

G. Bebis et al. (Eds.): ISVC 2014, Part II, LNCS 8888, pp. 904–914, 2014.
© Springer International Publishing Switzerland 2014

3D Previsualization Using a Computational
Photography Camera

Clifford Lindsay and Emmanuel Agu

Worcester Polytechnic Institute, Worcester, MA

Abstract. During movie production, movie directors use previsualization tools
to convey the movie visuals as they see them in their minds eye. Traditional
methods of previsualization include hand-drawn sketches, storyboards and still
photographs. Recently, video game engines have been used for previsualization
so that once the movie set is modeled, scene lighting, geometry, textures and
various scene elements can be changed interactively and the effects of many po-
tential changes can be previewed quickly. The use of video games for previsua-
lization involves manually modeling the movie set by artists to create a digital
version, which is expensive. We envision that a computational photography
camera can be used for capturing images of a physical set from which a model
of the scene can be automatically generated. A wide range of possible changes
can be explored interactively and previewed on-set including scene geometry
and textures. Since our vision is large, we focus initially on an initial prototype
(a computational photography camera and previsualization algorithms), which
enable scene lighting to be captured, inferred, manipulated and new lights ap-
plied (relighting). Evaluations of our light previsualization prototype shows low
photometric error rates and encouraging feedback from experts.

1 Introduction

Movie making is the process of storytelling using creative visuals and audio scenes.
While designing the movie set, its physical configuration must be matched to the
director’s artistic vision. Previsualization techniques are used to create approximate
previews of a movie sequence prior to shooting it. Often these techniques are used to
convey the artistic direction of the story in terms of cinematic elements, such as cam-
era movement, angle, lighting, dialogue, and character motion. Essentially, a movie
director uses previsualization (previs) to convey movie visuals as he sees them in his
”minds-eye”. Traditional methods for previs include hand-drawn sketches, story-
boards and photographs to convey how a scene or character might look or move.

A recent trend has emerged whereby 3D video game engines are used to design
movie sets and perform previsualization (called 3D previsualization). By understand-
ing the effects of the various options available to the filmmakers prior to shooting,
previsualization can help to minimize reshoots, save time, money, and facilitate the
creative process [1]. Digital previsualization platforms have the advantage that once a
scene is digitally modeled, visualizing changes to the scene can be done interactively
and the effects of many potential changes can be previewed quickly. However, using

 3D Previsualization Using a Computational Photography Camera 905

video games for previsualization involves manually modeling the movie set by artists
to create a digital version, which is expensive. Consequently, digital platforms for
previsualization are currently used mostly by big movie companies.

Our Vision. Computational photography cameras and algorithms have recently
emerged [2]. We envision that a computational photography camera (hardware, algo-
rithms and software) can be used for interactive 3D previsualization. A digital model
of movie set can be automatically generated from a picture (or pictures). Various
scene configurations can be explored by the director including lighting choices, movie
furniture, props and object materials in order to guide on-set design choices.

Fig. 1. Our envisioned previsualization interface that facilitates the virtual capture and edit all
of a movie scene’s properties including geometry, object reflectance, texture, shadows and
lights

Figure 1 is a mock-up of our envisioned previsualization interfacen. Using our
computational previsualization camera (hardware, algorithms and software), a movie
set is digitized in real time to capture scene objects, material, lighting and textures,
which can be edited on-set by the movie director to view the effect of changes. In the
figure, a scene object has been selected by the user via the interface (red dotted line).
The interface then provides all the options for editing the real object virtually such as
textures, reflectance, geometry, and lighting changes and previewing the changes in
real-time. This tool would provide the same level of control for visualization as 3D
modeling tools such as Maya or 3D Studio max on-camera.

