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Abstract—The recent emergence of programmable GPUs on 

mobile devices means that mobile ray tracing at interactive rates 
is imminent. Previous work has focused mainly on speeding up 
real-time ray tracing. However, on a mobile device, the most 
constraining resource is frequently its available battery energy. 
In addition to maintaining reasonable frame rates and image 
quality, ray tracing on mobile devices must also be energy 
efficient. We present results of a comprehensive measurement 
study that investigates the energy efficiency of mobile ray tracing. 
We compared the energy efficiency of uniform grid, k-d tree, and 
bounding-volume hierarchy (BVH) acceleration structures on 
scenes ranging in size from 1lk to 990k triangles when rendered 
on both the CPU and GPU. Our results show that from an energy 
perspective, several scene characteristics such as the number and 
distribution of triangles, mobile display size, and the rendering 
processor (CPU vs. GPU) can affect which acceleration structure 
is most energy efficient. With the exception of the SAH k-d tree, 
the build energy of all acceleration structures was much smaller 
than the rendering energy, making the SAH k-d tree a bad choice 
energy wise for highly dynamic scenes. For small screen sizes 
(e.g., cell phone resolutions), rendering on the CPU using a naïve 
k-d tree uses less energy than any other processor-acceleration 
structure combination. On the GPU, the BVH is the most energy-
efficient acceleration structure for larger screen sizes (e.g., PDA 
and laptop resolutions), regardless of model size. 
 

Index Terms— Computer Graphics, Energy Efficiency, Real-
Time Ray Tracing, Acceleration Data Structures, Spatial Data 
Structures 

I. INTRODUCTION 

RAPHICS on mobile devices is becoming popular 
because mobility increases the productivity of workers. 

Additionally, many graphics applications are more convenient 
when users are untethered. Global illumination rendering 
algorithms such as ray tracing are essential for photorealism. 
With advances in Graphics Processing Units (GPUs), ray 
tracing at interactive rates has become feasible. However, 
previous real-time ray tracing research has mostly used 
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rendering speed (time) as the main measure of efficiency [1], 
[2]. On a mobile device, available battery power is frequently 
the most limiting resource because, while processor speeds 
and available memory have grown exponentially from 1990-
2000, battery energy capacity has only doubled [3]. As mobile 
devices begin to incorporate GPUs, mobile real-time ray 
tracing is imminent, and photorealism and rendering speed 
must be balanced with the efficient use of limited battery 
power. 

The Energy-Conscious Rendering (ENCORE) project is 
focusing on balancing three competing attributes of successful 
mobile graphics applications: image quality, frame rate, and 
energy consumption. Our initial focus is to measure how 
algorithm design and implementation choices affect energy 
consumption during ray-tracing. Using empirical data 
collection, we compare the energy efficiency of ray tracing on 
the CPU and GPU with uniform grids, k-d trees, and 
bounding-volume hierarchies (BVH) while varying scene 
complexity and display size. Understanding how these factors 
affect energy consumption can inform rendering trade-offs on 
mobile devices. 

Two important trends motivated this work. First, the 
phenomenal growth rates of GPU technology has made real-
time ray tracing feasible. Secondly, because it has been 
estimated that nearly half of the total energy consumption of 
mobile devices is due to the display and graphics hardware 
[4], it is imperative that graphics software be optimized to 
reduce energy consumption while taking advantage of the 
GPU’s capabilities. 

To the best of our knowledge, this is the first 
comprehensive study comparing the energy consumption of 
both CPU and GPU ray tracing using the most popular 
acceleration structures. We found the BVH to be the most 
energy-efficient acceleration structure when rendering on the 
GPU, regardless of the number of triangles in the scene. On an 
energy-per-frame basis, the GPU was more efficient than the 
CPU especially for larger scenes. Also, with the exception of 
the k-d tree, the build energy of all acceleration structures was 
much smaller than the rendering energy. Finally, for small 
screen sizes (e.g., cell phone resolutions), rendering on the 
CPU was more energy-efficient than the GPU and the k-d tree 
was the best performing acceleration structure. The BVH on 
the GPU is the most efficient for larger screen sizes (e.g., PDA 
and laptop resolutions). The remainder of the paper is 
structured as follows. Section 2 discusses related work, 
Section 3 gives required background, Section 4 describes our 
experimental setup, Section 5 presents our results, Section 6 

ENCORE: Energy-Conscious Rendering for 
Mobile Devices 

Chen-Hao Chang, Peter J. Lohrmann, Emmanuel O. Agu, and Robert W. Lindeman 

G 



SESSION 2 2 

summarizes our conclusions, and Section 7 discusses future 
work. 

