2005 International Conference on Wireless Networks, Communications and Mobile Computing

PowerSpy: Fine-Grained Software Energy Profiling for Mobile Devices *

Kutty S Banerjee

Emmanuel Agu

Computer Science Dept, Worcester Polytechnic Institute
100 Institute Road, Worcester MA 01609,USA

Abstract

Battery power capacity has shown very little growth, es-
pecially when compared with the exponential growths of
CPU power, memory and disk space. Hence, battery power
is frequently the most constraining resource on a mobile de-
vice. As a foundation for optimizing application energy us-
age on mobile devices, it is increasingly important to pro-
file system-wide energy usage in order to accurately deter-
mine where the energy is going?. Previous work on profiling
energy usage has either required external hardware multi-
meters, provided coarse grain results or required modifica-
tions to the operating system or/and profiled application.
We present PowerSpy, which tracks and reports the battery
energy consumed by the different threads of a monitored
application, the operating system, other applications in a
multi-threaded environment along with 1/O devices. Using
PowerSpy, we are able to measure the power consumption
of five diverse applications including a web browser, VRML
graphics browser, compiler and video player, all without re-
quiring modification to the application’s source code.

1. Introduction

Mobile computing has become increasingly popular as
laptops, Personal Digital Assistants (PDAs) and cellular
phones have experienced exponential annual growth in CPU
power, available memory and disk storage. Users can check
email, surf the web, edit electronic documents and playback
streamed multimedia while on the move. However, even
as most computing resources have experienced phenome-
nal growth, the capacity of batteries on mobile devices has
shown very little growth in the past thirty years. Conse-
quently, available battery power is frequently the most con-
straining resource on mobile devices.

As a foundation for avoiding energy-draining operations
and optimizing system-wide energy usage on mobile de-
vices, it is increasingly important to track system-wide en-
ergy usage in order to accurately determine how the energy

*Funding was provided in part by the NSF grant number 0303592

0-7803-9305-8/05/$20.00 ©2005 |IEEE

is being used. Specifically, as part of our MADGRAF pro-
totype for mobile 3D graphics [1], we wanted to develop
a software module that could monitor battery energy us-
age in real time and inform intelligent power-conserving
decisions, without requiring the instrumentation or modi-
fication of application source code. Previous work on en-
ergy profiling has either required external multimeters, of-
fline post-processing, provided results that were too coarse
or required modifications to the operating system. Gener-
ally, sampling approaches has been used for system energy
profiling, in which either an external multimeter or oper-
ating system calls are used periodically to sample energy
usage over time.

The goal of our research is to monitor accurately thread
level and I/O device level power consumption. When an
application is monitored, its energy consumption is noted
at finite intervals of time. However, this measured energy
is not just consumed by the threads of our monitored appli-
cation but also includes the energy consumed by the hard
disk, network card display, other /O devices, and poten-
tially the threads of other applications in a multithreaded
environment. Our profiling approach involves two passes.
First, battery power usage is accurately sampled at fine in-
tervals while also tracking all system activity. We then filter
(subtract out) the energy consumed by other applications,
I/O devices and other noise, leaving us with an accurate es-
timate of energy usage by our monitored application.

Using PowerSpy, using only their executables, we profile
five diverse commercial-strength applications including a
web browser, VRML graphics browser, compiler and video
player. Our results show that the network interface con-
sumed the most power for networked applications, followed
by disk I/O operations and then CPU.

2 Previous Work

The continous power sampling method for profiling ap-
plication energy usage was adopted by PowerScope [4]. An
external hardware multimeter with an in-built clock is used
to sample the monitored computer. At each sampling time,
the CPU status of the monitored computer is taken. This

1136

status consists of the current value of the Program Counter
and the Process ID- PID along with interrupt handling de-
tails. At the same time, the multimeter records the instanta-
neous current, voltage values. Later, during a energy profil-
ing post-process stage, the CPU values are associated with
the multimeter readings for each sampled interval in order
to reconstruct the power consumption details of the moni-
tored computer.

Another approach to measuring I/O power consumption
is to pre-determine the power consumed by each I/O device
when it is in a given fixed power state[5]. Thus, if the power
consumption of the hard disk is known in all its states, and
the power consumption in transitions between states is pre-
determined, given the state of the I/O device, the I/O power
consumption can be derived as in [5].

Energy Estimation is also performed by formulating
fine level building blocks of which an application is com-
posed [6]. One such way is to measure the power consumed
by different procedures within the Operating System. Once
we know which of these components a given application
uses, we can then estimate its power consumption.

