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Abstract. During movie production, movie directors use previsualization tools 
to convey the movie visuals as they see them in their minds eye. Traditional 
methods of previsualization include hand-drawn sketches, storyboards and still 
photographs. Recently, video game engines have been used for previsualization 
so that once the movie set is modeled, scene lighting, geometry, textures and 
various scene elements can be changed interactively and the effects of many po-
tential changes can be previewed quickly. The use of video games for previsua-
lization involves manually modeling the movie set by artists to create a digital 
version, which is expensive. We envision that a computational photography 
camera can be used for capturing images of a physical set from which a model 
of the scene can be automatically generated. A wide range of possible changes 
can be explored interactively and previewed on-set including scene geometry 
and textures. Since our vision is large, we focus initially on an initial prototype 
(a computational photography camera and previsualization algorithms), which 
enable scene lighting to be captured, inferred, manipulated and new lights ap-
plied (relighting). Evaluations of our light previsualization prototype shows low 
photometric error rates and encouraging feedback from experts.  

1 Introduction 

Movie making is the process of storytelling using creative visuals and audio scenes. 
While designing the movie set, its physical configuration must be matched to the 
director’s artistic vision. Previsualization techniques are used to create approximate 
previews of a movie sequence prior to shooting it. Often these techniques are used to 
convey the artistic direction of the story in terms of cinematic elements, such as cam-
era movement, angle, lighting, dialogue, and character motion. Essentially, a movie 
director uses previsualization (previs) to convey movie visuals as he sees them in his 
”minds-eye”. Traditional methods for previs include hand-drawn sketches, story-
boards and photographs to convey how a scene or character might look or move. 

A recent trend has emerged whereby 3D video game engines are used to design 
movie sets and perform previsualization (called 3D previsualization). By understand-
ing the effects of the various options available to the filmmakers prior to shooting, 
previsualization can help to minimize reshoots, save time, money, and facilitate the 
creative process [1]. Digital previsualization platforms have the advantage that once a 
scene is digitally modeled, visualizing changes to the scene can be done interactively 
and the effects of many potential changes can be previewed quickly. However, using 
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video games for previsualization involves manually modeling the movie set by artists 
to create a digital version, which is expensive. Consequently, digital platforms for 
previsualization are currently used mostly by big movie companies.  

Our Vision. Computational photography cameras and algorithms have recently 
emerged [2].  We envision that a computational photography camera (hardware, algo-
rithms and software) can be used for interactive 3D previsualization. A digital model 
of movie set can be automatically generated from a picture (or pictures). Various 
scene configurations can be explored by the director including lighting choices, movie 
furniture, props and object materials in order to guide on-set design choices.  
 

 

Fig. 1. Our envisioned previsualization interface that facilitates the virtual capture and edit all 
of a movie scene’s properties including  geometry, object reflectance, texture, shadows and 
lights 

Figure 1 is a mock-up of our envisioned previsualization interfacen. Using our 
computational previsualization camera (hardware, algorithms and software), a movie 
set is digitized in real time to capture scene objects, material, lighting and textures, 
which can be edited on-set by the movie director to view the effect of changes. In the 
figure, a scene object has been selected by the user via the interface (red dotted line). 
The interface then provides all the options for editing the real object virtually such as 
textures, reflectance, geometry, and lighting changes and previewing the changes in 
real-time. This tool would provide the same level of control for visualization as 3D 
modeling tools such as Maya or 3D Studio max on-camera.  

Our Initial Scope. Our vision is extremely large encompassing the capture, manipu-
lation and previsualization of almost all scene elements including lighting, shadows, 
texture, materials and geometry. As a proof of concept, and to manage the scope of 
our efforts initially, we focus on capture, analysis, manipulation and previsualization 
of lighting modifications on the movie set independent of the other scene properties. 
Scene lighting has a dramatic effect on the artistic aspects of the scene by evoking 
mood, directing attention to specific details, and allowing the director to convey 
thoughts and ideas. Figure 2 shows several examples of the use of cinematic lighting; 
We automatically capture the on-set lighting and provide interactive manipulation of 
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cinematic elements to facilitate the movie maker’s artistic expression, validate cine-
matic choices, and provide guidance to production crews.  

