
SESSION 2 1

Abstract—The recent emergence of programmable GPUs on

mobile devices means that mobile ray tracing at interactive rates
is imminent. Previous work has focused mainly on speeding up
real-time ray tracing. However, on a mobile device, the most
constraining resource is frequently its available battery energy.
In addition to maintaining reasonable frame rates and image
quality, ray tracing on mobile devices must also be energy
efficient. We present results of a comprehensive measurement
study that investigates the energy efficiency of mobile ray tracing.
We compared the energy efficiency of uniform grid, k-d tree, and
bounding-volume hierarchy (BVH) acceleration structures on
scenes ranging in size from 1lk to 990k triangles when rendered
on both the CPU and GPU. Our results show that from an energy
perspective, several scene characteristics such as the number and
distribution of triangles, mobile display size, and the rendering
processor (CPU vs. GPU) can affect which acceleration structure
is most energy efficient. With the exception of the SAH k-d tree,
the build energy of all acceleration structures was much smaller
than the rendering energy, making the SAH k-d tree a bad choice
energy wise for highly dynamic scenes. For small screen sizes
(e.g., cell phone resolutions), rendering on the CPU using a naïve
k-d tree uses less energy than any other processor-acceleration
structure combination. On the GPU, the BVH is the most energy-
efficient acceleration structure for larger screen sizes (e.g., PDA
and laptop resolutions), regardless of model size.

Index Terms— Computer Graphics, Energy Efficiency, Real-
Time Ray Tracing, Acceleration Data Structures, Spatial Data
Structures

I. INTRODUCTION

RAPHICS on mobile devices is becoming popular
because mobility increases the productivity of workers.

Additionally, many graphics applications are more convenient
when users are untethered. Global illumination rendering
algorithms such as ray tracing are essential for photorealism.
With advances in Graphics Processing Units (GPUs), ray
tracing at interactive rates has become feasible. However,
previous real-time ray tracing research has mostly used

Manuscript received September 24, 2007.
C.-H. Chang was with Worcester Polytechnic Institute, Worcester, MA

01609 USA (e-mail: ninjitaru@gmail.com).
P. J. Lohrmann was with Worcester Polytechnic Institute, Worcester, MA

01609 USA. He is now with the GPG Developer Tools Group, AMD,
Marlborough, MA 01752 USA (phone: 508-303-3996; e-mail:
Peter.Lohrmann@amd.com).

E. O. Agu is with the Computer Science Department, Worcester
Polytechnic Institute, Worcester, MA 01609 USA (e-mail:
emmanuel@wpi.edu).

R. W. Lindeman is with the Computer Science Department, Worcester
Polytechnic Institute, Worcester, MA 01609 USA (e-mail: gogo@wpi.edu).

rendering speed (time) as the main measure of efficiency [1],
[2]. On a mobile device, available battery power is frequently
the most limiting resource because, while processor speeds
and available memory have grown exponentially from 1990-
2000, battery energy capacity has only doubled [3]. As mobile
devices begin to incorporate GPUs, mobile real-time ray
tracing is imminent, and photorealism and rendering speed
must be balanced with the efficient use of limited battery
power.

The Energy-Conscious Rendering (ENCORE) project is
focusing on balancing three competing attributes of successful
mobile graphics applications: image quality, frame rate, and
energy consumption. Our initial focus is to measure how
algorithm design and implementation choices affect energy
consumption during ray-tracing. Using empirical data
collection, we compare the energy efficiency of ray tracing on
the CPU and GPU with uniform grids, k-d trees, and
bounding-volume hierarchies (BVH) while varying scene
complexity and display size. Understanding how these factors
affect energy consumption can inform rendering trade-offs on
mobile devices.

Two important trends motivated this work. First, the
phenomenal growth rates of GPU technology has made real-
time ray tracing feasible. Secondly, because it has been
estimated that nearly half of the total energy consumption of
mobile devices is due to the display and graphics hardware
[4], it is imperative that graphics software be optimized to
reduce energy consumption while taking advantage of the
GPU’s capabilities.

To the best of our knowledge, this is the first
comprehensive study comparing the energy consumption of
both CPU and GPU ray tracing using the most popular
acceleration structures. We found the BVH to be the most
energy-efficient acceleration structure when rendering on the
GPU, regardless of the number of triangles in the scene. On an
energy-per-frame basis, the GPU was more efficient than the
CPU especially for larger scenes. Also, with the exception of
the k-d tree, the build energy of all acceleration structures was
much smaller than the rendering energy. Finally, for small
screen sizes (e.g., cell phone resolutions), rendering on the
CPU was more energy-efficient than the GPU and the k-d tree
was the best performing acceleration structure. The BVH on
the GPU is the most efficient for larger screen sizes (e.g., PDA
and laptop resolutions). The remainder of the paper is
structured as follows. Section 2 discusses related work,
Section 3 gives required background, Section 4 describes our
experimental setup, Section 5 presents our results, Section 6

ENCORE: Energy-Conscious Rendering for
Mobile Devices

Chen-Hao Chang, Peter J. Lohrmann, Emmanuel O. Agu, and Robert W. Lindeman

G

SESSION 2 2

summarizes our conclusions, and Section 7 discusses future
work.

