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Abstract
Hearing Loss is one of the three most common chronic

conditions among the elderly. In many cases, an individu-
als hearing is only impaired at certain (not all) frequencies.
Analog hearing aids boost all sound frequencies equally in-
cluding frequencies in which the individuals hearing is good,
causing discomfort to the user. Digital hearing aids can am-
plify only the specific frequencies at which a persons hear-
ing is impaired. In this paper, we describe the design, im-
plementation and evaluation of a smartphone digital hear-
ing aid app. Our digital hearing aid implementation has two
parts: speech processing in the frequency domain and sound
classification. We used Weighted Over-Lap Add (WOLA)
filter bank to decompose microphone sounds into different
frequency bands that are then amplified in the frequency do-
main. Mel-frequency cepstral coefficients (MFCC) of input
sounds are computed and used as features for sound clas-
sification by the Gaussian Mixture Model (GMM) machine
learning model. Our digital hearing aid app amplifies select
frequency bands and correctly classifies speech in quiet and
noisy environments. The results of a small user evaluation of
our prototype are also promising.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous

General Terms
Design
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1 Introduction
Thirty five million (or 11%) americans were hearing-

impaired by the year 2008 [11]. However, due to several
factors including cost, only 25% of people with hearing loss
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currently use hearing aids. Due to custom Digital Signal Pro-
cessing (DSP) chips required to process sounds in real time,
the average price of a hearing aid is $1,601.

A hearing-impaired patient is frequently unable to hear
sounds at certain frequencies. Analog hearing aids am-
plify sounds at all frequencies uniformly, which improves the
user’s hearing at the inaudible frequencies but makes audible
frequencies too loud. Digital hearing aids can apply differ-
ent amplification (or reduction) factors to different frequency
bands. For instance, a person with sensitivity to high-pitched
sounds may configure their digital hearing aids to compress
high frequencies but not other frequencies.

Digital hearing aids have many desirable features that en-
hance the intelligibility of speech [10]. Noise reduction en-
ables human speech to be heard clearly in noisy environ-
ments by reducing noise in specific frequency bands while
preserving overall sound quality. Programmability enables
the hearing aid to be customized to accommodate user-
specific impairments, and to be reprogrammed if the user’s
hearing changes over time. Feedback reduction ensures that
already amplified sounds emanating from the receiver are
not mistakenly amplified further, causing the user some dis-
comfort. Directional microphones preserve sounds from the
speaker’s forward direction (facing listeners) while suppress-
ing sounds from other directions.

In this paper, we present a software-only design and im-
plementation of a digital hearing aid app on Google’s An-
droid platform. A digital hearing aid app is accessible at low
cost to economically disadvantaged populations worldwide.
A hearing-impaired user running our app simply connects
their earphones to their Android phone, and is able to listen
to environmental sounds, live conversations, phone calls and
music all amplified to compensate for hearing loss in specific
frequencies. While Android and iPhone hearing aid apps
such as SoundAmp R [15] and HearYouNow [8] have begun
to emerge, their inner workings have not been published. To
the best of our knowledge, this is the first exposition and of
a hearing aid app.

2 Hearing Aid App Architecture
The architecture of our hearing aid app is shown in fig-

ure 1. The digital hearing aid system is split into two parts:
speech processing in the frequency domain and sound classi-
fication to classify input sounds into speech and speech with
noise categories. The acoustic signal is read in by the micro-
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Figure 1. Architecture of our hearing aid app

phone. WOLA filter banks then split the sound up into dif-
ferent frequency bands, which are then amplified (reduced)
by the amplification in the specific frequency ranges at which
the user’s hearing is impaired. Finally, the WOLA synthesis
filter bank reconstructs the acoustic signal from the ampli-
fied sub-band signals, which is sent to the receiver for play
out.

Hearing aids users usually encounter different sound en-
vironments each day such as conversations in quiet or noisy
environments, in music theaters or in road traffic noise. A
digital hearing aid classifies the user’s listening environment
into different listening situations to which different adapta-
tions are employed. For instance, if the digital hearing aid’s
sound classifier detects noise in the sound, it applies a noise
reduction algorithm to reduce the noise. In our system, 12-
dimension Mel-Frequency Cepstral Components (MFCCs)
of input sounds are computed and used as features of the
acoustic signal. Then a fast GMM-based model classifies
two listening situations: clean speech and speech with noise.
In our current prototype, noise reduction and the configura-
tion unit for programming the hearing aid with different pa-
rameters in different situations, has been left as future work.
3 Speech Processing in Frequency Domain

Speech processing in the frequency domain decomposes
the acoustic signal into different frequency sub-bands that
are then amplified with different gains. Digital filter bank
systems are widely used for frequency-selective signal de-
composition in modern hearing instruments. Signals are pro-
cessed in decimated sub-band signals for energy-efficiency
[7, 9]. Complex-modulated (DFT) lter banks are highly ef-
ficient decimating lter bank system [6, 20]. The DFT filter
bank uses a polyphase implementation of the Finite Impulse
Response (FIR) lters (Figure 2).