A. Fundamental System Energy Relationships 

A mobile device’s battery-drain rate depends on several 
factors, including the energy consumption of hardware 
components and peripherals, and the operations performed by 
running applications. The total energy expended is measured 
in Joules, while the rate at which the battery energy is drained 
(also called Power) is measured in Joules per second (or 
Watts). Thus, the total energy consumed by an application can 
be expressed as: 

 
 
 
To determine the average drain rate in Eq. 1, the battery 

drain rate was sampled every second while executing our ray 
tracer, and then averaged over the entire time interval the 
application was run. Figure 1 shows the battery drain rate for 
both OpenGL and our ray tracer running on the same GPU for 
five minutes. Our tests show that a laptop running a GPU-
intensive task consumes energy at a rate of about 45 Watts 
compared to the laptop’s idle drain rate of 30 Watts. 
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Figure 1: Comparing Battery Discharge Rate of OpenGL Rendering 
to Ray Tracing on the GPU 

On a given processing unit, the total energy consumed 
depends mostly on the average drain rate of the rendering 
technique. OpenGL utilizes the fixed-functionality of the 
GPU, has a lower average drain rate, and renders more frames 
per unit time. It consumes less energy per frame and less total 
energy based on Eq. 1 than the GPU ray tracer, at the expense 
of image quality. This shows that the rendering algorithm also 
affects the average drain rate since different algorithms have 
different constituent operations and spend different fractions 
of time performing CPU/GPU operations, memory accesses, 
and screen updates. We decompose ray tracing into build, 
transfer, and rendering steps in order to understand their 
energy implications, and hence make optimizations. 

II. RELATED WORK 
While graphics research has not focused on optimizing 

rendering algorithms for power consumption, the 

measurement and tracking of energy usage is an active area of 
research within the mobile-computing community. 
PowerScope is a hardware tool developed by Flinn and 
Satyanarayanan [5] that enables easy power measurement on 
mobile devices. While PowerScope uses an external hardware 
multimeter to measure energy consumption, PowerSpy, a 
software-only solution proposed by Banerjee and Agu [6], 
profiles the energy usage of the various threads, hardware 
components, and functions of mobile software applications. 
Barr and Asanovic [7] optimized the energy consumption of 
data compression, by focusing on reducing the number of 
bytes and hence the energy consumed in wireless data transfer. 
Several authors have proposed hardware techniques for 
measuring graphics card power measurement [8], energy 
management [9], network card energy consumption [10], and 
operating system accounting techniques to prolong battery life 
[11]. Several authors have also proposed either new energy-
efficient components for GPUs [12], [13] or novel energy-
efficient hardware architectures for graphics [14]-[16]. 

III. BACKGROUND 
To compare the energy consumption on both the CPU and GPU, 

the ENCORE system allows an acceleration structure and a rendering 
processor (CPU vs. GPU) to be selected at runtime. Variations of 
several common acceleration structures have been implemented, 
including two variants of the uniform grid (UG), two variants of the 
k-d tree, and two variants of the BVH. 

A. Ray Tracing on the GPU 

Using the GPU for ray tracing first appeared in 2002 with the Ray 
Engine [17], where the GPU was used solely for performing ray-
triangle intersection tests. Purcell et al. [18] proposed the first GPU-
based ray tracer, which decomposed the ray tracing process into four 
GPU fragment-shader kernels, each handling a different aspect of the 
process: eye-ray generation, traversal, intersection, and shading. The 
approach was successful, but limited at the time because GPUs 
lacked loop logic. ENCORE uses the ray tracing implementation 
described by Purcell et al. [18], but with a unified traversal-
intersection shader [2]. Two other implementations of GPU-based ray 
tracers [19], [20] used the idea of kernels, but added new acceleration 
structures, such as a proximity cloud UG [19], reporting a 37-50% 
speed up for some scenes. 