A. Fundamental System Energy Relationships

A mobile device’s battery-drain rate depends on several
factors, including the energy consumption of hardware
components and peripherals, and the operations performed by
running applications. The total energy expended is measured
in Joules, while the rate at which the battery energy is drained
(also called Power) is measured in Joules per second (or
Watts). Thus, the total energy consumed by an application can
be expressed as:

To determine the average drain rate in Eq. 1, the battery

drain rate was sampled every second while executing our ray
tracer, and then averaged over the entire time interval the
application was run. Figure 1 shows the battery drain rate for
both OpenGL and our ray tracer running on the same GPU for
five minutes. Our tests show that a laptop running a GPU-
intensive task consumes energy at a rate of about 45 Watts
compared to the laptop’s idle drain rate of 30 Watts.

0

10

20

30

40

50

60

0 60 120 180 240 300

Time Elapsed (Seconds)

D
is

c
h

a
rg

e
 R

a
te

 (
W

)

GPU RT

OpenGL

Figure 1: Comparing Battery Discharge Rate of OpenGL Rendering
to Ray Tracing on the GPU

On a given processing unit, the total energy consumed
depends mostly on the average drain rate of the rendering
technique. OpenGL utilizes the fixed-functionality of the
GPU, has a lower average drain rate, and renders more frames
per unit time. It consumes less energy per frame and less total
energy based on Eq. 1 than the GPU ray tracer, at the expense
of image quality. This shows that the rendering algorithm also
affects the average drain rate since different algorithms have
different constituent operations and spend different fractions
of time performing CPU/GPU operations, memory accesses,
and screen updates. We decompose ray tracing into build,
transfer, and rendering steps in order to understand their
energy implications, and hence make optimizations.

II. RELATED WORK
While graphics research has not focused on optimizing

rendering algorithms for power consumption, the

measurement and tracking of energy usage is an active area of
research within the mobile-computing community.
PowerScope is a hardware tool developed by Flinn and
Satyanarayanan [5] that enables easy power measurement on
mobile devices. While PowerScope uses an external hardware
multimeter to measure energy consumption, PowerSpy, a
software-only solution proposed by Banerjee and Agu [6],
profiles the energy usage of the various threads, hardware
components, and functions of mobile software applications.
Barr and Asanovic [7] optimized the energy consumption of
data compression, by focusing on reducing the number of
bytes and hence the energy consumed in wireless data transfer.
Several authors have proposed hardware techniques for
measuring graphics card power measurement [8], energy
management [9], network card energy consumption [10], and
operating system accounting techniques to prolong battery life
[11]. Several authors have also proposed either new energy-
efficient components for GPUs [12], [13] or novel energy-
efficient hardware architectures for graphics [14]-[16].

III. BACKGROUND
To compare the energy consumption on both the CPU and GPU,

the ENCORE system allows an acceleration structure and a rendering
processor (CPU vs. GPU) to be selected at runtime. Variations of
several common acceleration structures have been implemented,
including two variants of the uniform grid (UG), two variants of the
k-d tree, and two variants of the BVH.

A. Ray Tracing on the GPU

Using the GPU for ray tracing first appeared in 2002 with the Ray
Engine [17], where the GPU was used solely for performing ray-
triangle intersection tests. Purcell et al. [18] proposed the first GPU-
based ray tracer, which decomposed the ray tracing process into four
GPU fragment-shader kernels, each handling a different aspect of the
process: eye-ray generation, traversal, intersection, and shading. The
approach was successful, but limited at the time because GPUs
lacked loop logic. ENCORE uses the ray tracing implementation
described by Purcell et al. [18], but with a unified traversal-
intersection shader [2]. Two other implementations of GPU-based ray
tracers [19], [20] used the idea of kernels, but added new acceleration
structures, such as a proximity cloud UG [19], reporting a 37-50%
speed up for some scenes.

The k-d tree implementation from Foley and Sugerman [21]
outperformed GPU-UG implementations on scenes with high
variation in triangle density, but did not achieve performance
comparable to CPUs. The GPU-BVH implementation by Thrane and
Simonsen [2] showed the BVH to be the best acceleration structure
for GPUs, outperforming other structures by a factor of nine in some
cases.

Although current GPUs allow for conditional statements and
looping, and claim to support infinite-length shaders in Shader Model
3.0, some significant limitations exist compared to CPUs. The most
prominent limitation is the maximum number of loop iterations (256)
that can be performed in a single execution of a shader before it is
forced to stop. To get around this, Thrane and Simonsen [2] suggest
nesting a loop inside another loop with the same termination
conditions. In practice, however, we found that the outer loop was
only allowed to execute ten times, providing 2,560 iterations in a
single pass. This was sufficient for most of our tests, but prevented
rays from fully traversing the k-d tree for large scenes. It is possible
to work around this issue by saving some state information, and using

Average drain rate (Watts) *
Running time (Sec.) Total energy (Joules) = (1)

SESSION 2 3

occlusion queries to determine whether or not the shader should be
executed again [2], [18], [21].

A second GPU limitation is the maximum size of texture
dimensions (4,096x4,096 on the nVidia GeForce Go 6800 used in our
tests), which sets the maximum number of triangles per scene at 5.6
million, and also limits the size of acceleration structures. Though
this limitation did not affect our work, it could become an issue if we
attempted to ray trace more-detailed scenes.

