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Abstract. Graphics rendering on mobile devices is severely restricted
by available battery energy. The frame rate of real-time graphics appli-
cations fluctuates due to continual changes in the LoD, visibility and
distance of scene objects, user interactivity, complexity of lighting and
animation, and many other factors. Such frame rate spikes waste pre-
cious battery energy. We introduce an adaptive CPU scheduler that pre-
dicts the applications workload from frame to frame and allocates just
enough CPU cycles to render the scene at a target rate of 25 FPS. Since
the applications workload needs to be re-estimated whenever the scenes
LoD changes, we integrate our CPU scheduler with LoD management.
To further save energy, we try to render scenes at the lowest LoD at
which the user does not see visual artifacts on a given screen. Our inte-
grated Energy-efficient Adaptive Real-time Rendering (EARR) heuristic
reduces energy consumption by up to 60% while maintaining acceptable
image quality at interactive frame rates.

Keywords: Energy conservation, Multiresolution rendering,Real-time
rendering, CPU scheduling.

1 Introduction

Battery-powered mobile devices, ranging from laptops to cell phones, have be-
come popular for running 3D graphics applications that were previously devel-
oped exclusively for desktop computers or gaming consoles. Mobile devices now
feature more processing power, programmable graphics hardware and increased
screen resolution. Emerging mobile graphics applications include multiplayer
games, mobile telesurgery and animations. Mobile graphics applications offer
a new commercial opportunity especially considering the total number of mo-
bile devices sold annually far exceeds the number of personal computers sold.
The mobile gaming industry already reports revenues in excess of $2.6 billion
worldwide annually, and is expected to exceed $11 billion in 2010 [1].

The most limiting resource on a mobile device is its short battery life. While
mobile CPU speed, memory and disk space have grown exponentially over the
years, battery capacity has only increased 3-fold in the past decade. Conse-
quently, the mobile user is frequently forced to interrupt their mobile graphics
experience to recharge dead batteries.

G. Bebis et al. (Eds.): ISVC 2008, Part I, LNCS 5358, pp. 624–633, 2008.
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Fig. 1. Screenshot of HP Ipaq & Example Application Framerate

Application-directed energy saving techniques have previously been proposed
to reduce the energy usage of non-graphics mobile applications. Our main con-
tribution in this paper is the introduction of application-directed energy saving
techniques to make mobile graphics applications more energy-efficient. The main
idea of our work is that energy can be saved by scheduling less CPU timeslices or
lower the CPU’s clock speed (Dynamic Voltage and Frequency Scaling (DVFS))
for mobile applications during periods when its requirements are reduced.

In order to vary the CPU timeslices alloted to a mobile application, we need
to accurately predict its workload from frame to frame. Workload prediction
is a difficult problem since the workload of real-time graphics applications de-
pends on several time-varying factors, such as user interactivity level, the current
Level-of-Detail (LoD) of scene meshes and mip-mapped textures, visibility and
distance of scene models, and the complexity of animation and lighting. With-
out dynamically changing the application’s CPU allotment to correspond to its
needs, the mobile application’s frame rate fluctuates whenever there is a signif-
icant change in scene LoD, animation complexity, or other factors that affect
its workload. Such spikes above 25-30 Frames Per Second (FPS) drain the mo-
bile device’s battery and increased energy consumption by up to 70% in our
measurements (see figure 1b). We propose an accurate method to predict the
mobile application’s workload and determine what fraction of the CPU’s cycles
it should be alloted to maintain a frame rate of 25 FPS. As the application’s
workload changes, we update its CPU allotment at time intervals determined by
a windowing scheme that is sensitive to applications with fast-changing work-
loads and prudent for applications with slow-changing workloads. Our adaptive
CPU scheduling scheme dampens frame rate oscillations and saves energy.