The k-d tree implementation from Foley and Sugerman [21] 
outperformed GPU-UG implementations on scenes with high 
variation in triangle density, but did not achieve performance 
comparable to CPUs. The GPU-BVH implementation by Thrane and 
Simonsen [2] showed the BVH to be the best acceleration structure 
for GPUs, outperforming other structures by a factor of nine in some 
cases.  

Although current GPUs allow for conditional statements and 
looping, and claim to support infinite-length shaders in Shader Model 
3.0, some significant limitations exist compared to CPUs. The most 
prominent limitation is the maximum number of loop iterations (256) 
that can be performed in a single execution of a shader before it is 
forced to stop. To get around this, Thrane and Simonsen [2] suggest 
nesting a loop inside another loop with the same termination 
conditions. In practice, however, we found that the outer loop was 
only allowed to execute ten times, providing 2,560 iterations in a 
single pass. This was sufficient for most of our tests, but prevented 
rays from fully traversing the k-d tree for large scenes. It is possible 
to work around this issue by saving some state information, and using 

Average drain rate (Watts) * 
Running time (Sec.) Total energy (Joules) = (1) 
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occlusion queries to determine whether or not the shader should be 
executed again  [2], [18], [21]. 

A second GPU limitation is the maximum size of texture 
dimensions (4,096x4,096 on the nVidia GeForce Go 6800 used in our 
tests), which sets the maximum number of triangles per scene at 5.6 
million, and also limits the size of acceleration structures. Though 
this limitation did not affect our work, it could become an issue if we 
attempted to ray trace more-detailed scenes. 

Finally, the primary mechanism for tree traversal on the CPU, the 
stack, does not exist on the GPU. Foley and Sugarman [21] present 
two alternative methods for GPU traversal of a k-d tree, k-d-restart 
and k-d-backtrack. Only the k-d-restart algorithm was implemented 
for our tests because of the required memory overhead of the k-d-
backtrack algorithm. 

B. ENCORE Acceleration Structures 

An acceleration structure is a means of partitioning scene geometry 
in order to simplify accessing it for computations. Assuming highly 
dynamic scenes, two main steps are required at each frame: 
rebuilding of the acceleration structure, and traversing the structure 
for rendering. Implementation on the GPU requires the additional 
step of transferring the resulting acceleration structure from main 
memory to texture memory on the GPU. 

ENCORE builds the selected acceleration structure on the CPU, 
regardless of where rendering will take place. Our GPU-based ray 
tracer is implemented using fragment shaders, with some minor 
control flow (based on occlusion queries) performed by the CPU. For 
formatting triangle data on the GPU, we used an approach similar to 
Purcell et al. [18], where three textures are used to store the first, 
second, and third vertices of each triangle; we encode the 
acceleration structure in one additional texture. On both the CPU and 
GPU, ENCORE uses the ray-triangle intersection test initially 
described by Woo [22] and improved by Moller and Trumbore [23]. 

 
1) Uniform Grid 

Purcell et al. [18] proposed the original organization of a GPU-
based ray tracer and the approach assumes the use of a uniform grid 
(UG) as an acceleration structure. For building the UG, we use the 
approach described by Bikker [24], with the memory-allocation 
optimizations suggested by Haines [25]. Our implementation divides 
each edge of the scene bounding-box into an equal number of 
segments. Havran et al. [1] suggest that given n triangles, using 

! 

d * n
3 + 0.5  segments along each axis, with scene density d 
(commonly with d=1), provided a reasonable voxel resolution across 
a wide variety of scenes. We use this formula, and the triangle-box 
intersection method described by Akenine-Möller [26] to assign 
scene triangles to appropriate voxels. The traversal algorithm is the 
same for both the CPU and GPU, and is based on that presented by 
Amanatides and Woo [27].  

 
2) k-d Tree  

Havran et al. [1] showed that k-d trees are statistically among the 
best acceleration structures based on the number of traversals and 
intersections that are performed. Foley and Sugerman [21] 
implemented a k-d tree-based GPU ray tracer and reported rendering 
times up to eight times faster than with a UG. They used an 
optimized ray-tracing engine that reduced memory usage, and an 
improved surface-area heuristic (based on [28]) for constructing a 
more-optimal k-d tree. The ENCORE k-d tree implementation is 
based on Pharr and Humphreys [29], without their memory-allocation 
optimizations. We implemented both spatial median split (SMS) and 
surface-area-heuristic (SAH) [30]. We have found that the SMS 
method can build 2-4 times faster than the SAH approach, but that 

the SAH often produces more-balanced trees. We used a combination 
of maximum tree depth and maximum triangle quota per leaf-node to 
terminate the building process [29]. Given n triangles, the maximum 
tree depth is set to 11 + 1.3 * log(n), and the maximum number of 
triangles allowed per leaf-node is two when n is less than 5k, and 10 
otherwise. 

