correction (FEC) technique that adds redundant
bits to a mesh prior to transmission such that a client
can repair meshes that are damaged due to transmis-
sion errors [18], and sometimes eliminate retransmis-
sions. Since the progressive mesh data structure is hi-
erachical, each layer contains meta information about
the other layers. UEP recognizes recognizes this hi-
erarchy and adds more redundancy to more important
packets.

• Graphics-Aware Wireless Network Protocols: Highly
interactive graphics applications such as games are
highly sensitive to network latency [19]. We have
shown that latencies as low as 150 milliseconds affect
the performance of users in the First Person Shooter
(FPS) class of games. However, our earlier studies
investigate only latency patterns due to infrastructure
bottlenecks arising from geographically distant multi-
user game servers on the Internet. Multipath fading
and the hidden terminal problem [5] on wireless net-
works can lead to significant latencies. We would
like to characterize the nature of latencies due to the
wireless channel and its effect on graphics application
users.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

3.2 Examples of MADGRAF Middleware Usage

In the Ulo architectural firm scenario in section 1, since
the Ulo architects still require a significant amount of in-
teraction with the building models, the models must be re-
trieved in a geometric mesh format. Since rendering the
original mesh at full resolution, may not be possible at in-
teractive rates, geometric simplification based on the client’s
hardware configuration could be applied. The decision
module at the MADGRAF server would determine what
the output simplification ratio should be. The MADGRAF
server also determines if it is necessary to perform part of
the rendering of retrieved buildings for the client (remote
execution), and also what level of compression or efficient
transmission is necessary based on the bandwidth and pre-
vailing error conditions on the wireless channel.

Since users of interactive 3D shopping guides expect
high quality images to show off product features and can
tolerate limited interactivity, image-based simplification of
meshes is ideal. In a mobile gaming application, near and
foreground characters require high interactivity and geo-
metric simplification is preferable. Image-based simplifica-
tion can be used for far and background images. In a ubiq-
uitous synthetic posters application, the quality of ren-
dered output from ray tracing engines is highly dependent
on the resolution of input meshes and as little simplification
as possible should be done. Additionally, this application
has very low interactivity, making remote execution a natu-
ral choice. Table 1 summarizes the nature of mobile appli-
cations and related MADGRAF adaptations. In all the sce-
narios, although we highlight a main enabling MADGRAF
adaptation, other adaptations may be used additionally. For
instance, compression, unequal error protection or progres-
sive transmission may be applied as well.

3.3 Overview of MADGRAF Operation

In this section, an overview of MADGRAF’s operation
is now given. Figure 2 shows the main components of the
MADGRAF architecture. The key server components for
adaptation are the Adaptive Graphics Engine, the Adaptive
Transmission Engine and the IntelliGraph (a centralized in-
telligent decision engine). The main client-side components
are the Environment Monitor and the Profile Generator.

When a MADGRAF client program requests a 3D
graphics file that is stored on a MADGRAF server, the
client’s profile generator retrieves information on the mo-
bile host configuration and capabilities along with the cur-
rent quality of the wireless communication channel from
the environment monitor, and then builds the client profile,
which it sends to the server along with the originally re-
quested file. At the MADGRAF server, the request and
client profile are forwarded to the intelliGraph, which de-

MADGRAF

Client

User

Java3D

OpenGL/

Java3D

Local Cache

 OS RPC

Socket
 OS

RPC

Socket

MADGRAF SERVER

Adaptive Graphics

Adaptive Trans.

Intelli-

Graph

Application

Data

Figure 2. MADGRAF Components

cides if scaling is required and what optimizations and con-
versions should be done for the mobile client. Adapta-
tion takes place in four main ways: (1) adaptive graph-
ics such as geometric mesh simplification and image-based
simplification, that pre-process input scene files; (2) effi-
cient transmission techniques such as geometry compres-
sion, error concealment and progressive transmission [17]
that address wireless network transmission bottlenecks; (3)
architectural and distributed systems techniques such as re-
mote execution, distributed rendering [1], and parallel ren-
dering which attempt to borrow rendering resources from
more powerful network servers; and (4) intelligent caching
which retains the results of expensive computations for re-
use in the future. These adaptations and the decision pro-
cess forms the core of our short term goals and will be ex-
pounded later as specific projects in section 4.