 

Fig. 2. A collage of example lighting concepts that illustrate diverse types of scene lighting 

Our Key Contributions. We propose a five-tiered framework: 1) Symmetric lighting: 
new algorithms that analyzes and decomposes the scene photometrically to infer cur-
rent scene lighting, and  2) β (beta) map: a novel data structure for storing captured 
light, which facilitates editing and relighting. 3) Light editing: functionality to modify 
the captured scene lighting using gradient domain operations. 4) Scene relighting: a 
technique to apply new lighting to the movie scene and 6) PCam: a novel programm-
able camera architecture that is fully programmable and a user interface that facilitates 
scene capture, analysis, editing and previsualization by novices. 

2 Symmetric Light 

Symmetric Lighting is our novel technique for inferring the lighting conditions under 
which an image of a scene (movie set) was initially captured without knowing or 
measuring its geometry, reflectance, or appearance and without the need for light 
measurement equipment as is typically used today. An outline of the Symmetric Light 
technique is now provided. We assume that the light source colors are distinct and 
known by the user a priori, and calculate the effects of these lights at each image pixel 
due to the different colored light sources. Under this condition, every pixel receives a 
mixture of these two distinct light sources L1 and L2 either directly or after being re-
flected off a material surface. If an image pixel receives a mixture of L1 and L2, in 
RGB space λ ={R, G, B}, an image sensor has three color values our input image can 
be modeled as: 

                                                (1) 

We recover the direct and global elements of light using a technique called Active 
illumination. Active Illumination is the name given to a class of Computational  
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Photography [4] methods that manipulate only the lighting in a scene in order to esti-
mate scene properties. In our Symmetric Lighting method, we manipulate the lighting 
by alternating the color each light emits, which allows us to estimate the proportion 
each light contributes to illuminating a given camera pixel. Thus to infer what light 
impinges on a pixel, we position the lights in the appropriate location in the RGB 
color cube based on their light color. Then using interpolation, we assume that each 
pixel, located at (x,y) in image I, has a relative contribution of light from each illumi-
nant in the form: 

21 )1( LLL ββ −+=                                            (2) 

Since we assume knowledge of L1 and L2, determing the light L received by a given 
pixel reduces to finding it’s value of β (contributions received from L1 and L2). To 
solve for β we introduce the novel idea of Symmetric Lighting, which allows us to 
introduce further constraints on the ill-constrained formulation for determining β. The 
idea is that while keeping the camera and light positions constant and assuming the 
lights emit different colored light, we acquire two images of the scene. After acquiring 
the first image, the second image is acquired with the colors between lights swapped. 

Using Euclidean geometry in the RGB color cube, we can solve for the values of 
the two lights sources. If we plot the light colors of L1 and L2 in the RGB cube, they 
form two points in the cube. The line between L1 and L2  in the color cube is in fact 
the range of light colors (mixtures) any pixel image can receive. If we then multiply 
the light line segment 

21LL  by a pixel of the color C1, this corresponds to a transform 

of the line segment to a new location in the RGB cube, call it 
211 LLC . The new line 

segment 
211 LLC  spans a color range, where every point on the line segment is some 

interpolation of the end points C1L1 and C1L2 where β is the interpolation variable. If 
we also consider a second transformation of 

21LL  by a different pixel color C2, this 

forms a different line segment, call it 
212 LLC . We find the proper interpolant value β  

that solves these equations. Then the solution is just the β value where 
211 LLC  and 

212 LLC  intersect as indicated in Figure 3.  

 

 

Fig. 3. The relationship between camera pixel C1 and C2 in successive images at the same pixel 
location (i, j) and the two lights that provide a relative contribution in linear RGB space 
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The above formulation assumes 2 lights but we also derive a more general form for 
inferring the colors of  N  different lights. We refer the reader to [5] for the full deri-
vation and also our technique for minimizing light estimation errors. 