 
3) Bounding-Volume Hierarchy  

The bounding-volume hierarchy (BVH) is an object-space 
partitioning structure that partitions the geometry rather than the 
space. We use a top-down approach [31], where the bounding volume 
for the scene is recursively subdivided into bounding sub-volumes 
around partitioned geometry. Thrane and Simonsen [2] compared a 
BVH to k-d trees and uniform grids, and showed that it performed 
better on the GPU than the other structures. We based our BVH 
construction and CPU-BVH traversal implementation on the RT-
DEFORM system [32], which shows promising performance of 5.6 
FPS on a 70k-triangle animated model. We also implemented a 
variation of their BVH with updates, but rather than basing the 
decision to perform a complete rebuild on the movement of the 
triangles, we use a probabilistic method described later. 

Like the k-d tree, there are different criteria for determining a good 
split axis. We use SMS and then accordingly shrink the resulting 
bounding boxes, and exit the build when a leaf-node encloses exactly 
one triangle. This results in a maximum of (n * 2) - 1 nodes. If a split 
location cannot split the triangles into left and right nodes, we keep 
the tree balanced by assigning one half of the triangles to the left 
node, the other half to the right, and then continue to recursively 
partition the scene. 

IV. EXPERIMENTAL SETUP 
All tests were conducted under Windows XP, SP2, on a Dell 

Inspiron 9300 laptop, with an Intel Pentium-M 1.6GHz CPU, 1GB of 
DDR2-533 RAM, an nVidia GeForce Go 6800 (PCI Express 16x, 
256MB VRAM) GPU, and a Dell Li-ion Battery (TYPE D5318) with 
a capacity of 53WH, rated at 11.1V and 4800mAh. For all the tests, 
the LCD display was set to 50% brightness. In addition, network 
devices were disabled to reduce extraneous power discharge. No 
other applications were active while the tests were running, though 
OS housekeeping was not controlled. 

The Advanced Configuration and Power Interface (ACPI) [33], 
developed by a consortium of hardware and software manufacturers, 
provides battery usage information including discharge rates in mW. 
Microsoft Windows exposes an interface to ACPI through a function 
called callNtPowerInformation. To maintain accuracy without 
negatively impacting system performance, we sampled the battery 
drain rate once per second. 

Our ray-tracing engine only used primary rays while ray tracing the 
scenes. When only sending one ray through each pixel into the scene, 
the number of rays is constant for a given screen resolution and the 
per-ray (or per-pixel) costs can be easily calculated and applied to 
estimate other effects, such as anti-aliasing or various material 
properties. 
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(d) 

70k Triangles 
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Figure 2: Test Scenes. 

In order to remove any bias of one acceleration structure over 
another, we chose a set of nine sample scenes to run our comparisons 
(Figure 2). The set contains a range of numbers of triangles (1 to 
approximately 1 million), as well as scenes with the triangles tightly 
grouped (c, d, f & i) and more-uniformly distributed (e, g & h). The 
models and scenes chosen for testing were intended to provide 
various levels of complexity. 

V. RESULTS AND ANALYSIS 

A. Energy Consumption of Building Acceleration 
Structures  

As previously discussed, ray tracing using acceleration structures 
involves several distinct phases including building the acceleration 
structures, scene traversal, intersection calculation, and shading. In 
this section, we focus on comparing the energy required to build the 
uniform grid, k-d tree, and BVH acceleration structures. It should be 
noted that even when the GPU is used for rendering, the acceleration 
structure is built on the CPU, and then transferred to the GPU. Hence, 
we only measure the energy required to build the acceleration 
structures on the CPU. First, we investigate how energy usage varies 
with increasing model size, and then describe two optimizations to 
improve energy usage. 