Our Initial Scope. Our vision is extremely large encompassing the capture, manipu-
lation and previsualization of almost all scene elements including lighting, shadows,
texture, materials and geometry. As a proof of concept, and to manage the scope of
our efforts initially, we focus on capture, analysis, manipulation and previsualization
of lighting modifications on the movie set independent of the other scene properties.
Scene lighting has a dramatic effect on the artistic aspects of the scene by evoking
mood, directing attention to specific details, and allowing the director to convey
thoughts and ideas. Figure 2 shows several examples of the use of cinematic lighting;
We automatically capture the on-set lighting and provide interactive manipulation of

906 C. Lindsay and E. Agu

cinematic elements to facilitate the movie maker’s artistic expression, validate cine-
matic choices, and provide guidance to production crews.

Fig. 2. A collage of example lighting concepts that illustrate diverse types of scene lighting

Our Key Contributions. We propose a five-tiered framework: 1) Symmetric lighting:
new algorithms that analyzes and decomposes the scene photometrically to infer cur-
rent scene lighting, and 2) β (beta) map: a novel data structure for storing captured
light, which facilitates editing and relighting. 3) Light editing: functionality to modify
the captured scene lighting using gradient domain operations. 4) Scene relighting: a
technique to apply new lighting to the movie scene and 6) PCam: a novel programm-
able camera architecture that is fully programmable and a user interface that facilitates
scene capture, analysis, editing and previsualization by novices.

2 Symmetric Light

Symmetric Lighting is our novel technique for inferring the lighting conditions under
which an image of a scene (movie set) was initially captured without knowing or
measuring its geometry, reflectance, or appearance and without the need for light
measurement equipment as is typically used today. An outline of the Symmetric Light
technique is now provided. We assume that the light source colors are distinct and
known by the user a priori, and calculate the effects of these lights at each image pixel
due to the different colored light sources. Under this condition, every pixel receives a
mixture of these two distinct light sources L1 and L2 either directly or after being re-
flected off a material surface. If an image pixel receives a mixture of L1 and L2, in
RGB space λ ={R, G, B}, an image sensor has three color values our input image can
be modeled as:

 (1)

We recover the direct and global elements of light using a technique called Active
illumination. Active Illumination is the name given to a class of Computational

 3D Previsualization Using a Computational Photography Camera 907

Photography [4] methods that manipulate only the lighting in a scene in order to esti-
mate scene properties. In our Symmetric Lighting method, we manipulate the lighting
by alternating the color each light emits, which allows us to estimate the proportion
each light contributes to illuminating a given camera pixel. Thus to infer what light
impinges on a pixel, we position the lights in the appropriate location in the RGB
color cube based on their light color. Then using interpolation, we assume that each
pixel, located at (x,y) in image I, has a relative contribution of light from each illumi-
nant in the form:

21)1(LLL ββ −+= (2)

Since we assume knowledge of L1 and L2, determing the light L received by a given
pixel reduces to finding it’s value of β (contributions received from L1 and L2). To
solve for β we introduce the novel idea of Symmetric Lighting, which allows us to
introduce further constraints on the ill-constrained formulation for determining β. The
idea is that while keeping the camera and light positions constant and assuming the
lights emit different colored light, we acquire two images of the scene. After acquiring
the first image, the second image is acquired with the colors between lights swapped.

Using Euclidean geometry in the RGB color cube, we can solve for the values of
the two lights sources. If we plot the light colors of L1 and L2 in the RGB cube, they
form two points in the cube. The line between L1 and L2 in the color cube is in fact
the range of light colors (mixtures) any pixel image can receive. If we then multiply
the light line segment

21LL by a pixel of the color C1, this corresponds to a transform

of the line segment to a new location in the RGB cube, call it
211 LLC . The new line

segment
211 LLC spans a color range, where every point on the line segment is some

interpolation of the end points C1L1 and C1L2 where β is the interpolation variable. If
we also consider a second transformation of

21LL by a different pixel color C2, this

forms a different line segment, call it
212 LLC . We find the proper interpolant value β

that solves these equations. Then the solution is just the β value where
211 LLC and

212 LLC intersect as indicated in Figure 3.

Fig. 3. The relationship between camera pixel C1 and C2 in successive images at the same pixel
location (i, j) and the two lights that provide a relative contribution in linear RGB space

908 C. Lindsay and E. Agu

The above formulation assumes 2 lights but we also derive a more general form for
inferring the colors of N different lights. We refer the reader to [5] for the full deri-
vation and also our technique for minimizing light estimation errors.