Finally, the primary mechanism for tree traversal on the CPU, the
stack, does not exist on the GPU. Foley and Sugarman [21] present
two alternative methods for GPU traversal of a k-d tree, k-d-restart
and k-d-backtrack. Only the k-d-restart algorithm was implemented
for our tests because of the required memory overhead of the k-d-
backtrack algorithm.

B. ENCORE Acceleration Structures

An acceleration structure is a means of partitioning scene geometry
in order to simplify accessing it for computations. Assuming highly
dynamic scenes, two main steps are required at each frame:
rebuilding of the acceleration structure, and traversing the structure
for rendering. Implementation on the GPU requires the additional
step of transferring the resulting acceleration structure from main
memory to texture memory on the GPU.

ENCORE builds the selected acceleration structure on the CPU,
regardless of where rendering will take place. Our GPU-based ray
tracer is implemented using fragment shaders, with some minor
control flow (based on occlusion queries) performed by the CPU. For
formatting triangle data on the GPU, we used an approach similar to
Purcell et al. [18], where three textures are used to store the first,
second, and third vertices of each triangle; we encode the
acceleration structure in one additional texture. On both the CPU and
GPU, ENCORE uses the ray-triangle intersection test initially
described by Woo [22] and improved by Moller and Trumbore [23].

1) Uniform Grid

Purcell et al. [18] proposed the original organization of a GPU-
based ray tracer and the approach assumes the use of a uniform grid
(UG) as an acceleration structure. For building the UG, we use the
approach described by Bikker [24], with the memory-allocation
optimizations suggested by Haines [25]. Our implementation divides
each edge of the scene bounding-box into an equal number of
segments. Havran et al. [1] suggest that given n triangles, using

!

d * n
3 + 0.5 segments along each axis, with scene density d
(commonly with d=1), provided a reasonable voxel resolution across
a wide variety of scenes. We use this formula, and the triangle-box
intersection method described by Akenine-Möller [26] to assign
scene triangles to appropriate voxels. The traversal algorithm is the
same for both the CPU and GPU, and is based on that presented by
Amanatides and Woo [27].

2) k-d Tree

Havran et al. [1] showed that k-d trees are statistically among the
best acceleration structures based on the number of traversals and
intersections that are performed. Foley and Sugerman [21]
implemented a k-d tree-based GPU ray tracer and reported rendering
times up to eight times faster than with a UG. They used an
optimized ray-tracing engine that reduced memory usage, and an
improved surface-area heuristic (based on [28]) for constructing a
more-optimal k-d tree. The ENCORE k-d tree implementation is
based on Pharr and Humphreys [29], without their memory-allocation
optimizations. We implemented both spatial median split (SMS) and
surface-area-heuristic (SAH) [30]. We have found that the SMS
method can build 2-4 times faster than the SAH approach, but that

the SAH often produces more-balanced trees. We used a combination
of maximum tree depth and maximum triangle quota per leaf-node to
terminate the building process [29]. Given n triangles, the maximum
tree depth is set to 11 + 1.3 * log(n), and the maximum number of
triangles allowed per leaf-node is two when n is less than 5k, and 10
otherwise.

3) Bounding-Volume Hierarchy

The bounding-volume hierarchy (BVH) is an object-space
partitioning structure that partitions the geometry rather than the
space. We use a top-down approach [31], where the bounding volume
for the scene is recursively subdivided into bounding sub-volumes
around partitioned geometry. Thrane and Simonsen [2] compared a
BVH to k-d trees and uniform grids, and showed that it performed
better on the GPU than the other structures. We based our BVH
construction and CPU-BVH traversal implementation on the RT-
DEFORM system [32], which shows promising performance of 5.6
FPS on a 70k-triangle animated model. We also implemented a
variation of their BVH with updates, but rather than basing the
decision to perform a complete rebuild on the movement of the
triangles, we use a probabilistic method described later.

Like the k-d tree, there are different criteria for determining a good
split axis. We use SMS and then accordingly shrink the resulting
bounding boxes, and exit the build when a leaf-node encloses exactly
one triangle. This results in a maximum of (n * 2) - 1 nodes. If a split
location cannot split the triangles into left and right nodes, we keep
the tree balanced by assigning one half of the triangles to the left
node, the other half to the right, and then continue to recursively
partition the scene.

IV. EXPERIMENTAL SETUP
All tests were conducted under Windows XP, SP2, on a Dell

Inspiron 9300 laptop, with an Intel Pentium-M 1.6GHz CPU, 1GB of
DDR2-533 RAM, an nVidia GeForce Go 6800 (PCI Express 16x,
256MB VRAM) GPU, and a Dell Li-ion Battery (TYPE D5318) with
a capacity of 53WH, rated at 11.1V and 4800mAh. For all the tests,
the LCD display was set to 50% brightness. In addition, network
devices were disabled to reduce extraneous power discharge. No
other applications were active while the tests were running, though
OS housekeeping was not controlled.

The Advanced Configuration and Power Interface (ACPI) [33],
developed by a consortium of hardware and software manufacturers,
provides battery usage information including discharge rates in mW.
Microsoft Windows exposes an interface to ACPI through a function
called callNtPowerInformation. To maintain accuracy without
negatively impacting system performance, we sampled the battery
drain rate once per second.