Figure 3 shows energy spent per build for the UG, BVH, and k-d 
tree (using SAH) on a logarithmic scale as the number of scene 
triangles increases. Larger scenes generally consume more energy to 
build the acceleration structures. The UG has the lowest energy 
consumption for all scene sizes. For scenes with fewer than 50k 
triangles, the BVH and UG have similar energy usage. For scenes 
with over 100k triangles, the BVH’s build energy is about twice that 
of the UG. The k-d tree’s build energy is about 20 times the UG's 
build energy for all scene sizes. 

 

 
Figure 3: Energy Consumed (in Joules) per Build for Each 
Acceleration Structure 

Next, we compute the build energy on a per-triangle basis by 
dividing the total build energy consumed by the number of scene 
triangles. Figure 4 plots the build energy (Joules) consumed per 
triangle by each acceleration structure. In addition to the naïve (SMS) 
k-d tree build strategy, we also include results for the k-d tree build 
using the SAH, as well as results for the BVH update. 

 

 
Figure 4: Joules Spent per Triangle Versus Model Size 

The RT-DEFORM algorithm [32] for dynamic scenes avoids the 
large time and energy overheads associated with a complete BVH 
rebuild by simply updating the BVH if object motion has affected 
relatively few BVH nodes. The energy required to update the BVH 
depends on how many nodes require updates and not on the number 
of triangles in the scene. Thus, variance in scene geometry, as well as 
object trajectory and speed in dynamic scenes, can lead to a wide 
variance in the BVH update energy. We implemented RT-DEFORM 
and measured its energy consumption when 60% of its nodes were 
randomly chosen and updated (average case), no nodes updated (best 
case) and all nodes updated (worst case). The results in Figure 4 
show that the build energy spent per triangle is almost constant for all 
tested acceleration structures. The k-d tree build using the SAH has 
the worst energy usage per triangle, probably due to the surface area 
computations required. The naïve k-d tree uses 50% less energy than 
the SAH k-d tree. The BVH update displays the best energy savings. 
Its worst-case performance (every node has to be updated) is roughly 
equivalent to the UG and the best case (no updates required) uses 10 
times less energy than the UG. However, it is important to bear in 
mind that the BVH update only works for deformable models, and 
occasionally a complete BVH rebuild is still required when the 
scene’s triangle distribution changes beyond a certain threshold, 
incurring a higher energy consumption. Thus, considering model size 
alone, the UG is the most energy-efficient structure. Our build 
experiments had very little variance after many repetitions, with a 
standard deviation of less than 1%.  
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1) Memory Management to Optimize Build-Energy 
Consumption 

While building acceleration structures, dynamic memory allocation 
is a fundamental operation. Our pilot experiments showed that naïve 
memory allocation could increase the build time of our acceleration 
structures. In this section, we attempt to reduce the energy consumed 
by memory allocation. Specifically, we reduced the number of 
system-level memory allocations by pre-allocating larger blocks of 
memory (known as memory pooling). 

A typical UG build requires dynamic memory allocation when 
inserting scene triangles into their associated cells. The k-d tree and 
BVH have recursive build functions that require memory allocation 
to store triangles in leaf nodes. Each leaf node of the k-d tree also 
requires a dynamic array to hold the triangles that it references 
because there are an unpredictable number of triangles intersecting 
the leaf node’s volume, which further complicates memory 
allocation. To mimic memory pooling, we exploit the fact that our 
tests on dynamic scenes repeatedly rebuild the test acceleration 
structures on the same model from frame to frame. We can therefore 
allocate memory once for the first build and reuse it during 
subsequent builds, thus reducing the need to re-allocate memory. 

We found that reducing the frequency of memory allocation 
reduced energy consumption in all cases (Figure 5). We found that 
memory pooling especially benefited acceleration structures that 
allocated memory frequently during their build. The BVH graph on 
the left of Figure 5 shows consistent improvements as the model size 
increases. Our experiments showed that compared to the BVH, the k-
d tree typically allocates smaller blocks of memory about 200 times 
more frequently than the BVH. Hence, the k-d tree saved more 
energy by using memory pooling to aggregate these small memory 
allocations. The k-d tree’s memory allocation size and frequency 
depends on the numbers of triangles in the scene as well as their 
distribution. Hence, in Figure 5, unlike the BVH, the k-d tree’s 
allocated memory and the energy consumed are not proportional to 
the triangle count. The distribution of triangles in the 1,368-triangle 
scene caused the k-d tree to make a large number of memory 
allocation calls and ultimately saved almost 40% of its build energy 
by using memory pooling. While this result suggests a potential for 
significant savings from memory pooling, more careful study is 
required to fully understand the energy implications of memory 
access patterns, allocations, and de-allocations. 
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Figure 5: Power Usage Reduction for k-d Tree and BVH 

2) Triangle-Box Intersection to Optimize Uniform Grid 
Build-Energy Consumption 

The triangle-box (tri-box) intersection is computed during the UG 
build and is thus only relevant to the UG. A profiler showed that over 
60% of the running time of a UG ray tracer was spent in the tri-box 
intersection function. We became interested in determining how the 
number of tri-box intersections increase as the model size increases 
and how this affects the energy per build. 