3. PowerSpy

In this section, we present the two-pass profiling ap-
proach used our energy profiling tool, PowerSpy. The func-
tionality is presented in two stages, namely, (/) Event Track-
ing and (2) Analysis. Further, the Analysis stage has 2 sep-
arate passes which we shall expound on.

3.1. Event Tracking

In this stage, the application to be profiled for energy
consumption is run. Simultaneously we profile this applica-
tion for CPU Time, I/O Activity and Energy Consumption.

CPU Time: From the time that the application is started
to the time that it ends, the thread IDs of all threads cre-
ated by the application are kept in an ‘in-core’ database
maintained by PowerSpy. The CPU Profiler records in the
cpu.log file, the thread id of the thread being run at the end
of each context switch along with the time stamp.

I/0 Activity: Simultaneously, all /O requests made to
the attached devices are also recorded along with their time
stamps and the request specifics in an io.log file. An /O
request in this context is an asynchronous call made to an
I/O device. We assume that the device starts servicing the
request from the time that it receives this I/O call.

Energy Consumption: The energy consumed by the sys-
tem is also profiled in a separate energy.log file. This file
contains a chronological listing of time vs energy consumed.

Thus, at the end of the Event Tracking stage, we have
tracked and stored in three files,all CPU events, I/O events

Power
Reguireman

Dissipsation
ivprcal)

¢
gg}(‘;” TR L TW 4TW 47w AW 4TW
Seek laveragei 2 3W 23W 23w 2.3W 23w
Read (averager2 1 W 21w 20w 20W 2.0
Wate javerage} 22%W 22W 21w 21w 29W

Performance o 5
e (average} 185W 188W 185w 155w 185W

LEVDE +VDC +SVDC +VDC +SVDG

{+5%} 4%} (5%} {£85%) {*5%)

Active icle . " « 9
et omW 095W 08SW 08SW 08w
Low power idle . N . N
(owpoweride gssw 0SSW 0BEW 08SW 065W
oy 025W 025w 025W 025w 025w
Sieen 01w 01w 01w oW oW

v;orlsmtrcn 3008 G011 4418 0022 8033
{wattsi3H)

Figure 1. Sample Hardware Spec Sheet

and system energy usage over time while the application
was running.

3.2. Analysis Stage

In this stage, we process the data acquired at the end of
the event tracking stage in order to recreate a snapshot of
the system during the time that the application being mon-
itored was being executed, so that we can understand the
power consumption by the different parts of the system.
The Analysis stage takes as input the cpu.log, io.log, en-
ergy.log event tracking files as well as a fourth file called
spec.log. The spec.log as shown in figure 3.2, file contains
the estimated energy required by various devices to perform
specific tasks, as deduced from the specification sheets pro-
vided by the device’s manufacturer. A typical spec.log entry
is the energy consumed by a disk to read 1K bytes of data.
The Analysis Stage is carried out in two separate passes: the
/O filtering process and the CPU thread-level accounting.

3.2.1 Pass One - I/O Filtering Process

This pass takes as input the io.log, energy.log and spec.log
and modifies the energy.log file. In this pass, we filter out
(subtract) the estimated energy consumed by each I/O de-
vice that ran in a given time interval, from the total mea-
sured energy consumed in that interval. The remaining en-
ergy is attributed to CPU threads.

Let us consider for example, that the energy consumed
in a given time interval is ‘A’ units. And that in this interval
threads a,b,c were run (note that we carefully choose time
interval "A” as the smallest time interval for which we no-
tice a change in remaining battery energy). Additionally,
I/O devices e,f,g were operating in this same interval. How-
ever, from spec.log, we know that devices e,f and g when
performing certain tasks consume finite amount of energy,
say P, Py, P, respectively. We can deduce the power con-
sumed by threads a, b and c for their cpu-centric operations.

1137

Figure 2. Overlapped CPU and I/O Operations

Mathematically, if P, is the amount of energy consumed by
thread ‘a’ and (likewise for b,c,d.e,f,g), then

Pa+Pb+Pc:A—Pe_Pf_Pg:Pthreads (l)

As a concrete example of P., consider that the I/O re-
quest is a read request to the hard disk for a block of size
2KB. The specification sheets tell us that the energy es-
timate for a 1KB read operation is ‘k’ units. Therefore
Po=9%k

Figure 2 shows an example of overlapped CPU and I/O
operations. Thus, at the end of this pass, we have been able
to separate the I/O energy consumption from the CPU en-
ergy consumption and also get a list of the energy consumed
by individual I/O devices.