Our ray-tracing engine only used primary rays while ray tracing the
scenes. When only sending one ray through each pixel into the scene,
the number of rays is constant for a given screen resolution and the
per-ray (or per-pixel) costs can be easily calculated and applied to
estimate other effects, such as anti-aliasing or various material
properties.

(a)

1 Triangle

(b)

11k Triangles

(c)

48k Triangles

SESSION 2 4

(d)

70k Triangles

(e)

99k Triangles

(f)

202k Triangles

(g)

400k Triangles

(h)

680k Triangles

(i)

990k Triangles

Figure 2: Test Scenes.

In order to remove any bias of one acceleration structure over
another, we chose a set of nine sample scenes to run our comparisons
(Figure 2). The set contains a range of numbers of triangles (1 to
approximately 1 million), as well as scenes with the triangles tightly
grouped (c, d, f & i) and more-uniformly distributed (e, g & h). The
models and scenes chosen for testing were intended to provide
various levels of complexity.

V. RESULTS AND ANALYSIS

A. Energy Consumption of Building Acceleration
Structures

As previously discussed, ray tracing using acceleration structures
involves several distinct phases including building the acceleration
structures, scene traversal, intersection calculation, and shading. In
this section, we focus on comparing the energy required to build the
uniform grid, k-d tree, and BVH acceleration structures. It should be
noted that even when the GPU is used for rendering, the acceleration
structure is built on the CPU, and then transferred to the GPU. Hence,
we only measure the energy required to build the acceleration
structures on the CPU. First, we investigate how energy usage varies
with increasing model size, and then describe two optimizations to
improve energy usage.

Figure 3 shows energy spent per build for the UG, BVH, and k-d
tree (using SAH) on a logarithmic scale as the number of scene
triangles increases. Larger scenes generally consume more energy to
build the acceleration structures. The UG has the lowest energy
consumption for all scene sizes. For scenes with fewer than 50k
triangles, the BVH and UG have similar energy usage. For scenes
with over 100k triangles, the BVH’s build energy is about twice that
of the UG. The k-d tree’s build energy is about 20 times the UG's
build energy for all scene sizes.

Figure 3: Energy Consumed (in Joules) per Build for Each
Acceleration Structure

Next, we compute the build energy on a per-triangle basis by
dividing the total build energy consumed by the number of scene
triangles. Figure 4 plots the build energy (Joules) consumed per
triangle by each acceleration structure. In addition to the naïve (SMS)
k-d tree build strategy, we also include results for the k-d tree build
using the SAH, as well as results for the BVH update.

Figure 4: Joules Spent per Triangle Versus Model Size

The RT-DEFORM algorithm [32] for dynamic scenes avoids the
large time and energy overheads associated with a complete BVH
rebuild by simply updating the BVH if object motion has affected
relatively few BVH nodes. The energy required to update the BVH
depends on how many nodes require updates and not on the number
of triangles in the scene. Thus, variance in scene geometry, as well as
object trajectory and speed in dynamic scenes, can lead to a wide
variance in the BVH update energy. We implemented RT-DEFORM
and measured its energy consumption when 60% of its nodes were
randomly chosen and updated (average case), no nodes updated (best
case) and all nodes updated (worst case). The results in Figure 4
show that the build energy spent per triangle is almost constant for all
tested acceleration structures. The k-d tree build using the SAH has
the worst energy usage per triangle, probably due to the surface area
computations required. The naïve k-d tree uses 50% less energy than
the SAH k-d tree. The BVH update displays the best energy savings.
Its worst-case performance (every node has to be updated) is roughly
equivalent to the UG and the best case (no updates required) uses 10
times less energy than the UG. However, it is important to bear in
mind that the BVH update only works for deformable models, and
occasionally a complete BVH rebuild is still required when the
scene’s triangle distribution changes beyond a certain threshold,
incurring a higher energy consumption. Thus, considering model size
alone, the UG is the most energy-efficient structure. Our build
experiments had very little variance after many repetitions, with a
standard deviation of less than 1%.

SESSION 2 5

1) Memory Management to Optimize Build-Energy
Consumption

While building acceleration structures, dynamic memory allocation
is a fundamental operation. Our pilot experiments showed that naïve
memory allocation could increase the build time of our acceleration
structures. In this section, we attempt to reduce the energy consumed
by memory allocation. Specifically, we reduced the number of
system-level memory allocations by pre-allocating larger blocks of
memory (known as memory pooling).

A typical UG build requires dynamic memory allocation when
inserting scene triangles into their associated cells. The k-d tree and
BVH have recursive build functions that require memory allocation
to store triangles in leaf nodes. Each leaf node of the k-d tree also
requires a dynamic array to hold the triangles that it references
because there are an unpredictable number of triangles intersecting
the leaf node’s volume, which further complicates memory
allocation. To mimic memory pooling, we exploit the fact that our
tests on dynamic scenes repeatedly rebuild the test acceleration
structures on the same model from frame to frame. We can therefore
allocate memory once for the first build and reuse it during
subsequent builds, thus reducing the need to re-allocate memory.