The IntelliGraph on the MADGRAF server manages the
entire adaptation process, and utilizes the Adaptive Graph-
ics Engine to generate files which are best suited for use by a
given mobile client, and the Adaptive Transmission Engine
to transmit these files efficiently over a wireless network.
The Adaptive Graphics Engine contains algorithms for geo-
metric conversions such as scaling, polygon simplification,
view-dependent optimizations and image-based techniques,
while the Adaptive Transmission Engine contains efficient
transmission algorithms such as progressive transmission,
compression, and graphics-aware network protocols. Since
a lot of the inter-conversions are computationally expen-
sive and could potentially drain server resources, the client’s
profile and previously requested files are cached in the pro-
file cache, while the resultant optimized geometric models
are cached in the scene cache and may be re-used in subse-
quent requests.

The Environment Monitor gathers information and
statistics about the MADGRAF client’s operating environ-
ment, which are then used to build the client’s profile, and is
a key component for mobile host and communication chan-

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

Application Interactivity Latency Scene Complexity Frame Rate Main MADGRAF Adaptation

Architectural Firm Medium High Very high Low Geometric simplification
Online Shopping Medium Medium Low Medium Image-based simplification

Realtime 3D Game High Very low Low High Geom. and Image-based simplif.
Remote Ray Tracer Low High High Low Remote execution

Table 1. Mobile Graphics Applications

nel adaptation. The information collected include static at-
tributes such as the hardware specification (CPU, memory,
hard disk and screen size) of the mobile host, dynamic at-
tributes of the operating environment (channel error rate,
download times, latency and system battery power) and de-
preciating resources such as battery power. The client pro-
file may also include application requirements on speed and
interactivity, Quality of Service (QoS) parameters and loca-
tion information that may be useful for some optimizations.

4 MADGRAF Research Projects

Using MADGRAF as a foundation, we now define the
research thrusts which we are currently pursuing in mobile
3D graphics. While the results of each thrust shall gener-
ally lead to the development of a module of the MADGRAF
system, the results should be general enough to apply to a
wide range of mobile graphics systems. Due to space con-
straints, we simply outline these research thrusts which are
expounded further in [1]:

• Budget-based Graphics Transcoders for Heteroge-
neous Mobile Clients: which develop metrics for the
pre-processing of input meshes, subject to a budget
on available memory, CPU or other mobile device re-
source.

• Remote Execution for Mobile Graphics: in which
based on prevailing conditions, each of the various
stages of the 3D graphics pipeline can be flexibly
mapped either a client or surrogate server using our
novel pipeline-splitting mechanism.

• Efficient Transmission of Graphics Content and Wire-
less Networking: where we combine progressive trans-
mission, geometric compression, Unequal Error Pro-
tection (UEP) and graphics aware network protocol in
order to satisfy application-dependent restrictions on
latency, interactivity, image resolution and other suit-
able performance criteria.

• Real-Time Performance Monitoring and Tracking: In
which we instrument the mobile device in order to con-
stantly receive feedback the demand and supply of its
system resources and wireless channel condition.

• Machine Learning-Based Intelligence using History-
Based Linear Prediction: in which by observing the
resource usage of certain graphics models and opti-
mizations, we develop heuristics for the automatic se-
lection and employment of our middleware modules
for the benefit of the mobile device.

• MADGL API Definition: in which we are defining an
intuitive powerful programmable interface to our sys-
tem to increase flexible usage and rapid prototyping.

• MADGRAF Server Optimization: in which we are in-
vestigating scalability issues on the server based on
workload analysis. We are also implementing out-of-
core algorithms which are paging techniques used in
the pre-processing of extremely large models that can-
not fit into the server’s memory.

5 Current MADGRAF Prototype

Our initial investigations showed that very little research
on adapting 3D graphics applications in mobile environ-
ments has been done. To get a concrete sense of the issues
involved, as well as to fuel our research efforts, we chose to
develop MADGRAF while prototyping. A minimal proto-
type has been developed. We shall now describe briefly our
accomplishments thus far.