Since the application’s workload changes and should be re-estimated whenever
LoDs are switched, we have coupled our CPU scheduler with the application’s
LoD management scheme. When switching scene LoD, we minimized energy
consumption by selecting the lowest LoD at which the user does not see vi-
sual artifacts, also known as the Point of Imperceptibility (PoI) [2]. Although
our primary goal was to minimize the mobile application’s energy consumption,
we also ensured that the frame rates and visual quality of the rendered LoD
were acceptable. In summary, our integrated EARR (Energy-efficient Adaptive
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Real-time Rendering) heuristic minimizes energy consumption by i) selecting the
lowest LoD that yields acceptable visual realism, ii) scheduling just enough CPU
timeslices to maintain real-time frame rates (25 FPS). EARR also switches scene
LoD to compensate for workload changes caused by animation, lighting, user in-
teractivity and other factors outside our control. To the best of our knowledge,
this is the first work to use CPU scheduling to save energy in mobile graphics.
Our results on animated test scenes show that CPU scheduling reduced energy
consumption by up to 60% while maintaining real time frame rates and ac-
ceptable image realism. The rest of the paper is organized as follows. Section 2
presents related work and background, Section 3 through Section 5 describes
our proposed EARR heuristic, Section 6 describes our experimental results. and
section 7 presents conclusions and future work.

2 Related Work and Background

Application-Directed Energy Management: This class of energy management
schemes uses Dynamic Voltage or Frequency Scaling (DVFS) [3,6] or intelligently
reduces the application’s output quality to conserve energy [4,5]. For instance,
energy can be saved by intelligently reducing video quality [5] or document
quality [4]. In DVFS, energy is conserved by dynamically reducing the processor’s
speed or voltage, without degrading the application’s quality. GRACE-OS [3]
proposes a DVFS framework for multimedia applications, which probabilistically
predicts the CPU requirements of multimedia applications in order to guide CPU
speed settings. Chameleon [6] proposes CPU scheduling policies for soft real-time
(multimedia), interactive (word processor) and batch(compiler) applications. To
the best of our knowledge, adaptive CPU scheduling to conserve energy has not
previously been applied to graphics applications.

LoD management to maintain real-time frame rates: Funkhouser and Sequin [7],
and Gobetti [9] both describe systems that bound rendering frame rates by se-
lecting the apprioprate LoD. While Funkhouser and Sequin used discrete LoDs,
Gobetti extended their work by using multiresolution representations of geom-
etry. Wimmer and Wonka [10] propose estimating the upper limit of rendering
times. The Performer system maintains a specified rendering speed [12], by
switching LoDs whenever application frame rate changes. Tack et al [11] de-
scribe a model for predicting rendering times on mobile devices.

Background: In order to minimize the amount of energy consumed our tech-
nique uses a combination of Adaptive CPU scheduling, LoD management us-
ing Wavelets, and the Point of Imperceptibility (PoI) metric. Our goal during
scheduling is to assign the lowest fraction of CPU time slices that runs the ap-
plication at the selected LoD as close to 25 FPS as possible. To further refine
our ability to adjust scene complexity in order conserve energy, we can adjust
Wavelet levels for two situations. First, we minimize energy usage by continu-
ously choosing the lowest mesh resolutions that is visually acceptable. Second,
we can switch to lower mesh LoDs is to compensate when animation, lighting
and other scene elements not in our control and require more CPU cycles. In
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order to quantify the distortion caused by mesh simplification we use the percep-
tual metric proposed by Wu et al [2] that generates a PoI LoD of a mesh. This
metric factors in the effects of lighting, shading and texturing on the perceptibil-
ity of simplification artifacts and exploits knowledge of how human perception
works to pinpoints the lowest LoD at which mesh simplification artifacts are
imperceptible on mobile displays of different resolutions.

3 Our EARR Heuristic

The accurate prediction of the application’s CPU requirements in advance is im-
portant in our work because allotting CPU cycles after the application’s demands
increase causes jerkiness or frame rate to drop. In complex real-time graphics
applications, it is difficult to accurately model and predict all factors that affect
the observed frame rates. Using a statistical workload predicting model, we de-
veloped an heuristic that is both efficient to compute and accurate. Through a
series of steps described below, our EARR heuristic compares the predicted with
the actual frame rate and adaptively adjusts future predictions, mesh LoDs, and
CPU resource allocations to minimize energy consumption.