We found a linear relationship with a slope of about 3 Joules of 
energy consumed for every 100k increase in the number of tri-box 
intersections. This implies that a uniform grid implementation that 
reduces or eliminates tri-box intersections will save energy in a linear 

fashion. We used a lazy build, that removes tri-box intersection tests, 
on two models, Figure 2b (11k triangles) and Figure 2c (48k 
triangles), which show an energy reduction of about 57% and 62% 
respectively. This is a significant energy savings that should be 
considered if the speed penalty incurred by rendering with this lazy 
build does not outweigh the energy saved by using it. 

B. Comparison of Acceleration Structure Energy 
Consumption for Static Rendering 

In this section, we compare the rendering energy efficiency of the 
UG, k-d tree, and BVH acceleration structures on both the CPU and 
GPU. Since we were interested in the energy consumed during the 
rendering of static scenes, in the following tests, acceleration 
structures are built once and only the rendering portion was repeated 
throughout the test duration. We consider screen sizes that we feel are 
representative of cell phones, personal digital assistants (PDAs), and 
laptops. Currently, cell phones with programmable GPUs have screen 
resolutions of 240x320. We can approximate expected results at this 
resolution based on our results of ray tracing at a resolution of 
256x256. PDAs with programmable GPUs typically have a resolution 
of 480x640, which is just slightly larger than our test resolution of 
512x512. Finally, we use our largest test resolution of 1024x1024 to 
approximate a laptop. 
 

 
Figure 6: Energy Cost per Frame of Rendering a Single Triangle at 
Various Resolutions 

Ray tracing a single triangle: Looking at energy cost per frame 
for rendering a single triangle (Figure 6), the main factor that affects 
the energy consumption is the choice between the CPU and GPU. In 
fact, for such a simple model, this GPU vs. CPU choice impacts 
energy efficiency more than the choice of acceleration structure. The 
second most significant factor is screen size. At a resolution of 
128x128 the CPU was more energy efficient than the GPU. However, 
at resolutions of 256x256 and above, the GPU becomes the more-
efficient processing unit and is increasingly more energy efficient 
than the CPU as screen size increases. At the highest resolution of 
1024x1024, the acceleration structures on the CPU consumed 
roughly 10 times the amount of energy as their GPU counterparts. 
The energy cost of ray tracing on the CPU at a resolution of 256x256 
is comparable to that of the GPU at a resolution of 1024x1024. 
Although the resolution is 16 times the size, the efficiency of the 
GPU allows the energy cost to be similar, and renders more frames in 
the same amount of time. 
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Figure 7: Energy Cost per Frame of Rendering 48k Triangles 

Ray tracing 48k triangles: Figure 7 shows the energy cost per 
frame for ray tracing the model in Figure 2c (48k triangles). For this 
model size, the choice of CPU vs. GPU and screen size do not 
dominate as much as the single triangle case, and the choice of 
acceleration structures is now more important. On the CPU, the UG 
has fallen off from the BVH and k-d tree implementations, which 
now have almost identical energy costs. For rendering this model, the 
CPU-based BVH and k-d tree were the most efficient acceleration 
structures for resolutions less than 256x256, and the GPU-based 
BVH was the most efficient for larger resolutions. Apart from the k-d 
tree, there still exists a crossover where the GPU becomes more 
energy efficient than the CPU, however this crossover is less 
dramatic than before. Tests on larger models showed similar trends. 