We found that reducing the frequency of memory allocation
reduced energy consumption in all cases (Figure 5). We found that
memory pooling especially benefited acceleration structures that
allocated memory frequently during their build. The BVH graph on
the left of Figure 5 shows consistent improvements as the model size
increases. Our experiments showed that compared to the BVH, the k-
d tree typically allocates smaller blocks of memory about 200 times
more frequently than the BVH. Hence, the k-d tree saved more
energy by using memory pooling to aggregate these small memory
allocations. The k-d tree’s memory allocation size and frequency
depends on the numbers of triangles in the scene as well as their
distribution. Hence, in Figure 5, unlike the BVH, the k-d tree’s
allocated memory and the energy consumed are not proportional to
the triangle count. The distribution of triangles in the 1,368-triangle
scene caused the k-d tree to make a large number of memory
allocation calls and ultimately saved almost 40% of its build energy
by using memory pooling. While this result suggests a potential for
significant savings from memory pooling, more careful study is
required to fully understand the energy implications of memory
access patterns, allocations, and de-allocations.

Effect of Memory management on

BVH

0

0.05

0.1

0.15

0.2

0.25

636 1368 3450 5804 10474

Model Size

J
o

u
le

Before

After

Effect of Memory management on

Kd-Tree

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

636 1368 3450 5804 10474

Model Size

J
o

u
le

Before

After

Figure 5: Power Usage Reduction for k-d Tree and BVH

2) Triangle-Box Intersection to Optimize Uniform Grid
Build-Energy Consumption

The triangle-box (tri-box) intersection is computed during the UG
build and is thus only relevant to the UG. A profiler showed that over
60% of the running time of a UG ray tracer was spent in the tri-box
intersection function. We became interested in determining how the
number of tri-box intersections increase as the model size increases
and how this affects the energy per build.

We found a linear relationship with a slope of about 3 Joules of
energy consumed for every 100k increase in the number of tri-box
intersections. This implies that a uniform grid implementation that
reduces or eliminates tri-box intersections will save energy in a linear

fashion. We used a lazy build, that removes tri-box intersection tests,
on two models, Figure 2b (11k triangles) and Figure 2c (48k
triangles), which show an energy reduction of about 57% and 62%
respectively. This is a significant energy savings that should be
considered if the speed penalty incurred by rendering with this lazy
build does not outweigh the energy saved by using it.

B. Comparison of Acceleration Structure Energy
Consumption for Static Rendering

In this section, we compare the rendering energy efficiency of the
UG, k-d tree, and BVH acceleration structures on both the CPU and
GPU. Since we were interested in the energy consumed during the
rendering of static scenes, in the following tests, acceleration
structures are built once and only the rendering portion was repeated
throughout the test duration. We consider screen sizes that we feel are
representative of cell phones, personal digital assistants (PDAs), and
laptops. Currently, cell phones with programmable GPUs have screen
resolutions of 240x320. We can approximate expected results at this
resolution based on our results of ray tracing at a resolution of
256x256. PDAs with programmable GPUs typically have a resolution
of 480x640, which is just slightly larger than our test resolution of
512x512. Finally, we use our largest test resolution of 1024x1024 to
approximate a laptop.

Figure 6: Energy Cost per Frame of Rendering a Single Triangle at
Various Resolutions

Ray tracing a single triangle: Looking at energy cost per frame
for rendering a single triangle (Figure 6), the main factor that affects
the energy consumption is the choice between the CPU and GPU. In
fact, for such a simple model, this GPU vs. CPU choice impacts
energy efficiency more than the choice of acceleration structure. The
second most significant factor is screen size. At a resolution of
128x128 the CPU was more energy efficient than the GPU. However,
at resolutions of 256x256 and above, the GPU becomes the more-
efficient processing unit and is increasingly more energy efficient
than the CPU as screen size increases. At the highest resolution of
1024x1024, the acceleration structures on the CPU consumed
roughly 10 times the amount of energy as their GPU counterparts.
The energy cost of ray tracing on the CPU at a resolution of 256x256
is comparable to that of the GPU at a resolution of 1024x1024.
Although the resolution is 16 times the size, the efficiency of the
GPU allows the energy cost to be similar, and renders more frames in
the same amount of time.

SESSION 2 6

Figure 7: Energy Cost per Frame of Rendering 48k Triangles

Ray tracing 48k triangles: Figure 7 shows the energy cost per
frame for ray tracing the model in Figure 2c (48k triangles). For this
model size, the choice of CPU vs. GPU and screen size do not
dominate as much as the single triangle case, and the choice of
acceleration structures is now more important. On the CPU, the UG
has fallen off from the BVH and k-d tree implementations, which
now have almost identical energy costs. For rendering this model, the
CPU-based BVH and k-d tree were the most efficient acceleration
structures for resolutions less than 256x256, and the GPU-based
BVH was the most efficient for larger resolutions. Apart from the k-d
tree, there still exists a crossover where the GPU becomes more
energy efficient than the CPU, however this crossover is less
dramatic than before. Tests on larger models showed similar trends.

