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ABSTRACT   

Diabetic foot ulcers represent a significant health issue, and daily wound care is necessary for wound healing to occur. 

The goal of this research is to create a smart phone based wound image analysis system for people with diabetes to track 

the healing process of chronic ulcers and wounds. This system has been implemented on an Android smart phone in 

collaboration with a PC (or embedded PC). The wound image is captured by the smart phone camera and transmitted to 

the PC via Wi-Fi for image processing. The PC converts the JPEG image to bitmap format, then performs boundary 

segmentation on the wound in the image. The segmentation is done with a particular implementation of the level set 

algorithm, the distance regularized level set evolution (DRLSE) method, which eliminates the need for re-initialization 

of level set function. Next, an assessment of the wound healing is performed with color segmentation within the 

boundaries of the wound image, by applying the K-Mean color clustering algorithm based on the red-yellow-black 

(RYB) evaluation model. Finally, the results are re-formatted to JPEG, transmitted back to the smart phone and 

displayed. To accelerate the wound image segmentation, we have implemented the DRLSE method on the GPU & CPU 

cooperative hardware platform in data-parallel mode, which has greatly improved the computational efficiency. 

Processing wound images acquired from UMASS Medical Center has demonstrated that the wound image analysis 

system provides accurate wounds area determination and color segmentation. For all wound images of size around 640 x 

480, with complicated wound boundaries, the wound analysis consumed max 3s, which is 5 times faster than the same 

algorithm running on the CPU alone. 
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1. INTRODUCTION 

For individuals with type 2 diabetes, foot ulcers represent a significant health issue affecting 5-6 million in the US [1-4]. 

Such ulcers are painful, susceptible to infection, persistent and slow to heal [5]. According to published reports [6], there 

were approximately 71,000 diabetes related lower limb amputations in the U.S. in 2004, constituting the primary cause 

of non-traumatic lower limb amputations. Even for successful healing, the cost for healing diabetic foot ulcers is 

estimated at $15,000 per year per individual [7]. Overall diabetes-related health care cost was estimated at $174 billion in 

2007 and is expected to increase in the coming years [7]. 

Good daily care can improve wound healing, reduce the likelihood of amputations, minimize complications related to the 

disease and ulcers and reduce the overall health care cost. Nowadays, the standard foot ulcer treatment for patients with 

diabetes is a combination of daily self-care and physician examination during regular visits to a wound clinic. The 

wound is examined by experienced physicians, and the healing status compared to that of previous visits, based on which 

adjustments to the treatment strategy, if any, are made. This approach does little to encourage direct involvement by the 

patient in the overall wound care.  

On the other hand, according to the Institute of Medicine [8], information technology (IT) enables patients to be active 

participants in their own care and play an important role in the wound management process. For example, the Sihouette 

product suite produced by ARANZ Medical [9] is capable of imaging and measuring the size of a wound. Moreover, it 

can integrate wound images with other essential data to provide an accurate and complete record of the assessment to 

track wound healing progression. Another example is the MOWA [10], which is an Android based software application 

for smartphones and tablets. The software differentiates types of tissues found in a pressure ulcer. The analysis can be 

performed on photos taken with the on-board camera or on uploaded pictures from other sources. Manual assistance, 
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however, is required to enable it to calculate the area of the lesion. The software can provide suggestions about 

treatments. 

These product development efforts indicate that IT devices, such as PCs, tablets and even smartphones, might play a role 

in the daily wound care. The computational and data storage resources for current PCs and laptops are capable of 

efficient image processing including wound segmentation, area determination and color separation. While currently 

limited in memory and CPU power, smart phones with high-resolution cameras may eventually become ideal devices for 

image processing. The challenge lies in implementing the image analysis algorithms so efficiently that the analysis 

results are completed within a couple of seconds. Therefore, optimized implementation of highly efficient processing 

algorithms and establishment of a powerful hardware platform are both required.  

In this paper, we present a novel wound image analysis system, utilizing the distance regularization level set evolution 

for wound boundary determination and the K-mean color segmentation algorithm for assessing healing status. We have 

implemented the DRLSE algorithm as a narrow-band restricted version based on both the GPU and CPU. After the 

wound boundary is determined, the wound area is further analyzed based on the RYB wound evaluation model [11] [12]. 