3 The Beta Map 

Solving equation (2) at each pixel yields the value of β at that pixel. The grid of β  for 
all pixels forms a map. As such, the scene lighting captured using Symmetric Lighting 
is stored in a novel data structure that we call the β (Beta) map. The elements of the β 
(Beta) map have a one-to-one correspondence with the camera pixels. Image 
processing operations can be used to modify or interprete the β map making it a po-
werful representation for editing the scene lighting environment. The β map is ana-
logous to the alpha, normal, and depth maps for a scene. It stores the values of the 
light multiplied by the geometric information of the scene prior to it being multiplied 
by the reflectance and appearance values. 
 

 

Fig. 4. Beta Map Creation: input two images containing the same setup with the light colors 
interchanged resulting in a grayscale image where the pixel values correspond to the proportion 
of light each source provides for a particular pixel 

Figure 4 shows the creation process of the beta map. The symmmetric light 
formulation for 2 lights can be used to generate a beta map that can be used to factor 
out the lighting information leaving only R( ) values, which is known as the reflec-
tance image. 

4 Gradient Domain Light Editting 

One benefit of the β map is that its values can be transformed to the gradient domain 
where the distribution of photons in a scene can be edited directly. This is motivated 
by two facts 1) the Human Visual System (HVS) is sensitive to local contrasts rather 
than absolute luminance values [6]. It is known that image gradients are correlated 
with contrast differences [7]. 2) Editting the β map also edits the reflectance gradient. 
The gradient of the the β map is defined as: 

                                              (3) 

Several gradient domain edittng operations are defined on the β map including scal-
ing, rotating, translating, diffusing and sharpening the β map. Figure 5 is an example 
of the effects of β map editing in the gradient domain. 
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Fig. 5. This example shows how editing the β  map essentially edits the lights, the distributions 
of photons, and their influence on parts of the scene. Left is the original bath scene. The other 
images show edits to the β  map; left-center image has had a specular highlight changed from  
red to blue by editing the corresponding region of  the β  map, the right-center image has had 
the influence of the blue light reduced by editing the spread of β  values corresponding to the 
blue light. In the image on the far right, the “WPI” has been placed in in blue light cast from 
blue light. Edits  can be done procedurally, by hand in a separate tool such as photoshop or by 
operations in our previsualization framework.   

5 Relighting 

Ultimately, a movie director may like to preview the movie set under a different set of 
lights. Relighting is the process of producing a new image of a previously rendered 
scene under new lighting conditions. Relighting is difficult because information about 
the scene necessary to perform relighting is often missing or incomplete. To invert the 
pre-existing lighting in a scene, usually information about the scene, such as geome-
try, reflectance, appearance, or lighting must be estimated or captured directly. Our 
relighting method allows for previsualization and editing of onset lighting in real-
time, which cannot be accomplished using previous methods. Similar to how the β 
can be edited, it also greatly facilitates relighting. Relighting using the beta map simp-
ly becomes the generation of a new lighting image, which is achieved by multiplying 
the β map by the new lighting values as shown in figure 6. 

 

Fig. 6. A simplified relighting example performed as a series of texture map operations as 
executed on graphics hardware. Left side is the Symmetric Lighting light capture, which results 
in two maps (center). Right shows relighting as the product of the new lights L’, β  map, and the 
R( ) map to produce a relit camera image.  

Overall, the β map is a powerful data structure that can be used as the basis for a 
wide range of estimation techniques including normals, depth, global illumination and 
BRDFs [5]. Our relighting application pipeline is shown in figure 7 below. 
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Fig. 7.   The relighting workflow; images from the camera and light color information are input 
into the relighting application, from which the application generates a β map. Using the original 
image and β map, the original image has the original lighting removed. Then new light colors 
can be multiplied with the β map and the lighting-free image to generate a relit image. 

Sample results are shown in figure 8. This scene consists of two lights, several ob-
jects with unknown geometry, reflectance, and appearance (texture). The only infor-
mation known about the scene is the color of the two lights used to illuminate the 
scene (Figure 8: RGB values for l1=[226,95,120],l2=[77,80,131]). The capture 
process consists of acquiring two images from which a β map is generated. The β map 
is then used in the relighting pipeline to perform real time modification of the lights at 
over 100 frames per second (FPS) on a GPU. Our relighting application can also re-
duce or remove the influence of specific lights within the scene, which differentiates 
our relighting method from image re-coloring [7]. 
 