C. Effects of Mobile Device Screen Size on Rendering
Energy Efficiency

In order to better target a particular mobile device, we now
compare each acceleration structure and processing unit over the set
of test scenes for a given resolution. Here, acceleration structures
were built once and only the actual rendering was repeated
throughout the test duration. Considering screen resolution, we aimed
to identify an efficient acceleration structure depending on whether
we are rendering on a cell phone (256x256), PDA (512x512), or
laptop (1024x1024). While it is understood that the specific
configuration of mobile devices may affect our results, measuring
energy on a single device (laptop) while varying screen size
establishes a common basis for direct comparisons at the algorithmic
level. We now summarize our results. Due to space constraints,
figures are only shown for our PDA results.

Figure 8 displays the energy cost per frame of rendering at a
resolution of 512x512. There is an increasing trend in energy cost as
the number of triangles increases, most evident for the CPU-based
implementations, and on the GPU-UG. The energy consumed by the
GPU-k-d tree differs drastically depending on the scene. The GPU-
BVH, interestingly, has almost constant energy consumption, even as
scene size increases. The BVH was more efficient than all structures
for the larger scenes. Despite the ~900% increase in triangles
between the 11k and 99k models, the GPU-BVH’s energy
consumption was almost constant.

0

20

40

60

80

100

120

140

160

CPU-UG CPU-k-d tree CPU-BVH GPU-UG GPU-k-d tree GPU-BVH

E
n
e
rg

y
 p

e
r

F
ra

m
e
 (

J
o
u
le

s
)

1 Triangle

11k Triangles

48k Triangles

70k Triangles

99k Triangles

Figure 8: Comparing Energy Cost per Frame of Rendering at a
Resolution of 512x512

Cell phone and laptop resolutions showed similar trends as the
PDA. In general, the energy consumption of the UG was strongly
correlated with the triangle count. The energy consumption of the k-d
tree and BVH were additionally affected by the distribution, density
and location of triangles in the scene. Finally, for larger meshes, the
GPU BVH was the most energy efficient.

D. Dynamic Scenes

Dynamic scenes have objects whose positions change from frame
to frame, requiring the acceleration structure to be either updated or
completely rebuilt. For such scenes, the energy saved by fast
rendering must be balanced with the energy overhead associated with
rebuilding the acceleration structure as the objects move. Thus, we
are interested in the combined energy consumption of both the build
and rendering stages of ray tracing.

For our dynamic scene tests, we used two models: the 11k model
(Figure 2b) and the 48k model (Figure 2c). Rather than animate the
triangles, as in a real dynamic scene, we simply forced a fresh rebuild
between consecutive frames in order to isolate the energy required for
the rebuild from the energy required to animate the scene. We tested
three acceleration structures in two variations each, for a total of six,
in order to gauge the impact of acceleration-structure-specific
optimizations. The six structures tested on both the CPU and GPU
were the UG with tri-box intersection test (UG-A), UG without tri-
box intersection test (UG-N), k-d tree with SMS (KD-M), k-d tree
with the SAH (KD-S), BVH with a rebuild every frame (BV-F), and
BVH that updates every node, but never rebuilds (BV-U). BV-U is
similar to the previous approach to simulate BVH updates; each node
is updated between frames based on a given probability.

Figure 9 and Figure 10 are results for our dynamic scene
experiments on the 11k and 48k models. We performed our tests at
256x256 and 768x768 resolutions. The KD-M GPU results are again
missing. As expected, the results for the CPU (C) are simply the sum
of the build and render energies for each acceleration structure on the
CPU. The GPU (G) results, on the other hand, incur some extra
overhead, since the CPU scene data has to be converted to a GPU-
friendly format and transferred to GPU texture memory. Hence, the
results for the GPU include the build energy on the CPU, the data
conversion and transfer energy from the CPU to the GPU, and the
energy required to ray trace the scene on the GPU.

SESSION 2 7

Figure 9: Energy Plots for Dynamic 11k and 48k Models at 256x256
Resolution

Figure 10: Energy Plots for Dynamic 11k and 48k Models at
768x768 Resolution

Comparing Figure 9 and Figure 10, we find that for dynamic
scenes, except for the k-d tree, the build energy required for all
acceleration structures is much less than the rendering energy. Hence,
dynamic scenes suggest a balance between energy saved from a fast
rendering stage versus the energy required to build the acceleration
structure. This suggests that as the amount of motion in scenes
increases, the k-d tree should be avoided due to its high rebuild
energy costs. The BVH performs best overall on both the CPU and
GPU.

VI. CONCLUSION
CPU Vs GPU: State-of-the-art GPUs generally consume more

power (energy per second) than comparable CPUs. Our
measurements showed that the GPU generally consumed less energy
per frame, especially for larger scenes. For static scenes (build once,
render many times), the k-d tree was marginally the most energy-
efficient acceleration structure on the CPU and the BVH was the
most energy-efficient structure for rendering on the GPU. However,
considering dynamic scenes (frequent rebuilds), the BVH was the
most energy-efficient structure, especially on the GPU. The energy
required to convert CPU data to GPU-friendly format and transfer
from CPU memory to GPU texture memory is small (insignificant)
compared to the energy required to build the acceleration structure or
render the scene.

Scene Complexity: As scene complexity increased, the energy
spent to build acceleration structures grew almost linearly and was
correlated with running time. However, the energy consumption of
rendering was not linearly related to scene complexity, but depended
on the acceleration structure selected and the distribution of scene
triangles.