We use the fast K-mean algorithm to segment the wound area based on color and the size of each type of tissue is 

computed. In addition, we designed and constructed an image capture box to simplify the image capture process of 

wounds on the sole of the foot where diabetic foot ulcers most commonly occur. The image processing takes place as a 

collaboration between a smart phone and a modern low-cost PC. The data communication between these two devices is 

based on Wi-Fi technology.  

The paper is organized as follows. In Section 2, the DRLSE algorithm is briefly reviewed. The overall wound image 

processing method and the system structure is introduced in Section 3. The hardware system is described in Section 4, 

while the experimental results are presented in Section 5. Finally, we summarize our work in Section 6. 

2. LEVEL SET BASED SEGMENTAION 

2.1 Theoretical Formulation 

Wound area segmentation is a key element in the image analysis because it provides the foundation for the subsequent 

processes. The segmentation algorithm must perform well for a wide range of wound images.  We chose the level set 

based algorithm due to the relatively fine resolution that can be achieved, the handling of slightly tilted lines and corners, 

and the precise and easy calculation of surface normal vectors [13-16]. Furthermore, because joining surfaces are 

handled implicitly, the wound contour is self-adaptive to the topological change during the evolution. This means that 

the implicit contour accurately follows shapes that change topology, for example when a shape splits into two, develops 

holes, or the reverse of these operations. This property of level set algorithm allows direct numerical computation on 

image grids. Because of these features, level set based algorithms have been widely used in image segmentation.  

The original level set methods for capturing dynamic contours was introduced by Osher and Sethian [13]. The basic idea 

is to use the zero level set of a higher dimensional function to represent the target contour. This higher dimensional 

function is called the level set function (LSF) ( , , )x y t . In this case, finding a contour is accomplished by the evolution 

of the LSF from a random initial state to convergence on the target boundary. Caselles and Malladi [14] [15] first 

brought the level set idea to image processing and computer vision research. The most basic curve evolution equation is 

presented in a partial differential equation (PDE) as given in eq. (1). 

                                              

F
t





  


                                                                          (1) 

where F is the speed function that controls the motion of the contour and  is the gradient operator. We assume that the 

curve movement is always proportional to F in a direction normal to the curve itself. In image segmentation case, the 

speed function F is formulated as in eq. (2). 

                                   
( )I A GF g F F                                                                         (2) 
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where AF causes the curve to uniformly expand or contract depending on the local geometry information. GF is a 

function of local curvature, which keeps the propagating curve smooth and conforms to the edge distribution of the 

original image. The term Ig is a stopping term defined in eq. (3). 

                          

2

1

1 ( ( , ))
Ig

G I x y


  

                                                                (3) 

where ( , )G I x y filters the original image by a Gaussian smoothing filter to minimize noise. Ig is maximized when 

the gradient value is smallest, which means the F is completely performed on the curve when no edge is detected. The 

gradient value increases greatly when the current contour is located in the vicinity of the boundaries, in which case Ig  is 

approximating to 0. This cancels the influence of F and then the evolution of the contour will be stopped [16]. 

2.2 Distance Regulation Level Set Evolution (DRLSE)  

The conventional level set methods suffer from the irregular boundary determination (i.e., the detected boundary may be 

irregular and misshapen [17], and the LSF may lose the signed distance property (  =1), which is the basis for the 

successful evolution) [17] [18]. Hence, after each iteration we have to reinitialize the LSF. This re-initialization leads to 

a large computation burden and can reduce the accuracy of the zero level set evolution as well. 

Li et al. [18] proposed a novel evolution function, which includes a distance-regularization term. This forces the LSF to 

maintain a desired shape and implies that the signed distance property of the LSF is preserved during the entire evolution 

process [18]. The evolution equation is modified from the gradient operation in eq. (1) to the expression in eq. (4): 

                                          

( , ) ( , ) ( , )p L g A g
t


     


   


                                          (4) 

where the term ( , )p  is the distance-regularization term mentioned above, ( , )L g  is minimized when the zero level 

contour is located at the object boundary, in other words, ( , )L g  is the stopping term. The term ( , )A g  is used to 

speed up the motion of the zero level set contour in the evolution process, while p is the potential function and g is 

defined as in eq. (3). The controlling parameters ,  and  are set by users. Details regarding the function definitions 

are given in [18]. 