The Weighted Over-Lap Add (WOLA) filter bank is a
low-power, low delay DFT structure [20], widely used in
digital hearing aids. The WOLA analysis filter bank splits
input microphone sounds into 8 sub-band signals. Finally,

the WOLA synthesis filter bank is used to reconstruct the
amplified acoustic signals from sub-band frequencies.

Figure 2. Complex modulator model of the DFT filter
bank

4 Sound Classification
Sound classification has been widely researched in differ-

ent applications, such as speech/music discrimination [12],
and modeling sound events on mobile phones [13]. These
applications use classifiers such as decision trees in [12],
which are too complex for hearing aids. A simpler classifica-
tion scheme may be used in hearing aids, since it only needs
to identify two contexts - speech in quiet and speech in noise.
MFCC features have become very popular for sound classi-
fication in digital hearing aids [4, 1]. Many applications use
the GMM classifier to achieve good sound recognition accu-
racy [21]. We utilize 12-dimension MFCCs as features in the
GMM classifier for sound classification in our digital hearing
aid app.
4.1 Front-End Processing

The audio stream from microphone is segmented into
frames of uniform duration. Features for classification are
extracted while processing each individual frame. We use
independent non-overlapping frames of 8 ms. Our sampling
rate is 16000, so there are 128 samples in one frame from
which 12-dimension MFCCs are extracted. Figure 3 is the
flowchart of the MFCC.

Figure 3. MFCC Flow Diagram

The frequency bands are equally spaced on the mel scale,
which approximates the human auditory system’s response
very closely [5]. The MFCC maps frequency space to mel-
space. The mel-filters are evenly distributed in mel-space,
focusing the analysis more on low-frequency bands. Fig. 4
shows the mappings of mel-space to frequency space.
4.2 Fast Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric prob-
ability density function represented as a weighted sum of dif-
ferent Gaussian distributions [17]. We use 8 Gaussian com-
ponents, each with a mean, variance and weighting. M is
the number of Gaussian components. The Gaussian Mixture
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Figure 4. Mel-space to frequency space mappings

Density (GMD) for a D-dimensional random vector can be
calculated as [17]:.

Where x is a D-dimensional random vector, b(x) is the
component density, and Ci is the mixture weight. Each com-
ponent density is a D-dimensional Gaussian function of the
form

with mean vector µi and covariance matrix Σi. The com-
plexity of exponential calculations is very high. To reduce
complexity, the Gaussian Mixture Density (GMD) is calcu-
lated in the log domain, thus avoiding the complex exponen-
tial calculation. The GMD calculation has two steps: Maha-
lanobis distance calculation and exponential-logarithm cal-
culation. In log form, the GMD is expressed as

The first part in equation 4 is the Mahalanobis distance
calculation which is shown in equation 6. The second part in
equation4 is called the exponential-logarithm

The exponential-logarithm calculation can be derived
through logadd calculation defined as shown in 8, which

could be calculated by Taylor Expansion calculation, which
is shown in equation 7.

5 Hearing Aid App Implementation
The hearing aids app was developed using the Android

Software Development Kit (SDK). We tested our app on a
Samsung Galaxy S2 smartphone running Android operating
system version 2.3.3. The entire app including the GUI,
speech processing and sound classification was written in
Java.

During frequency domain speech processing, PCM for-
matted data is placed in a circular queue buffer. Once full,
the buffer is input to the WOLA unit 4 samples at a time.
After processing one set of inputs, the WOLA unit outputs
4 samples to the output buffer queue, which are then played
out using the receiver as shown in Figure 5.

The software components for sound classification and the
interactions between them are shown in Figure 6. An en-
vironmental model training system is pre-built based on ex-
tracted features. In essence, two models are trained using
the Gaussian Mixture Model with 8 mixture number using
12-dimension MFCC features calculated from raw data. The
training data is recorded using a 16000 Hz sampling rate, 16-
bit mono audio samples from the smartphone microphone.
The app’s sound classification module exploits the pre-built
models and is able to classify the environment when users
are speaking. When launching the app for sound classifica-
tion, the microphone on the smartphone records input sound
for 4 seconds using a 16000 Hz sampling rate of 16-bit mono
audio samples. Each frame consists of 128 samples and 12th
order MFCC for each frame is computed. The classifier iden-
tifies the probability of each frame. After accumulating 500
frames, the classifier displays the decision on the User Inter-
face. Screenshots of the app is shown in Figure 8.