5.1 Accomplishments Thus Far

• Minimal Working Prototype: MADGL and MAD-
GRAF were developed initially using an object-
oriented design methodology with final implemen-
tation in Java, which due to its platform indepen-
dence, allows MADGRAF to run on various mobile
devices with little modification. A few third party
tools were also used in developing MADGRAF, either
as offline pre-processing tools (3D model converters)
or as third-party components (polygon simplification,
VRML viewers) which have been integrated into the
prototype to reduce development time. The high res-
olution polygonal meshes used models were retrieved
from the Stanford 3D Scanning mesh repository [4].
Figure 3 is a screen shot of our MADGRAF prototype.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

Figure 3. MADGRAF client screen shot

• Automatic Constraints Detection: Since we wanted
to make MADGL and MADGRAF easy to use, we
chose not to burden the client with specification of its
resource constraints, configuration and network condi-
tions, which are used by the server’s IntelliGraph in
decision-making. Constraints detection is done auto-
matically once a MADGRAF client requests a graph-
ics file. As such, it was necessary to develop platform-
dependent modules for detecting client configurations
and periodically sample prevailing device and network
conditions. The MADGRAF Constraints/Environment
detection module was developed using native code
since it involves accessing specific operating system
variables, which was not possible in pure Java due
to Java’s platform independent design. On a Win32
client, system constraints were accessed by querying
the windows registry.

• Energy Profiler: One key success is the development
of PowerSpy [8], a software-only power meter for de-
termining power usage on a Windows mobile client, to
enable the server to make energy-efficient decisions.

• Pipeline splitting for remote execution validated: We
instrumented a version of Mesa, a popular software
implementation of the OpenGL graphics library, with
networking code to create Remote Mesa (RMesa). Our
preliminary tests show that our idea of remote execu-
tion for mobile graphics using fine-grained pipeline-
splitting, has merits and are expounded in [7].

• Preliminary system performance measurements: Our
working prototype allowed us to get a rough sense of
how long the retrieval, transmission, simplification and
rendering of meshes a given resolution would take.
These early measurements reinforced some of our ini-
tial assertions, and are informing our current direc-
tions. Table 2 is a sample of measurments on our cur-
rent prototype. Since graphics applications are so dif-

ferent in nature, we are developing a wide range of test
applications and perform detailed measurements as
well as perceptual experiments to evaluate how much
distortion is experience by the human visual system.

6 Related Work

Some of the adaptation concepts used in MADGRAF
such as polygonal mesh simplification, image-based sim-
plification [15], geometry compression [16] and progressive
transmission[17] have been proposed separately in the liter-
ature. However, combining them in an integrated system for
mobile environments is novel. Specifically, the application
of mobile environment constraints in determining which
sets of adaptations to use and to what extent, is a key contri-
bution of the MADGRAF project. Augmented reality sys-
tems [11] integrate a number of these techniques but are im-
mersive, while MADGRAF is non-immersive. Web-based
graphics systems, [12],also deal with latency and bandwidth
constraints on network performance.

A few related complete systems are also worth mention-
ing. The ARTE system [2] implements primarily adap-
tive graphics techniques such as polygon simplification and
LOD techniques, but does not use remoted execution, par-
allelism, or any distributed rendering. ARTE also uses a
simple decision model which does not address specific de-
vice or wireless channel constraints. Repo3D [10] is a dis-
tributed graphics library which primarily presents an object-
oriented framework for the distribution of input graphics
models, but does not address issues of resource-constraints.

7 Conclusion and Future Work

We have presented the Mobile Adaptive Distributed
Graphics Framework (MADGRAF), a middleware architec-
ture for mobile 3D graphics. The MADGRAF prototype is
serving as a proof of concept to validate our concepts. Our
research thrusts and key accomplishments thus far have all
been presented.