Finally, we formulate the numerical calculation of eq. (4) with a simple finite difference scheme  

                                           

1
, , ,( )k k k

i j i j i jtL  
                                                    (5) 

where k represents the iteration times, t is the time step, ,( )k
i jL  represents the right side of eq. (4) while replacing 

with ,
k

i j , which denotes the LSF value at iteration time k on the position (i,j) in the image grid. As is commonly 

known, applying the finite difference scheme to the discretization of the PDE like eq. (4) is justified. To reduce the 

computational demands, a narrow-band level set algorithm has been proposed to restrict the computation of the level set 

evolution to a narrow neighborhood area around the zero level set (usually an 8-neighbor area surrounding the zero 

crossing points) [19]. According to Li et al. [18], the narrow-band implementation of the model expressed in eq. (5) 

allows the use of a large time step, which will further speed up the evolution process. 

Based on the discussion provided by Li et al. in [18], the algorithm structure can be summarized as follows: 

 Step 1: Initialize the curve and LSF as a binary step function, which has been set according to different 

locations (c for the pixels within the initial curve, -c outside the curve and 0 for the pixels on the curve, where c 

is a random positive integer and is set to 2 in our case). Then, construct the initial narrowband region; 

 Step 2: Update the LSF as 
1

, , ,( )k k k
i j i j i jtL  

  only over the narrow band area; 

 Step 3: Update the narrow-band based on the new zero-crossing points on the previous defined narrow band 

area; 
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 Step 4: Assign values to new pixels in narrowband, if ,
k

i j  >0, set ,
k

i j
 
to h, otherwise set it to –h, where 

h is a constant with a default value 3 (the same value of the width of the neighborhood area); 

 Step 5: Check the termination condition. If it is satisfied, quit and return the curve. Otherwise, return to step 

2. 

3. WOUND IMAGE ANALYSIS SYSTEM 

3.1 Wound Image Analysis Software System 

In our wound image processing, we have two goals. The first goal is to find the wound area accurately, and the second is 

to analyze the wound area based on some evaluation models. In our case, the wound boundary is determined by an 

efficient implementation of the DRLSE algorithm. Then the wound area is segmented into different tissues based on 

color. In our proposed implementation, there are six software-based modules as shown in Figure 1. This section will 

discuss the function of the modules in Figure 1 in detail. 

JPEG decompression Image pre-processing
Wound boundary 

determination

Trend analysisClinical suggestion Color segmentation

JPEG wound 

image

Feedback 

result

 

Figure 1. Wound image analysis software system 

3.1.1 Image pre-processing 

The wound image is captured by the smart phone’s camera and stored in JPEG format. Therefore, the first step is to 

decompress the image into bitmap format, followed by pre-processing prior to edge (wound boundary) detection: The 

wound image is smoothed by a Gaussian operator for noise reduction, followed by edge enhancement to provide a well-

defined and continuous edge information. In our system, we use a hue-preserving enhancement algorithm [20], which 

increases both the intensity and saturation while retaining the hue information for all pixels. Due to the RGB-CMY color 

model changing step, the Gamut problem (the problem caused by enhanced color component values exceeding the 

allowable maximum value such as 255 for 8-bit deep image) will be prevented [20]. As the last step, an effective edge 

detector is performed on the enhanced image to obtain the binary image with the edge pixel set to 255 and the remaining 

pixels set to 0. This binary image is the input to the subsequent level set based boundary determination module. We 

choose the Canny edge detector [21] which will provide us a binary image with edge points marked as 1. 

3.1.2 Wound boundary determination 

The narrow-band based DRLSE algorithm was introduced in Section 2. Building on the previous discussion, the 

implementation details of the candidate algorithm for wound boundary determination are discussed here. The flowchart 

of the wound boundary determination process is shown in Figure 2.  

The DRLSE can be implemented with a simple finite difference scheme on the image grid [18]. The evolution equation 

is shown as eq. (5). By iteratively updating the level set function, the implicit contour of the level set function will 

converge towards the actual wound boundary from its initial position. 