C. Effects of Mobile Device Screen Size on Rendering 
Energy Efficiency 

In order to better target a particular mobile device, we now 
compare each acceleration structure and processing unit over the set 
of test scenes for a given resolution. Here, acceleration structures 
were built once and only the actual rendering was repeated 
throughout the test duration. Considering screen resolution, we aimed 
to identify an efficient acceleration structure depending on whether 
we are rendering on a cell phone (256x256), PDA (512x512), or 
laptop (1024x1024). While it is understood that the specific 
configuration of mobile devices may affect our results, measuring 
energy on a single device (laptop) while varying screen size 
establishes a common basis for direct comparisons at the algorithmic 
level. We now summarize our results. Due to space constraints, 
figures are only shown for our PDA results. 

Figure 8 displays the energy cost per frame of rendering at a 
resolution of 512x512. There is an increasing trend in energy cost as 
the number of triangles increases, most evident for the CPU-based 
implementations, and on the GPU-UG. The energy consumed by the 
GPU-k-d tree differs drastically depending on the scene. The GPU-
BVH, interestingly, has almost constant energy consumption, even as 
scene size increases. The BVH was more efficient than all structures 
for the larger scenes. Despite the ~900% increase in triangles 
between the 11k and 99k models, the GPU-BVH’s energy 
consumption was almost constant. 
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Figure 8: Comparing Energy Cost per Frame of Rendering at a 
Resolution of 512x512 

Cell phone and laptop resolutions showed similar trends as the 
PDA. In general, the energy consumption of the UG was strongly 
correlated with the triangle count. The energy consumption of the k-d 
tree and BVH were additionally affected by the distribution, density 
and location of triangles in the scene. Finally, for larger meshes, the 
GPU BVH was the most energy efficient. 

D. Dynamic Scenes 

Dynamic scenes have objects whose positions change from frame 
to frame, requiring the acceleration structure to be either updated or 
completely rebuilt. For such scenes, the energy saved by fast 
rendering must be balanced with the energy overhead associated with 
rebuilding the acceleration structure as the objects move. Thus, we 
are interested in the combined energy consumption of both the build 
and rendering stages of ray tracing. 

For our dynamic scene tests, we used two models: the 11k model 
(Figure 2b) and the 48k model (Figure 2c). Rather than animate the 
triangles, as in a real dynamic scene, we simply forced a fresh rebuild 
between consecutive frames in order to isolate the energy required for 
the rebuild from the energy required to animate the scene. We tested 
three acceleration structures in two variations each, for a total of six, 
in order to gauge the impact of acceleration-structure-specific 
optimizations. The six structures tested on both the CPU and GPU 
were the UG with tri-box intersection test (UG-A), UG without tri-
box intersection test (UG-N), k-d tree with SMS (KD-M), k-d tree 
with the SAH (KD-S), BVH with a rebuild every frame (BV-F), and 
BVH that updates every node, but never rebuilds (BV-U). BV-U is 
similar to the previous approach to simulate BVH updates; each node 
is updated between frames based on a given probability. 

Figure 9 and Figure 10 are results for our dynamic scene 
experiments on the 11k and 48k models. We performed our tests at 
256x256 and 768x768 resolutions. The KD-M GPU results are again 
missing. As expected, the results for the CPU (C) are simply the sum 
of the build and render energies for each acceleration structure on the 
CPU. The GPU (G) results, on the other hand, incur some extra 
overhead, since the CPU scene data has to be converted to a GPU-
friendly format and transferred to GPU texture memory. Hence, the 
results for the GPU include the build energy on the CPU, the data 
conversion and transfer energy from the CPU to the GPU, and the 
energy required to ray trace the scene on the GPU. 
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Figure 9: Energy Plots for Dynamic 11k and 48k Models at 256x256 
Resolution 

 
Figure 10: Energy Plots for Dynamic 11k and 48k Models at 
768x768 Resolution 

Comparing Figure 9 and Figure 10, we find that for dynamic 
scenes, except for the k-d tree, the build energy required for all 
acceleration structures is much less than the rendering energy. Hence, 
dynamic scenes suggest a balance between energy saved from a fast 
rendering stage versus the energy required to build the acceleration 
structure. This suggests that as the amount of motion in scenes 
increases, the k-d tree should be avoided due to its high rebuild 
energy costs. The BVH performs best overall on both the CPU and 
GPU. 