In order to keep our goals realistic, we have limited the
middleware components described in this paper. However,
several ideas for long term research are already being con-
sidered. Other research themes that we would like to ex-
plore longer term include prefetching and hoarding tech-
niques that allow offline operation in a disconnected mode,
cyber-foraging [3] which allow a mobile graphics client to
”lease” the services of new servers in new locations as it
moves and parallelization of server-side algorithms to en-
able rendering on clusters. Other research thrusts include
using MADGRAF to scale graphics output to heterogenous
displays in ubiquitous environments and point-based graph-
ics for mobile devices.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

Percent No Caching With Caching
Reduction Reduction GZip Total Reduction GZip Total

Time(ms) Time(ms) Time(ms) Time(ms) Time(ms) Time(ms)

05 136729 5943 142672 3825 4560 8385
20 340383 4950 345334 3819 4031 7850
30 455495 4376 459871 3809 3473 7282
50 653118 3152 656270 3857 2436 6293
80 802992 1225 804217 3836 1136 4972
99 925709 26 925735 3845 50 3895

Table 2. MADGRAF prototype performance measurements

References

[1] Agu E., MADGRAF: A Distributed Architecture for
Rendering Interactive 3D Graphics Applications in Mo-
bile Environments, Technical Report, Worcester Poly-
technic Institute, 2003.

[2] Boier-Martin I. M., Adaptive Graphics, IEEE Computer
Graphics and Applications, 2,1 (Jan-Feb 2003), 6-10.

[3] Satyanarayanan M, ”Pervasive Computing: Vision and
Challenges.” IEEE Personal Communications , August
2001.

[4] Stanford 3D Scanning Repository, http://graphics
.stanford.edu/data/3Dscanrep/, November 2003

[5] Pahlavan K and Krishnamurthy P, ”Priniciples of Wire-
less Networks: A Unified Approach”, Prentice Hall,
2002

[6] Narayanan D, FLinn J, and Satyanarayanan M, ”Using
History to Improve Mobile Application Adaptation, in
Proc. 3rd Workshop on Mobile Computing Systems and
Applications (WMCSA) 2000.

[7] K Banerjee and E Agu, “Remote Execution for 3D
Graphics on Mobile Devices”, submitted for publica-
tion

[8] K Banerjee and E Agu, “PowerSpy: Fine-Grained Soft-
ware Energy Profiling for Mobile Devices”, submitted
for publication

[9] Flinn J and Satyanarayanan M, ”PowerScope: A tool
for Profiling the Energy Usage of Mobile Applica-
tions”, in Proc. 2nd IEEE Workshop on Mobile Com-
puting Systems and Applications, New Orleans LA,
February 1999

[10] Macintyre B and Feiner S, A Distributed 3D Library,
in Proc. 25th Annual Conference on Computer Graph-
ics and Interactive Techniques (1998), ACM Press, pp.
361-370.

[11] Gleue T and Dahne P, Design and Implementation of
a Mobile Device for Outdoor Augmented Reality in
ARCHEOGUIDE Project, in Proc. ACM Web3D 2002,
pp. 161-168

[12] Lau R.W.H, Li F, Kunii T.L, Guo B, Zhang B,
Magnenat-Thalmann N, Kshirsagar S, Thalmann D,
Gutierrez M, Emerging Web Graphics Standards and
Technologies, IEEE Computer Graphics and Applica-
tions,

[13] Noble B, Satyanarayanan M, Narayanan D, Tilton J
E, Flinn J and Walker K, ”Agile Application-Aware
Adaptation for Mobility”, in proc. ACM Symposium
on Operating Systems Principles, Saint Malo, France,
pp. 276-287.

[14] Luebke, D.P, “A Developer’s Survey of Polygonal
Simplification Algorithms”, IEEE Computer Graphics
and Applications, May/June 2000, pp 24-34

[15] Decoret X, Durand F, Sillion F and Dorsey J, ”Bill-
board Clouds for Extreme Model Simplification”, in
Proc. ACM SIGGRAPH 2003

[16] Deering M, Geometry Compression, in Proc. ACM
SIGGRAPH 1995, pp. 13-20

[17] Hoppe H, Progressive Meshes, in Proc. 24th an-
nual conference on Computer Graphics and Interactive
Techniques (1997), ACM Press/Addison-Wesley Pub-
lishing Co. pp. 189-198

[18] G. Al-Regib and Y. Altunbasak, “An unequal error
protection method for packet loss resilient 3-D mesh
transmission IEEE INFOCOM, vol. 2, pp. 743-752,
New York City, NY, June 2002

[19] Sheldon N, Girard E, Borg S, Claypool M and Agu E,
”The Effect of Latency on User Performance in War-
craft III, in Proc. ACM NetGames, 2003

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