 

Given the complicated nature of typical wounds, the level set evolution process could be prematurely stopped by an 

internal boundary within the wound area if we were to place the initial curve inside the wound area and expanded it 

gradually. To avoid this problem, we choose to set the initial curve on the healthy skin area and make sure that it 

encloses the entire wound area. As the level set evolution continues, the initial curve will keep contracting and approach 

the actual wound boundary with little resistance, since the healthy skin color is much more uniform than the wound area. 

In our case, a simple skin detection method [22] based on color will be employed to locate the skin area. Afterwards, the 

initial curve will be set as the boundary of the skin area. 
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Narrow-band area 

initialization

Level set function update

(curve evolution)

Narrow-band area updateTerminate?end

no

yes

 
 

Figure 2. Flowchart of the wound boundary determination based on DRLSE algorithm 

 

As discussed in [18], the narrow band area is defined as the union of the 3x3 neighborhoods of the zero crossing points 

of the level set function. We call a grid point (i,j) a zero crossing point if either 1,i j  and 1,i j  or , 1i j  and , 1i j 

are of opposite signs [18]. After each update of the level set function, the narrow band area will be re-calculated 

accordingly. 

 

After each iteration, we have to decide whether to stop the evolution process based on some rules. In our case, we will 

make this decision by checking the evolution rate R  of the level set function defined as in eq. (6) 

                                                              

1

1 1

k k

k

N N
R

N









                                                               (6) 

where kN represents the number of grid points (pixels) located in the implicit contour of the current level set function, 

1kN  represent the same number in the previous iteration. Hence, the numerator represents the absolute change of the 

level set function. Denominating it by 1kN  , we can obtain the changing rate of the level set function after the current 

update. The reason to add 1 to 1kN  is to ensure that the denominator is never zero. In our case, we consider a change 

rate smaller than 0.001 as a sign of convergence, and we use a change rate of 0.001 as the criterion for stopping the 

evolution process. 

 

The related results of the wound boundary determination are shown in Section 4. 

3.1.3 Color segmentation  

After the boundary of the wound area has been determined, color segmentation is performed based on clinical criteria. 

The red-yellow-black (RYB) model [11] is used, which requires an efficient color clustering algorithm to identify the 

color category of each pixel in the wound area. The RYB system classifies the wound as red, yellow, or black tissues, 

respectively, which represent the different phases of the tissue on the continuum of the wound healing process. 

Specifically, red tissues are viewed as the inflammatory (reaction) phase, the proliferation (regeneration) phase or the 

maturation (remodeling) phase. Yellow tissues typically represent infected tissue or tissue containing slough, which has 

not begun to heal. Finally, black tissues contain necrotic tissue.  

Based on the RYB wound evaluation model, the wound analysis task consists of clustering the pixels within the wound 

boundary into certain color categories centered around the corresponding standard color values. Therefore, all classical 

clustering methods can in principle be applied to solve this task. For this research a fast clustering algorithm called K-

mean has been selected [23]. In data mining, K-mean clustering is a method of cluster analysis, which aims to partition n 

observations into k clusters, in which each observation belongs to the cluster with the nearest mean [24]. In our case, all 

the pixels within the wound boundary can be viewed as observations. The three colors referred in RYB model are 

regarded as cluster centers. The color segmentation process is shown in Figure 3. 

To perform color segmentation, several operational parameters need to be specified. At first, the color difference 

between the color cluster center and the target pixel is calculated by the standard color difference in the CIE Lab model 

[25]. Secondly, in practice we specify the initial centers according to some empirical values such as the Macbeth Color 

Checker table provided in [26] rather than leave them to be randomly chosen. Finally, the termination condition is 

fulfilled if the new cluster center assignment is the same as the previous updating result. By this operation, the 
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converging speed will be increased, making the color clustering process more efficient. Based on experimental results, 

all test images are segmented well enough with at most 5 iterations.  

 

Color space transformation 

from RGB to CIE LAB
Initial cluster center setting

K-mean cluster center 

updating

Terminate?end

Label all the pixels with 

corresponding center color 

value

yes

no

 
 

Figure 3. K-mean color segmentation flowchart 

4. SMART PHONE & PC COLLABORATIVE IMPLEMENTATION 

4.1 Smart phone & PC cooperative system 

The experimental results show that the wound image processing time on current smart phones alone is too long for 

practical use. Therefore, we chose a solution where the processing is performed on an embedded PC, which provides the 

needed computational capability. Thus, the PC and smart phone constitute a collaborative implementation. The basic 

structure for this collaborative system is shown as Figure 4. 