VI. CONCLUSION 
CPU Vs GPU: State-of-the-art GPUs generally consume more 

power (energy per second) than comparable CPUs. Our 
measurements showed that the GPU generally consumed less energy 
per frame, especially for larger scenes. For static scenes (build once, 
render many times), the k-d tree was marginally the most energy-
efficient acceleration structure on the CPU and the BVH was the 
most energy-efficient structure for rendering on the GPU. However, 
considering dynamic scenes (frequent rebuilds), the BVH was the 
most energy-efficient structure, especially on the GPU. The energy 
required to convert CPU data to GPU-friendly format and transfer 
from CPU memory to GPU texture memory is small (insignificant) 
compared to the energy required to build the acceleration structure or 
render the scene. 

Scene Complexity: As scene complexity increased, the energy 
spent to build acceleration structures grew almost linearly and was 
correlated with running time. However, the energy consumption of 
rendering was not linearly related to scene complexity, but depended 
on the acceleration structure selected and the distribution of scene 
triangles.  

Using memory pooling to reduce the frequency of memory 
allocation can especially benefit acceleration structures such as the k-
d tree, which allocate many small chunks of memory during their 
build process. For the uniform grid, as scene complexity grows, using 
a lazy build to reduce the number of tri-box intersections should be 
considered. For instance, Wald et al. [34] used a lazy build to create a 
uniform grid and used mailboxing to avoid testing repeated triangles, 
hence avoiding penalties associated with the lazy build. 

Screen size: For small screen sizes (<256x256), the CPU is more 
energy efficient for most data structures especially when rendering 
static scenes. For large screen sizes, the GPU is more energy 
efficient. This result suggests that from an energy perspective, and 
considering only the ray-tracing algorithm, larger mobile devices 
such as laptops would benefit more from GPUs than small devices 
such as cell phones.  However, we note that in practice, the actual 
energy consumption of a given GPU depends on many factors and is 
unique to each device. Specifically, the energy consumption of a 
GPU on a handheld device may be proportionally smaller than the 
energy consumption of a GPU on a laptop, and overall may be the 
more energy-efficient ray tracing processor. 

Scene Object Motion: Object motion influenced how frequently 
the acceleration structure had to be updated or rebuilt. Except for the 
k-d tree, the build energy of all acceleration structures was much 
smaller than rendering energy. For highly dynamic scenes that 
require frequent rebuilds, the k-d tree is a bad choice from an energy 
perspective especially on the GPU. Dynamic scenes require a balance 
between energy saved from a fast rendering stage versus the energy 
needed to build the acceleration structure.  

VII. FUTURE WORK 
Our current study is a first step in understanding the energy-

efficiency of ray tracing. Many follow-up directions are possible. We 
would like to validate our results on actual cell phones, PDAs, and 
diverse mobile devices. A more in-depth comparison between the 
energy consumption of ray tracing and raster graphics (such as 
OpenGL) would be insightful. It would also be interesting to 
investigate the energy efficiency of popular real-time rendering 
techniques such as precomputation, lookups, and texture 
substitutions, since these techniques significantly increase memory 
accesses which have been noted to be energy hungry. We could 
investigate the energy-efficiency of reflections, refractions, more-
sophisticated lighting, complex materials and other elements of 
photorealisic ray tracing. The energy consumption of subsurface 
scattering, shadow algorithms, photon mapping, and other physical 
phenomena can all be characterized. Another interesting direction is 
the development of models for predicting energy usage and 
ultimately for adaptive energy management algorithms. To make our 
dynamic scene results more realistic, animated scenes such as the 
BART scenes [35] can be used to trigger rebuilding of acceleration 
structures. The recently released shader model 4.0, particularly the 
geometry shader, will affect some of our implementations and hence 
energy consumption. We would also like to evaluate the energy 
efficiency of the recently proposed Bounding Instance Hierarchy 
[36]. Finally, more rigorous tests on the energy implications of 
memory access patterns and a lazy uniform grid build would be 
interesting. 

Ray packets: Using ray packets, [37], we can now traverse several 
rays in parallel on the CPU using SIMD instructions, and still retain 
the robust logic control available on the CPU. Wald’s implementation 
achieves four frames per second (FPS) for a static scene with 43k 
triangles, and two FPS for a dynamic case of the same model. In 
2006, Wald et al. published a coherent grid traversal technique, 
which was able to achieve 29 FPS with pure ray casting, and seven 
FPS with full ray tracing effects on an 11k animated model [34]. We 
would like to characterize the energy implications of casting multiple 
rays per pixel, using ray packets. 
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