3.2.2 Pass Two - CPU Thread Level Accounting

In this pass, we will isolate the energy consumed by dif-
ferent threads individually. This pass takes as input the en-
ergy.log and cpu.log files from the energy tracking stage. It
parses the energy.log file for two consecutive energy, time
intervals. It obtains a list of all thread ids from cpu.log that
were run in this time range. For example, if in a time range
threads with IDs 1211, 2032 and 5101 were run 5, 6 and
2 times respectively. Also the energy consumption in this

time range was 50 units. Therefore, the energy consumed
by the thread with id 1211 is

P1211:50*(5/5+6+2) (2)

The underlying assumption behind equation 2 being that
CPU level power consumption is directly proportional to the
time (or number of cycles) spent in running the thread.

4. PowerSpy System Architecture

In this section we describe our implementation of Power-
Spy on the Windows operating system. Windows was cho-
sen due to its overwhelming popularity on multiple mobile

A cPU o | [Energy
X 1 2 Profiler Profiler| | Profiler

Log Files

Monitored
Application

Analysis Engine

Figure 3. PowerSpy System Architecture

and ubiquitious computing devices. PowerSpy is targeted
to work for Windows 2000, XP and Windows Server 2003.
The components are as shown in figure 3.

As shown in the figure, some of the components exe-
cute in the user mode whereas the others execute in the ker-
nel mode. Similarly, some components are operated online
whereas the Analysis Engine currently operates offline but
will operate online in future.

4.1. Debugger

The Debugger is responsible for initiating the application
program that is to be monitored. It is responsible for keep-
ing track of the different threads that the application spawns
out. It maintains an in-core database of these threads and
communicates them to the CPU Profiler. The use of a de-
bugger process in tracking thread activity is important since
under the Win32 platform, a debugger process that initiates
another process has complete access over the debuggee’s
memory address space. Also, each time that the application
spawns out a thread, the debugger is notified.

4.2. CPU Profiler

The CPU Profiler keeps track of the thread that was being
run by the Operating System, each time a context switch
occurs. If the thread being run matches any of the threads
in the in-core database maintained by the Debugger, then it
adds a flag and outputs the same to the “cpu.log” file.

The CPU Profiler communicates with the kernel mode
components as shown in figure 4. The PowerSpy driver is
a Windows kernel mode legacy driver [3]. Its purpose is to
install a Deferred Procedure Call (DPC), which is a routine
that monitors the Windows Thread Scheduler also called as
The Dispatcher Object and is part of the Windows Execu-
tive [2]. It is important to note that since DPC objects run at
the same privilege as the Windows Dispatcher, it is not con-
trolled or scheduled by the Dispatcher and as such is in a
position to monitor the activity of the Dispatcher. The DPC

1138

crPu
Profiler

| User Mode |

Kernel Mode |

i | DPC Routine

X
ETHREAD |
data block J

Figure 4. CPU Profiler Functional Diagram

routine is executed once every 10 milliseconds which is the
normal quantum of all threads in Windows 2000. However,
a context switch may occur before this time period because
of thread level preemption. The “EThread” data block is an
undocumented data structure maintained for each running
thread by the Windows Scheduler [2].

Thus, the DPC routine gets a snapshot of the Windows
scheduler. It also queues an I/O work item, which executes
at a lower privilege than the DPC (since it is bad practice
for long operations to be performed at exalted privileges).
The I/O Work Item stores the system timestamp, and the
thread ID which is the thread ID monitored by the DPC at
the instance that the DPC was executed. In other words,
the DPC captures the information but does not write it to
the “cpu.log” file since file operations may take a long time.
Rather it passes this operation to the I/O Work Item which
writes to the “cpu.log” file. Figure 5 shows the sampling
process. TtoTy are the sampled time intervals where the
current thread being run is stored. Also the remnant battery
power is stored.

g} T2.Power=42 T3 T4 Power=3910 T&Power=3810 TE:Power=310

TS Suantum

ThreadiD-1231

Figure 5. CPU Profiler Timeline

4.3. Energy Profiler

The energy profiler captures the amount of energy lost
by the system during the time that the application is being

monitored, and can be implemented either in hardware or
software. As part of PowerSpy package, we provide a soft-
ware solution. However, hardware measurements can easily
be used instead with our existing framework.