Since the wound analysis system contains two computational components, the communication scheme is important. In 

this system, we selected a communication scheme in the application layer based on HTTP protocol, which is the most 

frequently used protocol in the application layer in TCP/IP network protocol model, rather than the common method of 

manipulating the transport layer by socket programming based on TCP/IP protocol. The reason is that the operation in 

the highest layer (application layer) in the TCP/IP model will be more generalized and can be applied to different 

settings in lower layers of this network model. In this case, we do not attempt to determine which communication 

protocol the two systems in the transport and internet layer use.  

The smartphone plays the role of client in the communication scheme. It accomplishes the following tasks sequentially: 

1) acquire the wound image and save on the specified directory on the SD card; 2) make a request to the server (PC) and 

send the JPEG file of the wound image to the PC; and 3) receive the processed image file sent back from the PC and 

display it on the screen. The PC is viewed as the server, which: 1) listens to the requests of the client and receives the 

image file from the client, 2) performs the wound image analysis, and 3) sends the JPEG file of the processed image 

back to the smartphone (client) as a response. The server program on the PC runs continuously and listens for a request 

from the client process on a smartphone, which means that any smartphones getting access to the Wi-Fi are able to send 

requests to the server. Hence, this communication scheme is able to handle multi-client and a single server situation 

when several smartphones are attempting to connect to the server at the same time with some conflict-avoidance 

schemes, such as the TDM (time division multiplexer which allocates each client a unique slot to communicate with the 

server). 

4.2 GPU &CPU collaborative implementation of the level set algorithm 

In spite of the narrow-band optimization, the level set method is still too computationally demanding. Hence, we 

searched for strategies that permit the boundary detection of the wound image to be carried out in an acceptably short 

time. In our system, we implement the iterative LSF updating, which is the most computationally demanding part of the 

level set algorithm, on a GPU (Graphic Processing Unit), which is available on most of today’s PCs and laptops. The 

major difference between CPU and GPU implementation is that the latter supports parallel computation to a much 

greater extent. Unlike the traditional, sequential way of programming on CPUs, a GPU’s programs deal with complex 

parallel reductions to best utilize the available parallel resources [27].  

 

Proc. of SPIE Vol. 8669  866924-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/15/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 
 

 

7 

 

Establish communication 

channel based on http 

protocol

Taking picture on 

smartphone

Save picture as JPEG 

file on Smartphone

Transfer/recieve JPEG 

file  with PC

Display the result 

picture

Save JPEG file on PC

Wound image process
Save result image on 

PC as JPEG file

Establish communication 

channel based on http 

protocol

Transfer/receive JPEG file 

with  smartphone

Client 

(Smart phone)

Server (PC)

Wi-Fi
Wi-Fi

Image 

capture

Image 

exchange

 
Figure 4 Smartphone & PC collaborative system 

 

The traditional narrow band method avoids unnecessary computation by only updating field elements near the level set 

curve. However, according to [28], even the computations near the level set curve can be avoided in regions where the 

level set field has locally converged. This observation motivates the method of tracking the active computational domain 

according to both the temporal and spatial derivatives of the level set field. Afterwards, the level set updating only 

happens on the pixels belonging to the specified active computational domain [28]. The active domain is updated before 

every iteration. The original version of this algorithm is based on the 3D image situation [28], but we have transformed it 

to operate in the 2D wound image situation. 

In our system, the GPU programming is implemented with Open Computing Language (OpenCL) which is a framework 

for writing programs that execute across heterogeneous platforms, such as CPUs and GPUs. In our case, we view each 

pixel in the current active computational domain as the basic processing unit (called ‘work item’ in OpenCL). Then we 

can maximize the usage of all the streaming cores at the same time by running a kernel (similar to the concept of 

function in C) on as many units as possible at the same time. The programming flow chart for modified level set 

algorithm based on OpenCL is shown in Figure 5. We can see from this figure that the host program is running on a CPU 

including the function of target image reading, edge calculation, platforms and memory initialization. On the other hand, 

the actual level set algorithm is encapsulated in kernels running on a GPU. All the kernels will process only one pixel at 

a time. In addition, the intermediate processing results of kernels will be stored in global memory on the GPU and will 

not be read back to the host until the end of the algorithm. In this way, the memory access latency from different 

platforms can be reduced as much as possible. 