3 The Beta Map

Solving equation (2) at each pixel yields the value of β at that pixel. The grid of β for
all pixels forms a map. As such, the scene lighting captured using Symmetric Lighting
is stored in a novel data structure that we call the β (Beta) map. The elements of the β
(Beta) map have a one-to-one correspondence with the camera pixels. Image
processing operations can be used to modify or interprete the β map making it a po-
werful representation for editing the scene lighting environment. The β map is ana-
logous to the alpha, normal, and depth maps for a scene. It stores the values of the
light multiplied by the geometric information of the scene prior to it being multiplied
by the reflectance and appearance values.

Fig. 4. Beta Map Creation: input two images containing the same setup with the light colors
interchanged resulting in a grayscale image where the pixel values correspond to the proportion
of light each source provides for a particular pixel

Figure 4 shows the creation process of the beta map. The symmmetric light
formulation for 2 lights can be used to generate a beta map that can be used to factor
out the lighting information leaving only R() values, which is known as the reflec-
tance image.

4 Gradient Domain Light Editting

One benefit of the β map is that its values can be transformed to the gradient domain
where the distribution of photons in a scene can be edited directly. This is motivated
by two facts 1) the Human Visual System (HVS) is sensitive to local contrasts rather
than absolute luminance values [6]. It is known that image gradients are correlated
with contrast differences [7]. 2) Editting the β map also edits the reflectance gradient.
The gradient of the the β map is defined as:

 (3)

Several gradient domain edittng operations are defined on the β map including scal-
ing, rotating, translating, diffusing and sharpening the β map. Figure 5 is an example
of the effects of β map editing in the gradient domain.

 3D Previsualization Using a Computational Photography Camera 909

Fig. 5. This example shows how editing the β map essentially edits the lights, the distributions
of photons, and their influence on parts of the scene. Left is the original bath scene. The other
images show edits to the β map; left-center image has had a specular highlight changed from
red to blue by editing the corresponding region of the β map, the right-center image has had
the influence of the blue light reduced by editing the spread of β values corresponding to the
blue light. In the image on the far right, the “WPI” has been placed in in blue light cast from
blue light. Edits can be done procedurally, by hand in a separate tool such as photoshop or by
operations in our previsualization framework.

5 Relighting

Ultimately, a movie director may like to preview the movie set under a different set of
lights. Relighting is the process of producing a new image of a previously rendered
scene under new lighting conditions. Relighting is difficult because information about
the scene necessary to perform relighting is often missing or incomplete. To invert the
pre-existing lighting in a scene, usually information about the scene, such as geome-
try, reflectance, appearance, or lighting must be estimated or captured directly. Our
relighting method allows for previsualization and editing of onset lighting in real-
time, which cannot be accomplished using previous methods. Similar to how the β
can be edited, it also greatly facilitates relighting. Relighting using the beta map simp-
ly becomes the generation of a new lighting image, which is achieved by multiplying
the β map by the new lighting values as shown in figure 6.

Fig. 6. A simplified relighting example performed as a series of texture map operations as
executed on graphics hardware. Left side is the Symmetric Lighting light capture, which results
in two maps (center). Right shows relighting as the product of the new lights L’, β map, and the
R() map to produce a relit camera image.

Overall, the β map is a powerful data structure that can be used as the basis for a
wide range of estimation techniques including normals, depth, global illumination and
BRDFs [5]. Our relighting application pipeline is shown in figure 7 below.

910 C. Lindsay and E. Agu

Fig. 7. The relighting workflow; images from the camera and light color information are input
into the relighting application, from which the application generates a β map. Using the original
image and β map, the original image has the original lighting removed. Then new light colors
can be multiplied with the β map and the lighting-free image to generate a relit image.