Using memory pooling to reduce the frequency of memory
allocation can especially benefit acceleration structures such as the k-
d tree, which allocate many small chunks of memory during their
build process. For the uniform grid, as scene complexity grows, using
a lazy build to reduce the number of tri-box intersections should be
considered. For instance, Wald et al. [34] used a lazy build to create a
uniform grid and used mailboxing to avoid testing repeated triangles,
hence avoiding penalties associated with the lazy build.

Screen size: For small screen sizes (<256x256), the CPU is more
energy efficient for most data structures especially when rendering
static scenes. For large screen sizes, the GPU is more energy
efficient. This result suggests that from an energy perspective, and
considering only the ray-tracing algorithm, larger mobile devices
such as laptops would benefit more from GPUs than small devices
such as cell phones. However, we note that in practice, the actual
energy consumption of a given GPU depends on many factors and is
unique to each device. Specifically, the energy consumption of a
GPU on a handheld device may be proportionally smaller than the
energy consumption of a GPU on a laptop, and overall may be the
more energy-efficient ray tracing processor.

Scene Object Motion: Object motion influenced how frequently
the acceleration structure had to be updated or rebuilt. Except for the
k-d tree, the build energy of all acceleration structures was much
smaller than rendering energy. For highly dynamic scenes that
require frequent rebuilds, the k-d tree is a bad choice from an energy
perspective especially on the GPU. Dynamic scenes require a balance
between energy saved from a fast rendering stage versus the energy
needed to build the acceleration structure.

VII. FUTURE WORK
Our current study is a first step in understanding the energy-

efficiency of ray tracing. Many follow-up directions are possible. We
would like to validate our results on actual cell phones, PDAs, and
diverse mobile devices. A more in-depth comparison between the
energy consumption of ray tracing and raster graphics (such as
OpenGL) would be insightful. It would also be interesting to
investigate the energy efficiency of popular real-time rendering
techniques such as precomputation, lookups, and texture
substitutions, since these techniques significantly increase memory
accesses which have been noted to be energy hungry. We could
investigate the energy-efficiency of reflections, refractions, more-
sophisticated lighting, complex materials and other elements of
photorealisic ray tracing. The energy consumption of subsurface
scattering, shadow algorithms, photon mapping, and other physical
phenomena can all be characterized. Another interesting direction is
the development of models for predicting energy usage and
ultimately for adaptive energy management algorithms. To make our
dynamic scene results more realistic, animated scenes such as the
BART scenes [35] can be used to trigger rebuilding of acceleration
structures. The recently released shader model 4.0, particularly the
geometry shader, will affect some of our implementations and hence
energy consumption. We would also like to evaluate the energy
efficiency of the recently proposed Bounding Instance Hierarchy
[36]. Finally, more rigorous tests on the energy implications of
memory access patterns and a lazy uniform grid build would be
interesting.

Ray packets: Using ray packets, [37], we can now traverse several
rays in parallel on the CPU using SIMD instructions, and still retain
the robust logic control available on the CPU. Wald’s implementation
achieves four frames per second (FPS) for a static scene with 43k
triangles, and two FPS for a dynamic case of the same model. In
2006, Wald et al. published a coherent grid traversal technique,
which was able to achieve 29 FPS with pure ray casting, and seven
FPS with full ray tracing effects on an 11k animated model [34]. We
would like to characterize the energy implications of casting multiple
rays per pixel, using ray packets.

REFERENCES
[1] HAVRAN, V., PRIKRYL, J., and PURGATHOFER, W. 2000. Statistical

Comparison of Ray-Shooting Efficiency Schemes. Tech. Report TR-
186-2-00-14. Inst. of Comp. Graphics, Vienna Univ. of Tech.

SESSION 2 8

[2] THRANE, N. and SIMONSEN, L.O. 2005. A Comparison of Acceleration
Structures for GPU Assisted Ray Tracing. Master’s Thesis, U. of
Aarhus, Denmark.

[3] STARNER, T. 2003. Powerful Change Part 1: Batteries and Possible
Alternatives for the Mobile Market, IEEE Pervasive Computing, 2, 4,
86-88.

[4] INTEL. 2002. PC Energy-Efficiency Trends and Technologies. Retrieved
Jan. 2007 from: http://cache-
www.intel.com/cd/00/00/10/27/102727_ar024103.pdf.

[5] FLINN, J. and SATYANARAYANAN, M. 1999. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications. Proc. 2nd IEEE
WMCSA, pp 2-10.

[6] BANERJEE, K. and AGU, E. 2005. PowerSpy: Fine-Grained Software
Energy Profiling for Mobile Devices. Proc. of IEEE WirelessCom 2005,
2, 1136-1141.

[7] BARR, K. and ASANOVIC, K. 2003. Energy Aware Lossless Data
Compression. Proc ACM MobiSys 2003.

[8] TSCHEBLOCKOV, T. 2004. Power Consumption of Contemporary
Graphics Accelerators. Retrieved Jan. 2006 from:
http://www.xbitlabs.com/articles/video/display/ati-powercons.html.