 

Fig. 8. Images of a dish of candy relit with our previsualization framework. The candy was 
originally lit with blue light and red light (left image). The light color is then removed from the 
image using our relighting application and is re-rendered with a new green lighting (right im-
age). 

6 PCam; Programmable Camera  

To implement the previsualization functionality we have described, we propose  
P-Cam, a programmable computational camera architecture that allows for arbitrary 
shader programs to manipulate video and image frames on-camera during image cap-
ture and can be integrated into future digital camera designs. P-Cam’s architecture 
applies existing stream processor technologies and tile-based ideas to create a pro-
grammable digital camera. PCam’s architecture is shown in figure 9. 
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Fig. 9. The PCam architecture. This is a detailed view of the camera stage. Image data from an 
image/video source are converted into tiles. The tiles are then cached and streamed through a 
series of Camera Shaders. Camera Shaders allow user programmability within the architecture 
by mapping code to kernels. Stream processor can access additional streams from either texture 
memory, kernel output or data registers.  

7 Evaluation 

7.1 Photometric Analysis of Relighting 

In order to assess the fidelity of our relighting method, relit scenes are compared with 
ground truth images using the Delta E ( 00EΔ ) perceptual color difference metric 

LCR01]. In our relighting experiments we used several different scenes for which we 
relit with predetermined light values. Using the same predetermined light values we 
rendered the same scenes using the physically-based rendering system VRay to pro-
duce ground truth images of the scenes to compare against our relit images. For five 
different lighting values, we compared the relit scenes with the rendered ground truth 
images using the ( 00EΔ ) metric. 

 

Fig. 10. Relationship between the error of a set of relit images and their corresponding ground 
truth images. An image with a 00EΔ difference value of five is considered the same. Most of 

the pixels for each set of images fall below the threshold with a few outlier pixels.  
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Figure 11 shows our relighting evaluations. The images have been multiplied by a 
factor of twenty to magnify the 00EΔ  differences. 

 

Fig. 11. Visual comparison of the error associated with our relighting application. The first 
column is the original images before relighting. The second column shows a relighting of the 
original image. The third column is the ground truth images compared to the relit images of the 
second column. Fourth column shows the color difference at each pixel using the Delta E val-
ues plotted with matlab.  

7.2 User Studies 

We conducted user studies with expert and novice users to evaluate the usability of 
our previsualization tool. Elements assessed included the camera hardware, user inter-
face and relighting functionality. Most users found the tool usable and provided en-
couraging feedback. More details about our user studies can be found in [5]. 

8 Related Work 

Shree Nayar has envisioned an entire programmable imaging system [12] as one that 
controls individual programmable camera components, while dynamically manipulating 
and processing camera input using the system’s software. Various programmable com-
ponents of a camera have been proposed. Programmable camera components extract 
information that computational photography algorithms require from light fields, which 
current camera components cannot. Multi-flash [17], flash/no-flash pairs[14] and projec-
tor-based active illumination [16] techniques have been used to extract depth informa-
tion, denoise images, separate local and global reflection components. Coded [10] and 
programmable apertures [11] have been used to extract depth information and capture 
light fields. Programmable and coded lenses in the form of wavefront coding [9] and 
programmable Digital Micro-Mirror Arrays [13] have been used to extend the camera’s 
depth of field, increase the dynamic range, and facilitate object recognition. Shutter pro-
grammability [13]. Programming image sensors involves modifying exposure time for 
each pixel in order to capture light at varying rates to increase dynamic range in images 
[18]. These programmable camera front-end components still fall short of Nayar’s vision 
of a complete programmable imaging system since they are typically used in conjunction 
with non-programmable backends and post-processing of captured images is still re-
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quired before the final image can be generated. The FrankenCamera [2] includes a pro-
grammable back end but it is not specifically purposed for previsualization. 

9 Conclusion and Future Work 

We have described a comprehensive vision of algorithms and a programmable camera 
for previsualization which allows a movie set to be captured and manipulated on-set 
in real time. We have built a prototype focusing on light capture, edit, manipulation 
and relighting. In future, we hope to attack other scene elements including geometery, 
material and textures.  
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