5. IMAGE CAPTURE FOOT BOX  

Most foot ulcers happen on the sole of the foot. Due to the physical limitation, it is difficult for a patient with diabetes to 

take pictures of such wounds without assistance. To facilitate the image capture process, we have designed an image 

capture device with the structure shown as Figure 6(a). On top is a plate made from wood. This top plate is divided into 

two connected parts, where the first part has a rectangular opening of the size of an adult human foot, on which the foot 

is placed. Across this opening, there is a support bar that allows the foot to rest comfortably. The second part allows the 

smartphone to be placed in a precise location with holes for camera lens and flash. There is an angle between the two 

parts to allow the image capture. Below the top plate is another plate with an up-facing mirror, angled slightly so that the 

flash will illuminate the sole of the foot and so that image of the sole of the foot is captured by the camera. 
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When using this device, the patient places his/her foot on the top plate and is able to observe the wound through the 

smartphone camera. After ensuring a good image of the sole of the foot, the patient takes a picture of the wound by a 

voice command like “cheese” or “take a photo” to the smartphone. The captured image is saved on the phone 

automatically and transmitted to the PC for analysis. 

The dimension of both plates is determined empirically from the size of adult human feet and the dimensions of android 

smartphones. The distance between the two plates is determined by the simple optical rules of the lens and the 

parameters of the camera. For the top plate, we set 12.5” x 6.5” for the part on which to place the foot and 12.5” x5” for 

the part on which to place the smartphone. The size of the bottom plate is set as 12.5” x 10.5”. The distance between the 

foot part on the top plate and the lower plate is set to be 5”. The angle between the two parts on the top plate is set to be 

57°. Accordingly, the angle between the mirror and the lower plate is set as 33°.  

 

Read the input image 

and convert it to grayscale

Calculate the edge information 

for gray image by Canny 

algorithm

Initialize the level set function

Calculate the initial Gradient 

information of the edge image

Initialize the OpenCL 

envionroment

Initialize all the OpenCL kernels
Kernel 1 exectution: initialize the 

active computational domain

Kernel 2 exectution: update the 

level set function on active 

domain

Kernel 3: update the active 

domain

Terminate?

Save the result image back to host 

and display it

End

no

yes

Execute on CPU

Execute on GPU

 

Figure 5 Programming flowchart of level set algorithm in OpenCL 
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A photo of the actual image capture foot box is shown in Figure 6 (a), and a sample image of a foot with a simulated 

wound is shown in Figure 6 (b). We can see from this figure that the entire foot is correctly imaged by the smartphone 

camera. 

 

      

                                  (a)                                                                                                           (b)                                                                         

Figure 6. Design of image capture foot box. (a) photo of the actual foot box; note the smart phone; (b) sample image taken with the 

foot box. 

 

6. EXPERIMENTAL RESULTS 

6.1 Experimental environment 

As mentioned in Section 3, the proposed wound image analysis system is based on a combined smartphone and 

embedded PC system. In our case, we use the Motorola Droid phone running Android OS 2.3 together with the Habey 

Embedded PC EPC-6567, which has a small dimension (7.87”x 8.86” x 1.77” (W×L×H)) and high computation 

capability (CPU dual-core 1.8GHz + ATI Radeon HD 6350 GPU). All the software is developed in JAVA with 

assistance of JAVACL library for GPU programming, Android 2.3 toolkit for smartphone programming and JAVA 

servlet package for network programming. 

6.2 Wound image analysis result 

We have tested our algorithm on sample wound images obtained from patients at UMASS Medical Center, without any 

attributing information; four such images are shown in Figure 7. In practice, we down sample the original wound images 

by a factor 0.25 in both horizontal and vertical directions. The size of down sampled images is around 640 x 480, which 

turns out to give sufficient resolution for wound analysis. 

The wound boundary determination result is shown in Figure 8. The detected wound area is marked by blue color in all 

result images. We can see from these results that the DRLSE algorithm performs very well on sample image (a) and (b) 

since the skin color in these images are normal and uniform. The algorithm can accurately capture the wound contours. 