6 Evaluation
6.1 Simulation of the WOLA algorithm

For validation purposes, we simulate the WOLA algo-
rithm using MATLAB. As shown in Figure 7, applying dif-
ferent gains to different channels enlarges the sound in dif-
ferent frequencies.
6.2 Evaluation of MFCC Features and GMM-

Based Classifiers
The evaluation of the MFCCs as features and GMM-

based classifiers is performed on a database that consists of
two classes of sounds: clean speech and speech with noise.
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Figure 5. Implementation of Speech Processing in the
Frequency Domain

The clean speech comprises of speech spoken by different
people in different situations, such as a living room, a cafe-
teria or making a speech. The noisy speech is generated by
randomly mixing selected files from the clean speech library
with different noises. We use 4 minutes speech for training
and 4 seconds of speech for testing. We randomly select 30
different speech samples for testing. This tests resulted in 29
correct testing sets (out of 30) yielding a recognition rate of
96.7%.
6.3 User Studies
6.3.1 Speech Processing in Frequency Domain

Ten graduate students (6 males and 4 females) at Worces-
ter Polytechnic Institute (WPI) participated in our user study
to evaluate our hearing aid app. We tested our app with sub-
jects with no hearing impairments since access to deaf sub-
jects requires full IRB approval at a hospital. We shall do so
in future. Even subjects without impairments can detect am-
plification (or compression) of different sound frequencies.
Each subject listened to the sound generated from the app
for about 2 minutes and then listened to the original sound,
where the frequency spectrum of each sound is amplified
in three different sub-bands. All subjects reported that they
could detect frequency changes between the original sound
and the processed sound. They also felt that the apps signal
processing calculations were a little slow and that the app
consumed a lot of power.

Figure 6. Implementation of Sound Classification

Figure 7. WOLA Simulation Results

6.3.2 Sound Classification
Our hearing aid app can also detect environmental noise.

We classify environments into two categories: quiet environ-
ment, and noisy environment. Sixteen subjects installed and
used our app in different scenes. The first test scene was a
conference room (no people) to illustrate scenes with very
little noise (about 50 decibels). Pairs of subjects talked to
each other while the app was turned on in order to capture
the sound. After recording for 10 seconds, the app accu-
rately determined that the input sound signal was ”voice in
quiet environment” on 14 of the 16 phones, while the other
two phones incorrectly determined that the input signal was
”voice in noisy environment”. A second set of tests were
done in a noisy outdoor plaza with a fountain, music band
playing and students chatting (¿ 75 decibels). The app on all
16 cell phones correctly determined that this was ”voice in
noisy environment”.

Several factors influence the accuracy of sound classifica-
tion including the distance between the microphone and the
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Figure 8. App Screenshots

speech/noise source, and the direction which the microphone
is facing relative to the source. Voices from other humans
may also be regarded as noise, leading to misclassification
of the actual sound environment. In future work, we plan to
investigate some of these factors.

7 Related Work
Hearing aids: have been researched and manufactured

for over 25 years [7, 10]. Analog hearing aids [18] and cus-
tom digital hearing aids [10] have been proposed.

Speech processing: prior work exists in speech process-
ing in noisy environments [9], segmentation of audio signals
into speech or music [12], energy-efficient implementations
of speech classification algorithms [4] and speech production
from MFCCs [19].

Sound classification in ubiquitous computing: has
emerged due to the popularity of smartphones. Systems for
scalable large scale classification of audio environments have
been proposed [13, 14]. Proposed techniques can identify
speakers [13], use sounds to classify parts of a city [3], infer
conversation episodes within an audio stream [16] and detect
the stress of speakers from their speech [2].

8 Conclusions and Future Work
In this paper, we introduced our digital hearing aids sys-

tem on Android smartphones. We describe the WOLA filter
bank used in our system to decompose input sounds into fre-
quency sub-bands, permitting the amplification of specific
frequencies in which a user’s hearing is impaired. We suc-
cessfully implement sound classification on Android phones
using MFCC sound features and the GMM classification al-
gorithm. The environmental sound recognition results are
accurate both in quiet and noisy environments. In future, us-
ing our sound classification module, the hearing aid app will
automatically detect environmental noise levels and config-
ure the hearing aid with appropriate parameters.

Our frequency domain processing is currently a bit slow

due computational intensity of the algorithms implemented.
To improve performance, we shall investigate fixed point
arithmetic for our calculations and using the smartphone’s
GPU to accelerate parallelizable algorithms. Algorithms
such as WOLA filter bank lend themselves to parallelization.
We shall also investigate efficient noise reduction algorithms.
Finally, we intend to collaborate with hospitals to evaluate
our app with hearing impaired patients. The overall goal of
such tests will be to establish the utility, accessibility and ac-
ceptance of the hearing aid app for real patients. Since hear-
ing impaired patients are considered vulnerable populations
for the purposes of Institution Review Board (IRB) approval,
great care will be taken to handle such tests correctly.
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