In the hardware solutions, a digital multimeter is used to
measure the instantaneous power drawn by the entire sys-
tem at a high sampling frequency. PowerScope uses a hard-
ware solution. These power values are then recorded along
with their time stamps. In the software solution, we use
system calls to measure the amount of battery energy re-
maining at a sampling frequency and record the same along
with the time stamps. We now briefly discuss the pros and
cons of hardware and software energy profiling.

The advantage of the hardware method is that since the
energy sampling is done independent of the system being
monitored, the sampling frequency can be very high and
is independent of any OS activity. Also, the instantaneous
power values are more accurate than their software coun-
terparts. The software version is limited by the sampling
rate at which the operating system gets updates from the ac-
tual battery, and suffers from the drawback that at very high
sampling rates, the battery device may not be able to report
changes in the remnant power accurately. In other words,
if we sample the battery at 10 milliseconds, then consider-
ing 10 such sampled values, it may happen that the remnant
battery is the same across all 10 values. However, in real-
ity, it may be the case that the remaining battery energy has
changed but is not being updated at that frequency.

For our purposes, since we wanted to develop a soft-
ware module that could be conveniently integrated into our
MADGRAF system [1], in which clients are mobile. In
such a scenario,the deciding factor was the disadvantage
that the hardware method involves external equipment and
is not easily portable.

PowerSpy uses the software solution for querying bat-
tery levels. The I/O Work Item regularly queries the battery
device using IOCTL_QUERY_BATTERY _STATUS ioctl.
Thus, the I/O Work Item generates an IRP with the above
ioctl and issues it to the battery class device driver. The
battery device driver returns the remaining battery power in
milli Watt Hour units.

4.4. 1/0 Profiler

The T/O profiler keeps track of all I/O requests send to
the various devices connected to the system. Under the
Windows Operating System, devices are sent asynchronous
messages called /0O Request Packets (IRPs) [3]. So, we
need a way of capturing all IRPs sent forth to the different
devices. In order to do this technically there are two op-
tions. One is to write a upper filter driver [3] for all devices.
However, writing a filter driver for all devices connected to
the system is not a very scalable or feasible solution. The

1139

Thread ID Energy Consumed (mWh) Thread ID Energy Consumed (mWh)
1329 15 1122 9

133 12 3651 6

291 782 11

9031 1 297 31

1100 1 202 12

3002 1 203 5

Device Energy Consumed(mWh) Device Energy Consumed (mWH)
\Device \tcp 51 \Device\DRO 55

\Device\DRO 22 \Device \tcp 0

Figure 6. Outlook Express Energy Profile

other solution is to read undocumented structures inside the
OS kernel such as reading the ETHREAD data structure in
the “ntoskrnl.exe” file.(contains the xp kernel)

We have made use of a third party tool, IRP Tracker
Utility [7] which writes all IRPs issued by the sys-
tem along with their time stamps and status in “io.log”
file. The time stamp used by IRP Tracker is in the
hour:minute:seconds:milliseconds format. However, the
time stamp used by the CPU Profiler and the Energy Pro-
filer is in the form of a 64 bit value representing the number
of 100-nanosecond intervals since January 1, 1601 . In or-
der to convert the IRP Tracker’s time format to that of the
PowerSpy profilers’ format, we used the Win32 system call
SystemTimeToFileTime.

5. Results

In this section we present the results of experiments us-
ing PowerSpy to profile the power usage of a wide range of
applications including the Outlook Express Windows mail
reader, Mozilla web browser, Visual Studio IDE compiler,
VRML browser and Microsoft Media player. All profiled
applications were available as unmodified executables.

The laptop used for the test is a Dell Inspiron 8500 with
Hitachi disk and WaveLan Wireless Card. The only devices
that we profile are the disk and the wireless network card
. However, the principle of I/O profiling and filtering using
specification sheets can also be extended to other devices.

Also, the disk and the wireless cards have been brought
into a known power state, i.e., the DO state This was done
by doing a dummy read of both the devices from user mode
ensuring that the devices are in a maximum power consum-
ing state.

5.1. Outlook Express
PowerSpy was used to profile the execution of the Out-

look Express mail reader and the results are as shown in
figure 6. For the above experiment, Outlook Express was

Figure 7. Microsoft Visual Studio results

started and mails were checked with the Send and Receive
facility for a single POP3 mail account. The individual
thread level power consumption does not include the power
consumed by the Operating System internal operations.

Referring to figure 6, the power consumed by the I/O
device “\Device\tcp’ is higher than that consumed by any
of the individual threads (power consumed by the threads
as shown in figure 6 is purely due to CPU operations). The
device “\Device\DRO’ represents /O access to the disk, the
power consumed by which is also substantial. Thus, a major
chunk of the power consumed by Outlook Express is due to
network and disk access.