[9] KRAVETS, R. and KRISHNAN, P. 1998. Power Management Techniques
for Mobile Communication, Proc. ACM Mobicom 1998, 157-168.

[10] FEENEY, L. and NILSSON, M. 2001. Investigating the Energy
Consumption of a Wireless Network Interface in an Ad Hoc Networking
Environment, Proc. IEEE InfoCom 2001, 1548-1557.

[11] ZENG, H., ELLIS, C., LEBECK, A., and VAHDAT, A. 2002. ECOSystem:
Managing Energy as a First-Class Operating System

[12] HENSLEY, J., SINGH, M., and LASTRA, A. 2005. A fast, energy-efficient
z-comparator. Proc Graphics Hardware Graphics Hardware.

[13] SOHN, J., WOO, R., and YOO, H. 2004. A programmable vertex shader
with fixed-point SIMD datapath for low power wireless applications.
Proc of Graphics Hardware.

[14] EUH, J., CHITTAMURU, J., and BURLESON, W. 2005. Power-Aware 3D
Computer Graphics Rendering. J. VLSI Signal Process. Syst. 39, 1-2

[15] KAMEYAMA, M., KATO, Y., FUJIMOTO, H., NEGISHI, H., KODAMA, Y.,
INOUE, Y., and KAWAI, H. 2003. 3D graphics LSI core for mobile phone
"Z3D". Proc Graphics Hardware, 60-67.

[16] TACK, N. LAFRUIT, G. CATTHOOR, F. LAUWEREINS, R. A content
quality driven energy management system for mobile 3D graphics, Proc.
IEEE Workshop Signal Processing Systems Design and Implementation.

[17] CARR, N. A., HALL, J.D., and HART, J.C. 2002. The Ray Engine. Proc.
Graphics Hardware 2002, 37-46.

[18] PURCELL, T, BUCK, I., MARK, W, and HANRAHAN, P. 2002. Ray
Tracing on Programmable Graphics Hardware. ACM Trans. Graphics,
21, 3, 703-712.

[19] KARLSSON, F. and LJUNGSTEDT, C.J. 2004. Ray Tracing Fully
Implemented on Programmable Graphics Hardware. Master’s Thesis,
Chalmers U. of Technology.

[20] CHRISTEN, M. 2005. Ray Tracing on GPU. Diploma Thesis, University
of Applied Sciences, Basel.

[21] FOLEY, T. and SUGERMAN, J. 2005. KD-Tree Acceleration Structures
for a GPU Raytracer. Proc. SIGGRAPH/Eurographics Graphics
Hardware, 15-22.

[22] WOO, A. 1990. Fast Ray-Box Intersection. Graphics Gems, Academic
Press Professional, 395-396.

[23] MOLLER, T. and TRUMBORE, B. 1997. Fast, Minimum Storage
Ray/Triangle Intersection. J. on Graphic Tools, 2, 1, 21-28.

[24] BIKKER, J. 2005. Raytracing: Theory & Implementation Part 4, Spatial
Subdivisions. June 10, 2005. Retrieved Jan. 9, 2007, from:
http://www.devmaster.net/articles/raytracing_series/part4.php.

[25] HAINES, E. 1999. Quicker Grid Generation via Memory Allocation, Ray
Tracing News, 12, 1.

[26] AKENINE-MÖLLER, T. 2001. Fast 3D triangle-box overlap testing. J. of
Graphic Tools, 6, 1, 29-33.

[27] AMANATIDES, J. and WOO, A. 1987. A Fast Voxel Traversal Algorithm
for Ray Tracing. Proc. EuroGraphics 87, 3-10.

[28] HAVRAN, V. and BITTNER, J. 2002. On Improving KD-Trees for Ray
Shooting. Proc.WSCG 2002. 209-216.

[29] PHARR, M. and HUMPHREYS, G. 2004. Physically Based Rendering,
Morgan Kaufmann.

[30] MACDONALD, J.D. and BOOTH, K.S. 1990. Heuristics for ray tracing
using space subdivision. The Visual Comp., 6, 3, 153-166.

[31] KAY, T. and KAJIYA, J. 1986. Ray Tracing Complex Scenes. Proc. ACM
SIGGRAPH, pp. 269-278.

[32] LAUTERBACH, C., YOON, S.-E., TUFT, D. and MANOCHA, D. 2006. RT-
DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs,
Proc. IEEE Symp. on Inter. Ray Tracing 2006, 39-46.

[33] ACPI. Advanced Configuration & Power Interface, Retrieved Oct. 2006
from: http://www.acpi.info/

[34] WALD, I., IZE, T., KENSLER, A., KNOLL, A., and PARKER, S.G. 2006.
Ray Tracing Animated Scenes using Coherent Grid Traversal. ACM
Trans.Graphics, 25, 3, 485-493.

[35] LEXT, J., ASSARSSON, U., and MOLLER, T. 2001. BART: A Benchmark
for Animated Ray Tracing. IEEE Computer Graphics and Applications,
21, 2, 22-31.

[36] WACHTER C AND KELLER A, Instant Ray Tracing: The Bounding
Interval Hierarchy, in Proc. EGSR 2006.

[37] WALD, I. 2004. Realtime Ray Tracing and Interactive Global
Illumination. PhD Thesis, Saarland Univ., Germany.