At the start of the heuristic, all meshes are rendered at their PoI LoD. As
the mesh moves during an animation, EARR reallocates CPU resources using
the workload predicting model and the CPU scheduling policy. There are three
cases to which our heuristic is required to adjust the application parameters,
each requiring different actions. If we let d denote the current LoD of a mesh
and dp denote its PoI LoD. Let f denote the frame rate at which that scene is
currently being rendered. The three cases are as follows:

Case 1: the predicted frame rate drops such that fi < 25, current LoD i =
minimum LoD possible, and 100% of CPU cycles already alloted to this task: In
this case, we are at the limits of the parameters under our control (minimizing
LoD and maximizing CPU cycles). We conclude that the mobile’s resources are
not enough to render the scene at 25 FPS and we cannot rectify the situation. In
such a scenario, we simply choose the minimum possible LoD and set the CPU
cycles to a maximum and achieve the highest frame rate possible.

Case 2: the predicted frame rate drops such that fi < 25, current LoD i = PoI,
dp: In this case, the heuristic will allocate more CPU resources to increase the
rendering frame rate. If the frame rate is still less than 25 FPS, the heuristic will
then choose a lower LoD level to increase the frame rate to 25 FPS and allocate
the optimal fraction of CPU cycles, Copt accordingly. We note that in this case,
to achieve 25 FPS, we are forced to use an LoD below the mesh PoI, which will
cause visual artifacts.

Case 3: the predicted frame rate increases such that fi >> 25, current LoD i
= PoI, dp: EARR continues to use the PoI LoD but tries to save energy by
reducing the percentage of CPU timeslices scheduled for our application to the
minimum required in order to maintain a frame rate of 25 FPS. Figure 2a is the
flow chart of EARR heuristic.
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(a) EARR Heuristic Flow Chat
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Fig. 2. Heuristic and Frame rate

In the following sections, Section 4 describes our workload predicting model
and Section 5 describes the CPU scheduling policy.

4 Workload Predicting Model

The workload predicting model predicts what fraction of available CPU times-
lices should be alloted to our mobile application in order to sustain a target
frame rate of 25 FPS. To minimize energy consumption, the goal of the CPU
scheduler is to allocate just enough CPU cycles to finish rendering each frame
just before its deadline expires. Our target frame rate of 25 FPS yields a dead-
line of 40 ms for each frame to complete rendering. The optimal (fewest) CPU
resources Copt to meet our task’s deadline can be expressed as:

Copt =
τ

rmax
× Cmax (1)

where Cmax is the maximum available allotment of the processor’s timeslices,
Copt is a reduced allotment of CPU timeslices generated by our algorithm, which
just meets the frame’s deadline. rmax is the rendering time of a mesh if all
available processor cycles are alloted to our application and τ is the deadline for
the frame. As mentioned above, τ = 40 ms. We apply our workload predictor
as follows. At runtime, given a frame rendering deadline, τ , we use equation
1 to calculate the optimal CPU processor allocation, Copt. We then use our
pre-generated statistics to estimate the meshes LoD that corresponds to Copt.

A complex scene typically contains multiple objects at different LoDs. The
workload for rendering the scene depends not only on the total number of scene
triangles, but also on their visibility, which varies as the camera and objects
move. Thousands of triangles might be visible from some camera positions,
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whereas just a few may be seen from others. We used the eye-to-object visi-
bility algorithm described in [13] to determine the set of visible objects to be
rendered in each frame and calculated the entire scene’s workload as the sum
of all visible objects where each object’s workload is determined by the method
of Funkhouser and Sequin [7], which suggested that the number of triangles in
a mesh is a good predictor of its rendering time. To characterize the accuracy
of the method, relative error between measured rendering times and predicted
rendering times produced by our workload predictor for a single model, was cal-
culated for various LoDs. The results corroborates the results of Funkhouser and
Sequin [7] since all relative errors are less than 4%. The eye-to-object visibility
algorithm culls away large portions of a model that are occluded from the ob-
server’s viewpoint, and thereby improves the accuracy of workload estimation
significantly. In the eye-to-object algorithm, the scene can be subdivided into
cells, and the model partitioned into sets of polygons attached to each cell. Af-
ter subdivision, cell-to-cell and eye-to-cell visibility are computed for each cell
of subdivision. This algorithm has been previously used to accelerate a range of
graphics computations, including ray-tracing and object-space animation.