5.2. Microsoft Visual Studio

The power profiling performed on ‘Microsoft Visual Stu-
dio’ revealed its power consumption details as shown in fig-
ure 7. At the time of profiling, a sample VC++ project was
opened, rebuilt and closed. As can be seen, the power con-
sumed by the hard disk namely, \Device\DRO is somewhat
high indicating that the application tends to be more aggres-
sive in its use of the disk, probably due to extensive the file
read/write, swapping and disk writes that are typical of the
compilation of projects with a large number of files.

5.3. Mozilla

Mozilla web browser was tested for its power consump-
tion and the results are described in figure 8. A sample site
at opengl.org was opened and refreshed and the power pro-
file results were tabulated. As is evident from the fig 8, the
power consumed by the tcp device is somewhat high. The
disk I/O power consumption is comparatively low.

5.4. Media Player

The results of Windows Media Player profiled for power
is given in figure 9. The experiment carried out with Win-
dows Player was playing an online movie trailer. The URL

1140

Figure 8. Mozilla web browser energy profile

Thread ID Energy Consumed (mWh)
2379 402

3412 98

786 22

352 1

1102 1

1471 1

1472 1

1481 2

1296 2

1926 1

1106 2

1291 1

Device Energy Consumed (mWh)
\Device\DRO 165

\Device\tcp 850

Figure 9. Windows Media Player results

of the site with the trailer was entered into Media Player
and the movie started. It is very apparent, that the bulk of
operation is carried out by the network device. The power
consumption details reveal the same that is, \Device\tcp
has a higher share in the power consumption list.

5.5. OpenVRML Browser

An open source VRML browser was used to test the
power consumed by VRML files of various sizes. Fig-
ure 10 provides details about the power consumption by
the browser when opening a VRML file with 10k vertices.
The complexity of rendering a given VRML scene file was
roughly proportional to the number of vertices in the scene
description. The power consumed by the individual thread
is relatively high. The initial loading and parsing of the
VRML file is CPU intensive and that explains the high
power consumption of a CPU work oriented thread. We
also profiled 1000-vertex and 100K-vertex VRML files and
found that in all cases, the amount of power consumed by

Thread ID Energy Consumed (mWh) Thread ID Energy Consumed (mWh)

123 121 1321 52

124 32 Device Power Consumed (mWh)

125 42 \Device\DRO 42

313 51

417 1 . :

1299) Figure 10. VRML Browser (10,000 vertices)
Device Energy Consumed (mWh) the individual CPU work oriented thread is far higher than
\Device\DRO 152 that consumed by any of the I/O devices. As the size of the
\Device\tcp 430

VRML file gets larger, the amount of power consumed by
the CPU thread in parsing and loading the file increases.

6 Conclusion

We have presented PowerSpy, a software tool for fine-
grained power profiling on the Windows operating system.
We present promising results of the power consumption of
five diverse applications.

Our profiled applications consumed the most power on
networked data transmission, where applicable. The Out-
look Express mail reader, Media player and Mozilla web
browser were all in this category. Applications such as Vi-
sual Studio that did not have significant networking activity
expended power on disk [/O. Finally, the VRML browser
performed many CPU operations to render a single graph-
ics scene, which was reflected in its energy usage.

We hope that this tool encourages further work into un-
derstanding the nature and techniques for optimizing power
use on mobile devices.

References

[1] E Agu, K Banerjee, S Nilekar, O Rekutin, D Kramer,
A Middleware Architecture for Mobile 3D Graphics,
in Proc. IEEE MDC, June 2005. (to appear).

[2] M Russinovich, D Solomon, Inside Microsoft Win-
dows 2000, 3rd Edition, Microsoft Press, 2000.

[3] J Lozano, A Baker, The Windows 2000 Device Driver
Book 2nd Edition, Prentice Hall, 2000

[4] JFlinn, M Satyanaranan, PowerScope: A Tool for Pro-
filing the Energy Usage of Mobile Applications. Sec-
ond IEEE WMCSA 1999, New Orleans, LA.

[5] JR.Lorch, A J Smith, Apple Macintosh’s Energy Con-
sumption. IEEE Micro, vol. 18(6) 1998.

[6] T Li, L K John, Run-time Modelling and Estimation
of Operating System Power Consumption. ACM SIG-
METRICS 03, June 10-14, 2003, San Diego, CA.

[71 IRP Tracker Utility, V1.3. Open Systems Resources.

1141