For the last two sample images, however, the segmentation results contain some small false wound area surrounding the 

real target. This is easy to understand, as the skin areas in these two images are not flattened and contain a lot of outlier 

edge information, which may unexpectedly stop the LSF evolution. 

The computation time for the accelerated DRLSE algorithm are shown as in Table 1. We can see that the time efficiency 

is enhanced by about a factor 5 with CPU + GGPU implementation. Hence, we may assume that the enhanced DRLSE 

algorithm basically satisfies the time requirements for practical wound analysis. 
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                                                                   (a)                                                               (b) 

                                             

                                                                                 (c)                                                     (d) 

Figure 7. Sample images from wound clinic center in UMASS 

 

      
                                                                            (a)                                                                   (b) 

                   
                                                                               (c)                                                              (d) 

Figure 8. Wound boundary determination results. 

Table 1: Efficiency Evaluation 

Image No. (a) (b) (c) (d) 

Computing time (s) 

with GPU & CPU 3.1 2.5 2.2 2.8 

Computing time (s) 

with CPU only 15.2 11.9 13.2 12.4 
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6.3 Color segmentation results 

To explicitly illustrate the color segmentation results, we chose two wound images whose colors indicate different types 

of wound tissues according to the RYB wound model as shown in Figure 9 (a) and (b). The color segmentation results 

are shown in Figure 9 (c) and (d). In the result images, each pixel in the wound area is marked by the corresponding 

standard color of the category to which it belongs (red, yellow or black). 

 

                

                                                                      (a)                                                                    (b) 

                 

 

                                                                                (c)                                                                   (d) 

Figure 9. Color segmentation results. (a) original wound image 01; (b) original wound image 02; (c) color separated wound image 01; 

(d) color separated wound image 02. 

Based on the results seen in the Figure 9 (c) and (d), the color segmentation looks promising. Most pixels within the 

wound area are classified to the color corresponding to the observed color despite several misclassified points, which 

always are located at the mixed area of tissues of different colors. The computation time for the fast K-mean algorithm is 

less than one second for the two wound images. Experienced clinicians will be consulted to further evaluate the results 

above. 

 

6.4 Test result for the entire system 

Finally, we test the entire wound image analysis system. In this trial, we send a sample wound image file from the 

smartphone to the PC by Wi-Fi and determine the wound boundary on the PC. Finally we transmit the result image file 

back to the smartphone and display it on the screen. The area determination results are shown in Figure 10, and they 

appear to be correct. Note that the target image used in this test consists of one original wound and another two manually 

added wounds. The purpose of using this image is to illustrate the good robustness of the level set algorithm against 

topological change.   
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(a)                                                                                     (b) 

Figure 10. Test result of the entire system (a) the original image; (b) the result image 

The whole process including transmission and processing takes no more than 4 seconds, which is acceptable for a real-

time system. 

7. CONCLUSION 

We have designed a wound image analysis system, based on a smart phone and PC collaborative hardware platform. In 

the system, the DRLSE algorithm was applied to the image to determine the boundaries for all wound areas and measure 

the size of each wound by pixel. To achieve further efficiency improvement, the DRLSE algorithm was parallelized and 

implemented on a GPU. Finally, the wound areas were classified to different color tissues based on RYB wound 

evaluation model. Based on evaluation of 7 sample wound images, we found that the DRLSE algorithm provides very 

promising segmentation results on ordinary wound images with uniform skin color. However, when the entire foot is 

infected and the skin color is complicated, the algorithm does not always find a well-defined boundary of the wound 

area. The total image analysis time, including segmentation time, does not exceed 3 seconds for all wound images tested, 

which is acceptable for current real-time image processing system. Finally, the K-mean clustering method works as 

expected on the color segmentation module. 

In the future work, we are aiming for improving the efficiency of DRLSE algorithm implementation further by 

optimizing the memory allocation scheme on CPUs and GPUs. We plan to set an automatic parameter adjustment 

scheme of DRLSE algorithm in order to be adaptive to different wound image conditions. In addition, a trend analysis 

module will be designed and the wound image analysis result feedback format will be developed in order to give patients 

a clear understanding of the wound status and wound healing trend. Finally, we will involve experienced clinicians and 

patients with diabetes to further evaluate this system. 
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