Thus far, our predictor focused on the workload for rendering one frame of a
scene. Next, we consider changes in application’s workload over time. Since the
application workload changes only slightly from one frame to the next (millisec-
onds), we maintain the current predicted workload for n future frames, where n
is called the window size and is varied depending on how quickly the workload
is changing. The choice of n affects the performance of our algorithm. If n is too
small, then we update predicted workload too often incurring large computation
overheads. If it n is too large, then the system may not be sensitive enough to
fast-changing workloads and the error between the predicted and actual work-
load may become too high. Therefore, in our prediction model, the window size
(n) is adaptively varied at run-time. Figure 3a shows our window size updates
method, which is inspired by the Transmission Control Protocol (TCP) in net-
working. Initially, we calculate and update our predicted workload every two
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(a) Accuracy of Workload Predicting
Model

Application Workload p
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Fig. 4. Accuracy of Workload Predicting model and Processor Availability

frames (n = 2). Every time the error between the predicted and actual workload
is smaller than a pre-determined threshold, the window size is doubled. We con-
tinue to double the window size until n = 8, beyond which the window size is
increased by 1 every time the observed error falls within an acceptable threshold.
Whenever the workload prediction error exceeds the threshold, we reset the win-
dow size to 2 and set predicted workload to the value of the currently observed
workload value. Figure 3b is a flow chart of the workload predicting model.

The adaptive workload predictor estimates the workload of each frame at
full processor speed, from which we can estimate the CPU timeslices required
to render a frame at our target frame rate. We tested our technique with two
scenes provided by the Benchmark for Animated RayTracing(BART) [8], The
results are shown in figure 4a. It can be observed that the relative errors are
bounded in 0.18.

5 CPU Scheduling Policy

Our CPU scheduler runs a three-phase, which are workload estimation, estimat-
ing processor availability and determining processor resource allocation. We now
formalize our CPU scheduling algorithm. For each real-time task T , let us denote
its start time by ts and its deadline as td. Let Cmax denote the maximum frac-
tion of CPU timeslices that are currently available for running applications. It is
important to note that without the intervention of our scheduling algorithm, all
tasks will run with 100% allocation of all available CPU timeslices, Cmax. The
fraction of CPU timeslices required by T will be denoted by p. We note that the
execution time of the task T is inversely proportional to p. In summary, a feasi-
ble schedule of the task guarantees that the task T receives at least a fraction,
A, of the maximum available CPU cycles such that it receives A ∗ Cmax CPU
cycles before its deadline, where A ≤ 1. Given the application workload p, the
maximum processor availability Cmax and interactivity deadline td, as shown in
figure 4b, our allocation policies fall into two distinct cases.
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A =
p

min(Cmax, td − ts)
(2)

Copt =
�

Cmax : Cmax < p̂

min(Cmax × p̂
min(Cmax,td−ts) , Cmax) : otherwise

(3)

Case 1: If Cmax < p, then the application’s demand for CPU timeslices exceeds
CPU availability. In this case, the CPU scheduler cannot meet the task’s dead-
line while using the current mesh LoD. Our scheduling algorithm shall allot all
available CPU timeslices to the task and also reduce mesh LoD to lower the
offered workload p.

Case 2: If ts + p < td, the task can complete before its deadline. If all available
CPU resources are alloted to this task, the rendering speed achieved is larger
than 25 FPS. In this case, the algorithm reduces the fraction of CPU timeslices
alloted such that the demanded workload p is just adequate to complete the
task before its deadline. The percentage of CPU resources alloted is calculated
in equation 2.

In the equation 2, the deadline td − ts is known. We chose td − ts as 40 ms,
p is determined by using our workload predictor. The maximum CPU resources
currently available, Cmax can be monitored by our resource adapter. Given an
estimated demanded workload, p̂ and the maximum processor availability, Cmax,
the optimal CPU resource allocation, Copt, is computed in equation 3.

6 Experiment and Results

In this section we describe performance of the EARR heuristic on both a lap-
top and a PDA. The laptop used was a Windows Vista Lenovo T61 laptop
equipped with an Intel Core 2 Duo 2.1GHz processor and 3GB RAM. The PDA
is a Windows CE HP iPAQ Pocket PC h4300 with a 400 MHz Intel XScale
processor and 64MB RAM. We repeated all experiments eight times, eliminated
the minimum and maximum values before averaging all others. We animated a
pre-determined animation path in the kitchen scene provided by the Benchmark
for Animated RayTracing (BART) [8]. We ran three sets of experiments using
the BART kitchen scene, applying three levels of adaptations: (1)Simple: No
LoD switching, no adaptive CPU scheduling; (2)LoD Selection: LoD
switching, no adaptive CPU scheduling; (3)Our EARR heuristic: LoD
selection with adaptive CPU scheduling.