Sample results are shown in figure 8. This scene consists of two lights, several ob-
jects with unknown geometry, reflectance, and appearance (texture). The only infor-
mation known about the scene is the color of the two lights used to illuminate the
scene (Figure 8: RGB values for l1=[226,95,120],l2=[77,80,131]). The capture
process consists of acquiring two images from which a β map is generated. The β map
is then used in the relighting pipeline to perform real time modification of the lights at
over 100 frames per second (FPS) on a GPU. Our relighting application can also re-
duce or remove the influence of specific lights within the scene, which differentiates
our relighting method from image re-coloring [7].

Fig. 8. Images of a dish of candy relit with our previsualization framework. The candy was
originally lit with blue light and red light (left image). The light color is then removed from the
image using our relighting application and is re-rendered with a new green lighting (right im-
age).

6 PCam; Programmable Camera

To implement the previsualization functionality we have described, we propose
P-Cam, a programmable computational camera architecture that allows for arbitrary
shader programs to manipulate video and image frames on-camera during image cap-
ture and can be integrated into future digital camera designs. P-Cam’s architecture
applies existing stream processor technologies and tile-based ideas to create a pro-
grammable digital camera. PCam’s architecture is shown in figure 9.

 3D Previsualization Using a Computational Photography Camera 911

Fig. 9. The PCam architecture. This is a detailed view of the camera stage. Image data from an
image/video source are converted into tiles. The tiles are then cached and streamed through a
series of Camera Shaders. Camera Shaders allow user programmability within the architecture
by mapping code to kernels. Stream processor can access additional streams from either texture
memory, kernel output or data registers.

7 Evaluation

7.1 Photometric Analysis of Relighting

In order to assess the fidelity of our relighting method, relit scenes are compared with
ground truth images using the Delta E (00EΔ) perceptual color difference metric

LCR01]. In our relighting experiments we used several different scenes for which we
relit with predetermined light values. Using the same predetermined light values we
rendered the same scenes using the physically-based rendering system VRay to pro-
duce ground truth images of the scenes to compare against our relit images. For five
different lighting values, we compared the relit scenes with the rendered ground truth
images using the (00EΔ) metric.

Fig. 10. Relationship between the error of a set of relit images and their corresponding ground
truth images. An image with a 00EΔ difference value of five is considered the same. Most of

the pixels for each set of images fall below the threshold with a few outlier pixels.

912 C. Lindsay and E. Agu

Figure 11 shows our relighting evaluations. The images have been multiplied by a
factor of twenty to magnify the 00EΔ differences.

Fig. 11. Visual comparison of the error associated with our relighting application. The first
column is the original images before relighting. The second column shows a relighting of the
original image. The third column is the ground truth images compared to the relit images of the
second column. Fourth column shows the color difference at each pixel using the Delta E val-
ues plotted with matlab.

7.2 User Studies

We conducted user studies with expert and novice users to evaluate the usability of
our previsualization tool. Elements assessed included the camera hardware, user inter-
face and relighting functionality. Most users found the tool usable and provided en-
couraging feedback. More details about our user studies can be found in [5].

8 Related Work

Shree Nayar has envisioned an entire programmable imaging system [12] as one that
controls individual programmable camera components, while dynamically manipulating
and processing camera input using the system’s software. Various programmable com-
ponents of a camera have been proposed. Programmable camera components extract
information that computational photography algorithms require from light fields, which
current camera components cannot. Multi-flash [17], flash/no-flash pairs[14] and projec-
tor-based active illumination [16] techniques have been used to extract depth informa-
tion, denoise images, separate local and global reflection components. Coded [10] and
programmable apertures [11] have been used to extract depth information and capture
light fields. Programmable and coded lenses in the form of wavefront coding [9] and
programmable Digital Micro-Mirror Arrays [13] have been used to extend the camera’s
depth of field, increase the dynamic range, and facilitate object recognition. Shutter pro-
grammability [13]. Programming image sensors involves modifying exposure time for
each pixel in order to capture light at varying rates to increase dynamic range in images
[18]. These programmable camera front-end components still fall short of Nayar’s vision
of a complete programmable imaging system since they are typically used in conjunction
with non-programmable backends and post-processing of captured images is still re-

 3D Previsualization Using a Computational Photography Camera 913

quired before the final image can be generated. The FrankenCamera [2] includes a pro-
grammable back end but it is not specifically purposed for previsualization.