Measuring the exact energy consumption of the CPU alone is a fairly difficult
problem. To measure the energy consumption of the CPU independent of our
experiments we subtracted the base idle energy consumption to give our appli-
cations power usage and multiplied power usage by execution time to arrive at
energy consumption. In our experiment, the base power consumed by the laptop
in idle mode was 12.58W. During our experiments, we set 20 check points along
the animation path of the mesh. Figure 2b is a plot of measured frame rates at
these check points while testing the 3 different adaptation levels in section 6.
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In the experiments called ”simple”, without switching of scene LoD causes
the observed rendering speed to be generally low and non-uniform, as shown by
black dashed line of figure 2b. The straight dashed line is the target minimum
frame rate of 25 FPS. Without LoD selection in the simple experiment, the
target frame rate of 25 FPS is not achieved.

In the experiments called ”LoD selection” adaptation level, the objects do
not show visual artifacts due to LoD reduction and the application frame rate is
always above 25 FPS. Even though the frame rate is much faster than the ”sim-
ple” test, the frame rate still fluctuates a lot. Moreover, since no CPU scheduling
is used, 100% of all available CPU cycles are always alloted (Cmax) to the ap-
plication, and at many points during the experiment, the scene rendered much
faster than (overshoots) 25 FPS. The blue dashed line of Figure 2b illustrates
this point, that CPU cycles are wasted when rendering the scene beyond 25 FPS.
At frame 20 and frame 120, the frame rate drops, this heuristic compensates by
choosing a lower LoD to render, thus causing the frame rate to go up. However,
this lower LoD will show some visual artifacts since it is below the PoI LoD. At
frame 40 and frame 170, the available CPU resource is enough to maintain a
frame rate greater than 25 FPS, we then switch the LoD of meshes to their PoI.

In comparison to the other two experiments, the frame rate of ”EARR heuris-
tic” is more uniform with less fluctuations, as shown by red solid line of figure 2b.
As in the ”LoD selection” heuristic, at frame 20 and frame 120, the frame rate
drops. EARR heuristic first tries to increase alloted CPU timeslices while using
the PoI LoD. Since the frame rate continues to drop, the EARR heuristic selects
a lower LoD and runs the CPU scheduler algorithm, which reduces the CPU
resources alloted to 52% of the maximum available. The energy is saved while
the application frame rate of 25 FPS is maintained.

In the experiments run on the laptop, the ”simple heuristic” is used with the
objects at their original LoD, the frame rate is only 13.54 FPS. However when
EARR heuristic is used with multiple objects at their PoI LoDs, the frame rate
is maintained at 25 FPS and never goes above 29 FPS. Therefore on average the
target frame rate of 25 FPS is maintained. Figure 1a shows a screenshot of our
applications on PDA. Our results show the LoD selection heuristic saves 27.4%
of the energy, while EARR heuristic saves 62.3% of the energy consumption.

7 Conclusion and Future Work

We have presented our EARR heuristic that minimizes energy consumption while
maintaining acceptable rendering speed and image quality. Our proposed EARR
heuristic uses a workload predictor to adaptively predict frame rendering times
and a dynamic CPU scheduler to save energy used by mobile 3D applications.
Our experimental results show that our EARR heuristic generated more uniform
frame rates than other strategies and successfully found the best rendering pa-
rameters that minimized mobile resource usage. Our experiments demonstrated
energy savings of about 60%. In future, we shall extend our work in the following
ways. 1) Improve energy saving by integrating Dynamic Voltage Scaling (DVS)
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and Dynamic Frequency Scaling (DFS). We expect our heuristic will yield fur-
ther savings after integrating DVS or DFS. 2) Improve PoI by integrating eye’s
gaze pattern Eye’s gaze pattern is another important factor affecting human
visual perception. With cues about the eye’s gaze pattern, we can increase the
LoD of objects that user focuses on while reducing the LoD of objects outside of
the focus area. In this way, even more rendering costs can be saved. 3) Accurately
measuring CPU energy usage. We currently estimate CPU energy usage using a
subtractive technique described in section 6, which can be improved in accuracy.
We plan to develop more accurate methods to more accurately measure CPU
energy consumption on mobile devices.
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