9 Conclusion and Future Work

We have described a comprehensive vision of algorithms and a programmable camera
for previsualization which allows a movie set to be captured and manipulated on-set
in real time. We have built a prototype focusing on light capture, edit, manipulation
and relighting. In future, we hope to attack other scene elements including geometery,
material and textures.

References

1. Okun, J.A., Zwerman, S.: The VES Handbook of Visual Effects: Industry Standard VFX
Practices and Procedures. Focal Press, ElsevierScience (2010)

2. Adams, A., et al.: The frankencamera: an experimental platform for computational photo-
graphy. In: Proc ACM SIGGRAPH (2010)

3. Warner brothers, HBO Entertainement, and Fox Searchlight Pictures. Movie collage
(April 2011)

4. Raskar, R., Tumblin, J., Mohan, A., Agrawal, A., Li, Y.: Computational photography.
ACM / EG Computer Graphics Forum 25(3), 1–20 (2006)

5. Lindsay, C.: Programmable Image-Based Light Capture for Previsualization, PhD Disser-
tation, Worcester Polytechnic Institute (January 2013)

6. Ruppertsberg, A.I., Bloj, M., Hurlbert, A.: Sensitivity to luminance and chromaticity
gradients in a complex scene. Journal of Vision 8(9) (2008)

7. Bhat, P., Lawrence Zitnick, C., Cohen, M., Curless, B.: Gradientshop: A gradient-domain
optimization framework for image and video filtering. ACM Trans. Graphics 29(2), 10
(2010)

8. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE
Comput. Graph. Appl. 21(5), 34–41 (2001)

9. Edward, J., Dowski, R., Cathey, W.T.: Extended depth of field through wave-front coding.
Appl.Opt. 34(11), 1859–1866 (1995)

10. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional
camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

11. Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., Chen, H.: Programmable aperture
photography: Multiplexed light field acquisition. ACM Transactions on Graphics 27(3),
55:1–55:10 (2008)

12. Nayar, S.: Computational cameras: Redefining the image. IEEE Computer Mag., 30–38
(August 2006)

13. Nayar, S., Branzoi, V., Boult, T.: ProgrammableImaging using a Digital Micromirror
Array. In: IEEE Conference on Computer Vision and Pattern Recognition vol. I, pp. 436–
443 (June 2004)

14. Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital
photography with flash and no-flash image pairs. In: ACM Trans Graphics (Proceedings of
SIGGRAPH 2004) (2004)

914 C. Lindsay and E. Agu

15. Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring
using fluttered shutter. ACM Trans. Graph. 25(3), 795–804 (2006)

16. Zhang, L., Nayar, S.K.: Projection Defocus Analysis for Scene Capture and Image
Display. ACM Trans. on Graphics (July 2006)

17. Raskar, R., Tan, K.-H., Feris, R., Yu, J., Turk, M.: Non-photorealistic camera: depth edge
detection and stylized rendering using multi-flash imaging. In: ACM SIGGRAPH 2005,
p. 2. ACM (2005)

18. Nayar, S., Branzoi, V.: Adaptive Dynamic Range Imaging: Optical Control of Pixel
Exposures over Space and Time. In: IEEE Intl. Conf. on Computer Vision, vol. 2,
pp. 1168–1175 (October 2003)

	3D Previsualization Using a Computational
Photography Camera
	1 Introduction
	2 Symmetric Light
	3 The Beta Map
	4 Gradient Domain Light Editting
	5 Relighting
	6 PCam; Programmable Camera
	7 Evaluation
	7.1 Photometric Analysis of Relighting
	7.2 User Studies

	8 Related Work
	9 Conclusion and Future Work
	References

